- 1. Find real and imaginary part the following
 - (a) $(4-2i)^3$
 - (b) $\frac{3-2i}{6-5i}$
 - (c) $(3+2i)^2$
 - (d) $5e^{i\pi/3}$
 - (e) $(1+i)^n$, n=1,2,3,...
- 2. Find polar representation
 - (a) -7i
 - (b) -6
 - (c) -2 + 2i
 - (d) $1 + \sqrt{3}i$
 - (e) 5
- 3. Find complex square roots of each of the complex number in the previous exersice.
- 4. For a given function L(z) the orbit of a point z is the set $\{z, L(z), L(L(z)), L(L(L(z))), \dots$ Let $L_a(z) = az$; Sketch the orbit of 1 in the plane for each of the following values a
 - (a) a = i/2
 - (b) a = 2i
 - (c) $a = 1 + \sqrt{3}i$
 - (d) a = i
 - (e) $a = e^{2\pi i/9}$
- 5. Sketch a curve in the complex plane given by equation
 - (a) |z 1 + i| = 3
 - (b) |z-1+i| = |z+2|
 - (c) $z^2 \bar{z}^2 = 3i$
- 6. Solve
 - (a) $z^5 = -i$
 - (b) $z^4 + 2z^2 + 1 = -1$
- 7. **Extra Points Problem** Sketch a curve(s) which consists of square roots of all points that lie on a circle in the complex plane.

Hint: consider 4 cases: circle centered at the origin; origin lies inside the circle; origin lies on the circle; origin lies outside the circle.