1. Show that function $v(x, y)$ is harmonic and find the function $u(x, y)$ of which it is harmonic conjugate.
(a) $v=2 y-3 x^{2} y+y^{3}$

Answer: $v_{x x}+v_{y y}=-6 y+6 y=0$ thus it is harmonic.
$u(x, y)=2 x-x^{3}+3 x y^{2}+C$. Check: $u_{x}=v_{y}=2-3 x^{2}+3 y^{2}$ and $u_{y}=-v_{x}=6 x y$.
(b) $v=\cos y \cosh x$

Answer: $u(x, y)=-\sin y \sinh x+C$
(c) $v=x /\left(x^{2}+y^{2}\right)$

Answer: $u(x, y)=y /\left(x^{2}+y^{2}\right)+C$
2. Show that $F(z)$ is analytic in D if and only if $-i F(z)$ is analytic there.

Answer: By def $F(z)$ is analitic in D if it has derivative at each point together with its open vicinity in D. Multiplication by a constant will not effect this property.
Another way to prove it is to use Cauchy-Riemannn equations. Assuming that real and imaginary parts of F obey them, show that real and imaginary parts of $i F$ will obey them as well.
3. Lemma Let $f(z)=u(x, y)+i v(x, y)$ be analytic. Let curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ intersect at point z_{0} and $f^{\prime}\left(z_{0}\right) \neq 0$. Then the lines tangent to the curves at z_{0} are perpendicular.
(a) Demonstrate the Lemma for $f(z)=z^{-1}, z \neq 0$;

Answer: $f(z)=z^{-1}=\bar{z} /|z|^{2}$. Then $u=x /\left(x^{2}+y^{2}\right)$ and $v=-y /\left(x^{2}+y^{2}\right)$. Equation $u(x, y)=c_{1}$ becomes a circle shifted from the origin along the x axis. Equation $v(x, y)=c_{2}$ becomes a circle shifted from the origin along the y axis. Such two circles, if intersect, form the right angle.
(b) Prove the Lemma. Hint: regard y as a function of x and differtiate equations of the curves w.r.t. x. Then, find product of slopes of tangent lines at the intersection point. Use C.-R. equations to show that the product is -1 . Make conclusion.
Answer: $u(x, y(x))=c_{1}$; so $u_{x}+u_{y} y^{\prime}(x)=0$; thus $y^{\prime}(x)=-u_{x} / u_{y}=k_{1}$.
$v(x, y(x))=c_{2}$; so $v_{x}+v_{y} y^{\prime}(x)=0$; thus $y^{\prime}(x)=-v_{x} / v_{y}=k_{2}$.
The product of the slopes at the point of intersection x is $k_{1} k_{2}=u_{x} v_{x} /\left(u_{y} v_{y}\right)$. But f is analytic, so $u_{x}=v_{y}$ and $u_{y}=-v_{x}$, so $k_{1} k_{2}=-1$. Thus the lines are perpendicular.
4. Consider functions
$f_{1}(z)=\sqrt{r} e^{i \theta / 2}, r>0,0<\theta<\pi ;$
$f_{2}(z)=\sqrt{r} e^{i \theta / 2}, r>0, \pi / 2<\theta<2 \pi ;$
$f_{3}(z)=\sqrt{r} e^{i \theta / 2}, r>0,3 \pi / 2<\theta<5 \pi / 2$;
Show that f_{2} is analytic continuation of f_{1}, f_{3} is analytic continuation of f_{2}, but $f_{3} \neq f_{1}$ on their common domain.
Answer: All three functions are analytic on their domains. $f_{1}=f_{2}$ on the intersection of their domains $\pi / 2<\theta<\pi$. Thus f_{2} is analytic continuation of f_{1}.
Likewise, $f_{2}=f_{3}$ on $3 \pi / 2<\theta<2 \pi$, so f_{3} is analytic continuation of f_{2}, and by transitivity, f_{3} is analytic continuation of f_{1}.
Nevertheless, $f_{3}(z)=-f_{1}(z)$ for any point from the first quadrant. For example, $z=1+i$, $f_{3}(1+i)=f_{3}\left(\sqrt{2} e^{i(\pi / 4+2 \pi)}\right)=-2^{1 / 4} e^{i \pi / 8}$, but $f_{1}(1+i)=f_{1}\left(\sqrt{2} e^{i \pi / 4}\right)=2^{1 / 4} e^{i \pi / 8}$.
5. Check if the following function satisfy $f(\bar{z})=f(\bar{z})$ by two ways: directly and using reflection principle.
a) $f(z)=z^{3}$ yes
b) $f(z)=z^{3}(1+i)$ no
c) $f(z)=e^{z}$ yes
d) $f(z)=e^{i z}$ no
6. Evaluate
(a) $\exp \left(\frac{2+i \pi}{4}\right)=\sqrt{e / 2}(1+i)$
(b) $\left(\exp \left(z^{4}\right)\right)^{\prime}=4 e i$ at $z=-i$
(c) $\log i=i(\pi / 2+2 \pi k)$
(d) $\log e=1+(2 \pi k) i$
(e) $\log (1+\sqrt{3} i)=\ln 2+i(\pi / 3+2 \pi k)$
7. Solve for z
(a) $\log z=i \pi / 2$ Answer: $z=i$.
(b) $\tan z=2 i$ Answer: $z=\pi / 2+k \pi+i(\ln 3) / 2$.
(c) $\sinh z=i$ Answer: $z=i(\pi / 2+2 k \pi)$
(d) $\sinh (\cos z)=0$ Answer: $z=\pi / 2+2 k \pi-2 \log \left(n \pi+\sqrt{n^{2} \pi^{2}+1}\right)$
8. Show that $\log (1+i)^{2}=2 \log (1+i)$, but $\log (-1+i)^{2} \neq 2 \log (-1+i)$.

Answer: $\log (1+i)^{2}=\log (2 i)=\ln 2+i \pi / 2$
$2 \log (1+i)=2(\ln \sqrt{2}+i \pi / 4)=\ln 2+i \pi / 2=\log (1+i)^{2} ;$
$\log (-1+i)^{2}=\log (-2 i)=\ln 2-i \pi / 2$
$2 \log (-1+i)=2(\ln \sqrt{2}+i 3 \pi / 4)=\ln 2+i 3 \pi / 2 \neq \log (-1+i)^{2} ;$
9. Extra Points Problem Let $f(z)=u(r, \theta)+i v(r, \theta)$ be analytic. Find 2nd order partial differetial equation for function $u(r, \theta)$. How does it relate to the Laplace equation we considered before?
Answer: $r^{2} u_{r r}+r u_{r}+u_{\theta \theta}=0$. This is Laplace equation in polar coordinates.

