Definition 1 Complex Derivative.

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}, \quad z \in C .
$$

Definition 2 Continuity of complex function at point z_{0}.

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right) .
$$

1. Using definition, find derivative of z^{n}, for
(a) any positive integer n;
(b) any negative integer n, if $z \neq 0$.
2. Show using definitions only that $f(z)=\bar{z}$ is continuous but not differentiable at any point of the complex plane.
3. Find complex derivative using differentiation rules
(a) $\left(-4 z^{3}+i\right)^{9}$
(b) $\left(\frac{i z-1}{z^{2}+1}\right)^{4}$
4. Let $f(z)=u(r, \theta)+i v(r, \theta)$ be analytic. Derive formula

$$
f^{\prime}(z)=-i\left(u_{\theta}^{\prime}+i v_{\theta}^{\prime}\right) / z
$$

from the formula $f^{\prime}(z)=e^{-i \theta}\left(u_{r}^{\prime}+i v_{r}^{\prime}\right)$ using Cauchy-Riemann equations in polar form.
5. Use Cauchy-Riemann equation in the appropriate form to determine where in the complex plane the following function is analytic. Find the derivative if it exists.
(a) $f(z)=(\bar{z}+2)^{2}$
(b) $f(z)=\operatorname{Im} z$
(c) $f(z)=z^{-3}, z \neq 0$
(d) $\sqrt{r} e^{i \theta / 2}, r>0,-\pi<\theta<\pi$
(e) $2 x+i x y^{2}$
(f) $e^{\bar{z}}$
(g) $r \cos \theta+i r$
(h) $\left(e^{2 x} \cos 2 y+i e^{2 x} \sin 2 y\right)^{-1}$
(i) $r^{4} \sin 4 \theta-i r^{4} \cos 4 \theta$
(j) \bar{z}^{3}
6. Extra Points Problem What is the flaw in the following argument?

$$
e^{i \theta}=\left(e^{i \theta}\right)^{2 \pi / 2 \pi}=\left(e^{2 \pi i}\right)^{\theta / 2 \pi}=1^{\theta / 2 \pi}=1 .
$$

