Mathematics 2000: Assignment \#8, Winter 2006

1. Use the Chain Rule to find $\frac{d w}{d t}$, given $w=\cos (x-y)$ with $x=t^{2}$ and $y=1$.
$\frac{d w}{d t}=-\sin (x-y)(2 t)+\sin (x-y)(0)=-2 t \sin (x-y)=-2 t \sin \left(t^{2}-1\right)$
2. Use the Chain Rule to find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$, given $w=x \cos (y z)$, with $x=s^{2}, y=t^{2}$ and $z=s-2 t$.
$\frac{\partial w}{\partial s}=\cos (y z)(2 s)-x z \sin (y z)(0)-x y \sin (y z)(1)$
$=\cos \left(s t^{2}-2 t^{3}\right) 2 s-s^{2} t^{2} \sin \left(s t^{2}-2 t^{3}\right)$
$\frac{\partial w}{\partial t}=\cos (y z)(0)-x z \sin (y z)(2 t)-x y \sin (y z)(-2)=$
$=-2 s^{2} t(s-2 t) \sin \left(s t^{2}-2 t^{3}\right)+2 s^{2} t^{2} \sin \left(s t^{2}-2 t^{3}\right)$
$=\left(6 s^{2} t^{2}-2 s^{3} t\right) \sin \left(t^{2} s-2 t^{3}\right)$
3. Let $w=\frac{y z}{x}$ with $x=\theta^{2}, y=r+\theta$ and $z=r-\theta$. Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$, by:
(a) using the Chain Rule
(b) converting w to a function of r and θ before differentiating.

$$
\begin{aligned}
& \text { (a) } \frac{\partial w}{\partial r}=\frac{-y z}{x^{2}}(0)+\frac{z}{x}(1)+\frac{y}{x}(1)=\frac{z+y}{x}=\frac{2 r}{\theta^{2}} \\
& \frac{\partial w}{\partial \theta}=\frac{-y z}{x^{2}}(2 \theta)+\frac{z}{x}(1)+\frac{y}{x}(1)=\frac{-(r+\theta)(r-\theta)}{\theta^{4}}(2 \theta) \\
& +\frac{(r-\theta)-(r+\theta)}{\theta^{2}}=\frac{-2 r^{2}}{\theta^{3}} \\
& \text { (b) } w=\frac{y z}{x}=\frac{(r+\theta)(r-\theta)}{\theta^{2}}=\frac{r^{2}-\theta^{2}}{\theta^{2}}=\left(\frac{r}{\theta}\right)^{2}-1 \\
& \frac{\partial w}{\partial r}=\frac{2 r}{\theta^{2}} ; \quad \frac{\partial w}{\partial \theta}=\frac{-2 r^{2}}{\theta^{2}}
\end{aligned}
$$

4. Show that $w=(x-y) \sin (y-x)$ satisfies the equation $\frac{\partial w}{\partial u}+\frac{\partial w}{\partial v}=0$, (where $w=f(x, y), x=u-v, y=v-u)$.

$$
\begin{aligned}
& \frac{\partial w}{\partial u}=\frac{\partial w}{\partial x} \frac{d x}{d u}+\frac{\partial w}{\partial y} \frac{d y}{d u}=\frac{\partial w}{\partial x}-\frac{\partial w}{\partial y} \\
& \frac{\partial w}{\partial v}=\frac{\partial w}{\partial x} \frac{d x}{d v}+\frac{\partial w}{\partial y} \frac{d y}{d v}=-\frac{\partial w}{\partial x}+\frac{\partial w}{\partial y} \\
& \frac{\partial w}{\partial u}+\frac{\partial w}{\partial v}=0
\end{aligned}
$$

5. Differentiate implicitly to find $\frac{d y}{d x}$, given $\cos x+\tan x y+5=0$.

$$
\frac{d y}{d x}=-\frac{F_{x}(x, y)}{F_{y}(x, y)}=-\frac{-\sin x+y \sec ^{2}(x y)}{x \sec ^{2}(x y)}
$$

6. Differentiate implicitly to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$:
(a) $z=e^{x} \sin (z+y)$

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=\frac{e^{x} \sin (z+y)}{1-e^{x} \cos (z+y)} \\
& \frac{\partial z}{\partial y}=\frac{e^{x} \cos (z+y)}{1-e^{x} \cos (z+y)}
\end{aligned}
$$

