Mathematics 2000: Assignment #1, Winter 2004

Answers

1. Find the first 5 terms of following sequences.

a)
$$a_n = \frac{1}{n+1}$$
, $n = 0, 1, 2, \dots$ $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots$

b)
$$a_n = \frac{n!}{(n+1)!}, \ n = 0, 1, 2, \dots$$
 $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots$

c)
$$a_{n+1} = a_n^2 + 1$$
, $a_0 = 0$. $0, 1, 2, 5, 26, ...$

d)
$$a_{n+1} = (a_n + 1)^2$$
, $a_0 = 0$. $0, 1, 4, 25, 676, ...$

2. Find a formula for the general term a_n of the following sequences, assuming that the pattern of the first few terms continues.

a)
$$\left\{-1, \frac{1}{4}, \frac{-1}{9}, \frac{1}{16}, \frac{-1}{25}, \frac{1}{36}, \frac{-1}{49} \dots \right\}$$

$$\frac{(-1)^n}{n^2}, n = 1, 2, 3, \dots$$
b) $\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64} \dots \right\}$
$$\frac{1}{2^n}, n = 0, 1, 2, \dots$$

3. Determine if the following sequences converge or diverge. Find the limit of convergent sequences.

a)
$$a_n = \frac{n!}{3^n}$$
 Diverges to ∞
b) $b_n = \frac{n^3}{n!}$ Converges to 0

b)
$$b_n = \frac{n^{\circ}}{n!}$$
 Converges to 0.

c)
$$c_n = \frac{n!}{(-1)^n} \frac{2^n}{n^2 + 1}$$
 Diverges. Limit does not exist.

d)
$$b_n = \frac{n^2 + 1}{7n^2 - 1}$$
 Converges to 1/7.

e)
$$c_n = \cot\left(\frac{2}{n}\right)$$
 Diverges to ∞ .

f)
$$a_n = \sin\left(\frac{\sqrt[n]{\sqrt{n}}}{\sqrt{n+1}}\right)$$
 Converges to $\sin 1$.

g)
$$c_n = \frac{(-3)^n}{(n+1)!}$$
 Converges to 0.

h)
$$a_n = \arctan(-2n)$$
 Converges to $-\pi/2$.

i)
$$b_n = \frac{\ln(2x)}{\ln(x^2)}$$
 Converges to 1/2.

- 4. Determine whether the following sequences are increasing, decreasing, or not monotonic. Which ones are bounded? Do they have a limit?
- a) $a_n = \frac{2}{\cos(\pi n)} = 2(-1)^n$. It is bounded, non-monotonic and does not have a limit. b) $b_n = \frac{n-1}{n+1}$. It is bounded, monotonic (increasing) and has limit 1.
- c) $c_n = \sin(\pi n) = 0$. This is a constant sequence. Thus it is bounded and has limit 0.
- 5. Find the limit of the sequence defined by

$$a_1 = 1, \quad a_{n+1} = \frac{1}{1 + a_n}$$

$$limit = (\sqrt{5} - 1)/2$$

Bonus Problem Identify if each of the following statements is true or false. Explain why. Give an example.

- 1) If a sequence if bounded then it has a limit. **False**
- 2) If a sequence has a limit then it is bounded. **True**
- 3) If a sequence is monotonic then it is bounded. False
- 4) If a sequence is monotonic then it is convergent. **False**
- 5) If a sequence is both monotonic and bounded then it must have a limit. True
- 6) If a sequence is convergent then it must be monotonic. False
- 7) If a sequence $\{a_n\}$, $n \geq 1$ is convergent then the sequence $\{1/a_n\}$, $n \geq 1$ is divergent.False