- 1. Find domain of the following functions and rewrite them in the form u(x,y) + iv(x,y)
 - (a) $\frac{1}{z\bar{z}-5}$
 - (b) $\frac{1}{z+i}$
 - (c) $z + \frac{1}{z}$
 - (d) $\bar{z} + \bar{z}^3$
- 2. Use de Moivre Identity to show that for any natural n

$$\cos(n\theta) = \operatorname{Re} \sum_{k=0}^{n} \cos^{n-k} \theta \sin^{k} \theta \frac{i^{k} n!}{(n-k)! k!}$$

Apply the formula in the following

- (a) Find $\cos(8\theta)$ if $\cos\theta = 0.3$.
- (b) Let n be even. Show that

$$\cos(n\theta) = \sum_{m=0}^{n/2} \cos^{n-2m} \theta (1 - \cos^2 \theta)^m (-1)^m \frac{n!}{(n-2m)!(2m)!}$$

- 3. Rewrite in terms of z and \bar{z} and simplify
 - (a) $x^3 + y^3$

(b)
$$ix + \frac{x}{x^2 + y^2} + y + \frac{iy}{x^2 + y^2}$$

- 4. Let $f(z) = (z+i)^{-1}$. Find
 - (a) f(1/z)
 - (b) f(f(z))
 - (c) f(z+i)
- 5. Let $w = z^2$.
 - (a) Sketch domain in the z-plane which has rectangular image $-3 \le \text{Re}w \le -2, \ 2 \le \text{Im}w \le 3$
 - (b) Sketch domain in the z-plane which has image Rew>0 and Imw<0
- 6. Let $w = e^z$, z = x + iy.
 - (a) What is the image of line x = 1
 - (b) What is the image of line $y = \pi/4$
 - (c) Sketch the image of $\ln 2 \le x \le \ln 3$, $-\pi/4 < y < \pi/4$
 - (d) Sketch domain in the z-plane which has image $\mathrm{Re}w>0$ and $\mathrm{Im}w<0$
- 7. Extra Points Problem Show that for any integer n

$$\left(\frac{1+i\tan\theta}{1-i\tan\theta}\right)^n = \frac{1+i\tan(n\theta)}{1-i\tan(n\theta)}$$