1. Show that function $v(x, y)$ is harmonic and find the function $u(x, y)$ of which it is harmonic conjugate.
(a) $v=2 y-3 x^{2} y+y^{3}$
(b) $v=\cos y \cosh x$
(c) $v=x /\left(x^{2}+y^{2}\right)$
2. Show that $F(z)$ is analytic in D if and only if $-i F(z)$ is analytic there.
3. Lemma Let $f(z)=u(x, y)+i v(x, y)$ be analytic. Let curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ intersect at point z_{0} and $f^{\prime}\left(z_{0}\right) \neq 0$. Then the lines tangent to the curves at z_{0} are perpendicular.
(a) Demonstrate the Lemma for $f(z)=z^{-1}, z \neq 0$;
(b) Prove the Lemma. Hint: regard y as a function of x and differtiate equations of the curves w.r.t. x. Then, find product of slopes of tangent lines at the intersection point. Use C.-R. equations to show that the product is -1 . Make conclusion.
4. Consider functions

$$
\begin{aligned}
& f_{1}(z)=\sqrt{z} e^{\theta / 2}, r>0,0<\theta<\pi \\
& f_{2}(z)=\sqrt{z} e^{\theta / 2}, r>0, \pi / 2<\theta<2 \pi \\
& f_{3}(z)=\sqrt{z} e^{\theta / 2}, r>0,3 \pi / 2<\theta<5 \pi / 2
\end{aligned}
$$

Show that f_{2} is analytic continuation of f_{1}, f_{3} is analytic continuation of f_{2}, but $f_{3} \neq f_{1}$ on their common domain.
5. Check if the following function satisfy $f(z)=f(\bar{z})$ by two ways: directly and using reflection principle.
a) $f(z)=z^{3}$
b) $f(z)=z^{3}(1+i)$
c) $f(z)=e^{z}$
d) $f(z)=e^{i z}$
6. Evaluate
(a) $\exp \left(\frac{2+i \pi}{4}\right)$
(b) $\left(\exp \left(z^{4}\right)\right)^{\prime}$ at $z=-i$
(c) $\log i$
(d) $\log e$
(e) $\log (1+\sqrt{3} i)$
7. Solve for z
(a) $\log z=i \pi / 2$
(b) $\tan z=2 i$
(c) $\sinh z=i$
(d) $\sinh (\cos z)=0$
8. Show that $\log (1+i)^{2}=2 \log (1+i)$, but $\log (-1+i)^{2} \neq 2 \log (-1+i)$.
9. Extra Points Problem Let $f(z)=u(r, \theta)+i v(r, \theta)$ be analytic. Find 2nd order partial differetial equation for function $u(r, \theta)$. How does it relate to the Laplace equation we considered before?