(b) $x \ln y+y^{2} z+z^{2}=8$.

$$
\frac{\partial z}{\partial x}=\frac{-\ln y}{y^{2}+2 z}, \quad \frac{\partial z}{\partial y}=-\frac{x+2 y^{2} z}{y^{3}+2 y z}
$$

7. Examine each function for relative extrema.
(a) $f(x, y)=|x+y|-2$

Since $f(x, y) \geq-2$ for all (x, y), the relative minima consists of all points (x, y) satisfying $x+y=0$.
(b) $z=-3 x^{2}-2 y^{2}+3 x-4 y+5$
$f_{x}=-6 x+3=0 \quad$ when $x=\frac{1}{2} \quad f_{x x}=-6$
$f_{y}=-4 y-4=0 \quad$ when $y=-1 \quad f_{y y}=-4 \quad f_{x y}=0$
At the critical point $\left(\frac{1}{2},-1\right) ; f_{x x}<0$ and $f_{x x} f_{y y}-\left(f_{x y}\right)^{2}>0$.
Therefore $\left(\frac{1}{2},-1, \frac{31}{4}\right)$ is a relative maximum.
8. Determine whether there is a relative maximum, a relative minimum, a saddle point, or insufficient information to determine the nature of the function $f(x, y)$ at the critical point $f_{x x}\left(x_{0}, y_{0}\right)=-3, f_{y y}\left(x_{0}, y_{0}\right)=$ $-8, f_{x y}\left(x_{0}, y_{0}\right)=2$.
$f_{x x}<0$, and $f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=(-3)(-8)-2^{2}>0 \Rightarrow f$ has a relative maximum at $\left(x_{0}, y_{0}\right)$
9. Find the absolute extrema for the function f over the region R.
(In each case R contains the boundaries).
(a) $f(x, y)=2 x-2 x y+y^{2}$,
R : the region in the $x y$-plane bounded by the graphs of $y=x^{2}$ and $y=1$.
$f_{x}=2-2 y=0 \Rightarrow y=1$
$f_{y}=2 y-2 x=0 \Rightarrow y=x \Rightarrow x=1 \Rightarrow f(1,1)=1$

On the line $y=1 ;-1 \leq x \leq 1, f(x, y=1)=2 x-2 x+1=1$

On the curve $y=x^{2} ;-1 \leq x \leq 1$;
$g(x)=f\left(x, y=x^{2}\right)=2 x-2 x\left(x^{2}\right)+\left(x^{2}\right)^{2}=x^{4}-2 x^{3}+2 x$. Set $g^{\prime}(x)=0$ to find critical points. They are at $x=1$ and $x=-0.5$

Evaluate $g(-1)=1, g(1)=1, g(-0.5)=-11 / 16$.
Thus the maximum is 1 , the minimum is $\frac{-11}{16}$
Absolute maximum: 1 at on $y=1,-1 \leq x \leq 1$
Absolute minimum: $\frac{-11}{16}$ at $\left(-\frac{1}{2}, \frac{1}{4}\right)$
(b) $f(x, y)=x^{2}-4 x y+5$,
$R=\{(x, y): 0 \leq x \leq 4,0 \leq y \leq \sqrt{x}\}$.
$f_{x}=2 x-4 y=0 \quad f_{y}=-4 x=0$
$\Rightarrow x=y=0$; is critical point; $f(0,0)=5$

Along $y=0 ; x \in[0,4] ; g(x)=f(x, 0)=x^{2}+5$, critical point is at $x=0$ and $g(0)=f(0,0)=5, g(4)=f(4,0)=21$

Along $x=4, y \in[0,2], g(y)=f(4, y)=16-16 y+5=21-16 y$;
$g^{\prime}(y)=-16 \neq 0$; No critical points; $g(0)=f(4,0)=21$, $g(2)=f(4,2)=-11$

Along $y=\sqrt{x} ; x \in[0,4] ; g(x)=f(x, \sqrt{x})=x^{2}-4 x^{\frac{3}{2}}+5$;
$g^{\prime}=2 x-6 x^{\frac{1}{2}}=0$, critical point $x=0$ on $[0,4]$
$g(0)=f(0,0)=5 ; g(4)=f(4,2)=-11$
Hence, the maximum is $f(4,0)=21$ and the minimum is $f(4,2)=-11$

