1. Find domain of the following functions and rewrite them in the form $u(x, y)+i v(x, y)$
(a) $\frac{1}{z \bar{z}-5}$
(b) $\frac{1}{z+i}$
(c) $z+\frac{1}{z}$
(d) $\bar{z}+\bar{z}^{3}$
2. Use de Moivre Identity to show that for any natural n

$$
\cos (n \theta)=\operatorname{Re} \sum_{k=0}^{n} \cos ^{n-k} \theta \sin ^{k} \theta \frac{i^{k} n!}{(n-k)!k!}
$$

Apply the formula in the following
(a) Find $\cos (8 \theta)$ if $\cos \theta=0.3$.
(b) Let n be even. Show that

$$
\cos (n \theta)=\sum_{m=0}^{n / 2} \cos ^{n-2 m} \theta\left(1-\cos ^{2} \theta\right)^{m}(-1)^{m} \frac{n!}{(n-2 m)!(2 m)!}
$$

3. Rewrite in terms of z and \bar{z} and simplify
(a) $x^{3}+y^{3}$
(b) $i x+\frac{x}{x^{2}+y^{2}}+y+\frac{i y}{x^{2}+y^{2}}$
4. Let $f(z)=(z+i)^{-1}$. Find
(a) $f(1 / z)$
(b) $f(f(z))$
(c) $f(z+i)$
5. Let $w=z^{2}$.
(a) Sketch domain in the z-plane which has rectangular image $-3 \leq \operatorname{Re} w \leq-2,2 \leq \operatorname{Im} w \leq 3$
(b) Sketch domain in the z-plane which has image $\operatorname{Re} w>0$ and $\operatorname{Im} w<0$
6. Let $w=e^{z}, z=x+i y$.
(a) What is the image of line $x=1$
(b) What is the image of line $y=\pi / 4$
(c) Sketch the image of $\ln 2 \leq x \leq \ln 3,-\pi / 4<y<\pi / 4$
(d) Sketch domain in the z-plane which has image $\operatorname{Re} w>0$ and $\operatorname{Im} w<0$
7. Extra Points Problem Show that for any integer n

$$
\left(\frac{1+i \tan \theta}{1-i \tan \theta}\right)^{n}=\frac{1+i \tan (n \theta)}{1-i \tan (n \theta)}
$$

