
Mathematics 2000: Assignment #8, Winter 2006

1. Use the Chain Rule to find
dw

dt
, given w = cos(x− y) with x = t2 and

y = 1.

dw

dt
= − sin(x−y)(2t)+sin(x−y)(0) = −2t sin(x−y) = −2t sin(t2−1)

2. Use the Chain Rule to find
∂w

∂s
and

∂w

∂t
, given w = x cos(yz), with

x = s2,y = t2 and z = s− 2t.

∂w

∂s
= cos(yz)(2s)− xz sin(yz)(0)− xy sin(yz)(1)

= cos(st2 − 2t3)2s− s2t2 sin(st2 − 2t3)

∂w

∂t
= cos(yz)(0)− xz sin(yz)(2t)− xy sin(yz)(−2) =

= −2s2t(s− 2t) sin(st2 − 2t3) + 2s2t2 sin(st2 − 2t3)

= (6s2t2 − 2s3t) sin(t2s− 2t3)

3. Let w =
yz

x
with x = θ2, y = r + θ and z = r − θ. Find

∂w

∂r
and

∂w

∂θ
,

by:

(a) using the Chain Rule

(b) converting w to a function of r and θ before differentiating.

(a)
∂w

∂r
=
−yz

x2
(0) +

z

x
(1) +

y

x
(1) =

z + y

x
=

2r

θ2

∂w

∂θ
=
−yz

x2
(2θ) +

z

x
(1) +

y

x
(1) =

−(r + θ)(r − θ)
θ4

(2θ)

+
(r − θ)− (r + θ)

θ2
=
−2r2

θ3

(b) w =
yz

x
=

(r + θ)(r − θ)
θ2

=
r2 − θ2

θ2
=

(r

θ

)2
− 1

∂w

∂r
=

2r

θ2
;

∂w

∂θ
=
−2r2

θ2

4. Show that w = (x− y) sin(y− x) satisfies the equation
∂w

∂u
+

∂w

∂v
= 0,

(where w = f(x, y), x = u− v, y = v − u).
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∂w

∂u
=

∂w

∂x

dx

du
+

∂w

∂y

dy

du
=

∂w

∂x
− ∂w

∂y

∂w

∂v
=

∂w

∂x

dx

dv
+

∂w

∂y

dy

dv
= −∂w

∂x
+

∂w

∂y

∂w

∂u
+

∂w

∂v
= 0

5. Differentiate implicitly to find
dy

dx
, given cos x + tanxy + 5 = 0.

dy

dx
= −Fx(x, y)

Fy(x, y)
= −− sinx + y sec2(xy)

x sec2(xy)

6. Differentiate implicitly to find
∂z

∂x
and

∂z

∂y
:

(a) z = ex sin(z + y)
∂z

∂x
=

ex sin(z + y)
1− ex cos(z + y)

∂z

∂y
=

ex cos(z + y)
1− ex cos(z + y)

(b) x ln y + y2z + z2 = 8.
∂z

∂x
=

− ln y

y2 + 2z
,

∂z

∂y
= −x + 2y2z

y3 + 2yz

7. Examine each function for relative extrema.

(a) f(x, y) = |x + y| − 2

Since f(x, y) ≥ −2 for all (x, y), the relative minima consists of

all points (x, y) satisfying x + y = 0.

(b) z = −3x2 − 2y2 + 3x− 4y + 5

fx = −6x + 3 = 0 when x =
1
2

fxx = −6

fy = −4y−4 = 0 when y = −1 fyy = −4 fxy = 0

At the critical point (
1
2
,−1); fxx < 0 and fxxfyy − (fxy)2 > 0.

Therefore (
1
2
,−1,

31
4

) is a relative maximum.
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8. Determine whether there is a relative maximum, a relative minimum,
a saddle point, or insufficient information to determine the nature of
the function f(x, y) at the critical point fxx(x0, y0) = −3, fyy(x0, y0) =
−8, fxy(x0, y0) = 2.

fxx < 0, and fxxfyy − (fxy)2 = (−3)(−8)− 22 > 0 ⇒ f has a relative
maximum at (x0, y0)

9. Find the absolute extrema for the function f over the region R.
(In each case R contains the boundaries).

(a) f(x, y) = 2x− 2xy + y2,
R : the region in the xy-plane bounded by the graphs of y = x2

and y = 1.

fx = 2− 2y = 0 ⇒ y = 1

fy = 2y − 2x = 0 ⇒ y = x ⇒ x = 1 ⇒ f(1, 1) = 1

On the line y = 1;−1 ≤ x ≤ 1, f(x, y = 1) = 2x− 2x + 1 = 1

On the curve y = x2;−1 ≤ x ≤ 1;

g(x) = f(x, y = x2) = 2x− 2x(x2) + (x2)2 = x4 − 2x3 + 2x. Set
g′(x) = 0 to find critical points. They are at x = 1 and x = −0.5

Evaluate g(−1) = 1, g(1) = 1, g(−0.5) = −11/16.

Thus the maximum is 1, the minimum is
−11
16

Absolute maximum: 1 at on y = 1,−1 ≤ x ≤ 1

Absolute minimum:
−11
16

at (−1
2
,
1
4
)

(b) f(x, y) = x2 − 4xy + 5,
R = {(x, y) : 0 ≤ x ≤ 4, 0 ≤ y ≤

√
x}.

fx = 2x− 4y = 0 fy = −4x = 0

⇒ x = y = 0; is critical point; f(0, 0) = 5

Along y = 0;x ∈ [0, 4]; g(x) = f(x, 0) = x2 + 5, critical

point is at x = 0 and g(0) = f(0, 0) = 5, g(4) = f(4, 0) = 21
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Along x = 4, y ∈ [0, 2], g(y) = f(4, y) = 16− 16y + 5 = 21− 16y;

g′(y) = −16 6= 0; No critical points; g(0) = f(4, 0) = 21,

g(2) = f(4, 2) = −11

Along y =
√

x; x ∈ [0, 4]; g(x) = f(x,
√

x) = x2 − 4x
3
2 + 5;

g′ = 2x− 6x
1
2 = 0, critical point x = 0 on [0, 4]

g(0) = f(0, 0) = 5; g(4) = f(4, 2) = −11

Hence, the maximum is f(4, 0) = 21 and

the minimum is f(4, 2) = −11
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