Due Thur Oct 7

Definition 1 Complex Derivative.

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}, \quad z \in C.$$

Definition 2 Continuity of complex function at point z_0 .

$$\lim_{z \to z_0} f(z) = f(z_0).$$

- 1. Using definition, find derivative of z^n , for
 - (a) any positive integer n;
 - (b) any negative integer n, if $z \neq 0$.
- 2. Show using definitions only that $f(z) = \overline{z}$ is continuous but not differentiable at any point of the complex plane.
- 3. Find complex derivative using differentiation rules

(a)
$$(-4z^3 + i)^9$$

(b) $\left(\frac{iz-1}{z^2+1}\right)^4$

4. Let $f(z) = u(r, \theta) + iv(r, \theta)$ be analytic. Derive formula

$$f'(z) = -i(u'_{\theta} + iv'_{\theta})/z$$

from the formula $f'(z) = e^{-i\theta}(u'_r + iv'_r)$ using Cauchy-Riemann equations in polar form.

5. Use Cauchy-Riemann equation in the appropriate form to determine where in the complex plane the following function is analytic. Find the derivative if it exists.

(a)
$$f(z) = (\bar{z} + 2)^2$$

(b) $f(z) = \text{Im}z$
(c) $f(z) = z^{-3}, z \neq 0$
(d) $\sqrt{r}e^{i\theta/2}, r > 0, -\pi < \theta < \pi$
(e) $2x + ixy^2$
(f) $e^{\bar{z}}$
(g) $r \cos \theta + ir$
(h) $(e^{2x} \cos 2y + ie^{2x} \sin 2y)^{-1}$
(i) $r^4 \sin 4\theta - ir^4 \cos 4\theta$
(j) \bar{z}^3

6. Extra Points Problem What is the flaw in the following argument?

$$e^{i\theta} = \left(e^{i\theta}\right)^{2\pi/2\pi} = \left(e^{2\pi i}\right)^{\theta/2\pi} = 1^{\theta/2\pi} = 1.$$