- 1. Show that function v(x, y) is harmonic and find the function u(x, y) of which it is harmonic conjugate.
 - (a) $v = 2y 3x^2y + y^3$ Answer: $v_{xx} + v_{yy} = -6y + 6y = 0$ thus it is harmonic. $u(x, y) = 2x - x^3 + 3xy^2 + C$. Check: $u_x = v_y = 2 - 3x^2 + 3y^2$ and $u_y = -v_x = 6xy$.
 - (b) $v = \cos y \cosh x$ Answer: $u(x, y) = -\sin y \sinh x + C$ (c) $v = x/(x^2 + y^2)$

C)
$$v = x/(x + y)$$

Answer: $u(x, y) = y/(x^2 + y^2) + C$

2. Show that F(z) is analytic in D if and only if -iF(z) is analytic there.

Answer: By def F(z) is analitic in D if it has derivative at each point together with its open vicinity in D. Multiplication by a constant will not effect this property.

Another way to prove it is to use Cauchy-Riemann equations. Assuming that real and imaginary parts of F obey them, show that real and imaginary parts of iF will obey them as well.

- 3. Lemma Let f(z) = u(x, y) + iv(x, y) be analytic. Let curves $u(x, y) = c_1$ and $v(x, y) = c_2$ intersect at point z_0 and $f'(z_0) \neq 0$. Then the lines tangent to the curves at z_0 are perpendicular.
 - (a) Demonstrate the Lemma for f(z) = z⁻¹, z ≠ 0;
 Answer: f(z) = z⁻¹ = z/|z|². Then u = x/(x² + y²) and v = -y/(x² + y²). Equation u(x, y) = c₁ becomes a circle shifted from the origin along the x axis. Equation v(x, y) = c₂ becomes a circle shifted from the origin along the y axis. Such two circles, if intersect, form the right angle.
 - (b) Prove the Lemma. Hint: regard y as a function of x and differtiate equations of the curves w.r.t. x. Then, find product of slopes of tangent lines at the intersection point. Use C.-R. equations to show that the product is -1. Make conclusion.

Answer: $u(x, y(x)) = c_1$; so $u_x + u_y y'(x) = 0$; thus $y'(x) = -u_x/u_y = k_1$.

 $v(x, y(x)) = c_2$; so $v_x + v_y y'(x) = 0$; thus $y'(x) = -v_x/v_y = k_2$.

The product of the slopes at the point of intersection x is $k_1k_2 = u_xv_x/(u_yv_y)$. But f is analytic, so $u_x = v_y$ and $u_y = -v_x$, so $k_1k_2 = -1$. Thus the lines are perpendicular.

4. Consider functions

$$f_1(z) = \sqrt{r}e^{i\theta/2}, r > 0, \ 0 < \theta < \pi;$$

$$f_2(z) = \sqrt{r}e^{i\theta/2}, r > 0, \ \pi/2 < \theta < 2\pi;$$

$$f_3(z) = \sqrt{r}e^{i\theta/2}, r > 0, \ 3\pi/2 < \theta < 5\pi/2;$$

Show that f_2 is analytic continuation of f_1 , f_3 is analytic continuation of f_2 , but $f_3 \neq f_1$ on their common domain.

Answer: All three functions are analytic on their domains. $f_1 = f_2$ on the intersection of their domains $\pi/2 < \theta < \pi$. Thus f_2 is analytic continuation of f_1 .

Likewise, $f_2 = f_3$ on $3\pi/2 < \theta < 2\pi$, so f_3 is analytic continuation of f_2 , and by transitivity, f_3 is analytic continuation of f_1 .

Nevertheless, $f_3(z) = -f_1(z)$ for any point from the first quadrant. For example, z = 1 + i, $f_3(1+i) = f_3(\sqrt{2}e^{i(\pi/4+2\pi)}) = -2^{1/4}e^{i\pi/8}$, but $f_1(1+i) = f_1(\sqrt{2}e^{i\pi/4}) = 2^{1/4}e^{i\pi/8}$.

5. Check if the following function satisfy $f(z) = f(\overline{z})$ by two ways: directly and using reflection principle.

 $a)f(z) = z^3$ yes $b)f(z) = z^3(1+i)$ no $c)f(z) = e^z$ yes $d)f(z) = e^{iz}$ no

6. Evaluate

- (a) $\exp(\frac{2+i\pi}{4}) = \sqrt{e/2}(1+i)$ (b) $(\exp(z^4))' = 4ei$ at z = -i(c) $\log i = i(\pi/2 + 2\pi k)$ (d) $\log e = 1 + (2\pi k)i$ (e) $\log(1 + \sqrt{3}i) = \ln 2 + i(\pi/3 + 2\pi k)$
- 7. Solve for z
 - (a) $\log z = i\pi/2$ Answer: z = i.
 - (b) $\tan z = 2i$ Answer: $z = \pi/2 + k\pi + i(\ln 3)/2$.
 - (c) $\sinh z = i$ Answer: $z = i(\pi/2 + 2k\pi)$
 - (d) $\sinh(\cos z) = 0$ Answer: $z = \pi/2 + 2k\pi 2Log(n\pi + \sqrt{n^2\pi^2 + 1})$
- 8. Show that $\text{Log}(1+i)^2 = 2\text{Log}(1+i)$, but $\text{Log}(-1+i)^2 \neq 2\text{Log}(-1+i)$. Answer: $Log(1+i)^2 = Log(2i) = \ln 2 + i\pi/2$ $2Log(1+i) = 2(\ln\sqrt{2} + i\pi/4) = \ln 2 + i\pi/2 = Log(1+i)^2$; $Log(-1+i)^2 = Log(-2i) = \ln 2 - i\pi/2$ $2Log(-1+i) = 2(\ln\sqrt{2} + i3\pi/4) = \ln 2 + i3\pi/2 \neq Log(-1+i)^2$;
- 9. Extra Points Problem Let $f(z) = u(r, \theta) + iv(r, \theta)$ be analytic. Find 2nd order partial differential equation for function $u(r, \theta)$. How does it relate to the Laplace equation we considered before? Answer: $r^2u_{rr} + ru_r + u_{\theta\theta} = 0$. This is Laplace equation in polar coordinates.