Assignment 8

Due Wed March 29, 2006

1. Use the Chain Rule to find $\frac{d w}{d t}$, given $w=\cos (x-y)$ with $x=t^{2}$ and $y=1$.
2. Use the Chain Rule to find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$, given $w=x \cos (y z)$, with $x=s^{2}, y=t^{2}$ and $z=s-2 t$.
3. Let $w=\frac{y z}{x}$ with $x=\theta^{2}, y=r+\theta$ and $z=r-\theta$. Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$, by:
(a) using the Chain Rule
(b) converting w to a function of r and θ before differentiating.
4. Show that function $w=(x-y) \sin (y-x)$ with $x=u-v, y=v-u$, satisfies the equation

$$
\frac{\partial w}{\partial u}+\frac{\partial w}{\partial v}=0
$$

5. Differentiate implicitly to find $\frac{d y}{d x}$, given $\cos x+\tan x y+5=0$.
6. Differentiate implicitly to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$:
(a) $z=e^{x} \sin (z+y)$
(b) $x \ln y+y^{2} z+z^{2}=8$.
7. Examine each function for relative extrema.
(a) $f(x, y)=|x+y|-2$,
(b) $z=-3 x^{2}-2 y^{2}+3 x-4 y+5$.
8. Determine whether there is a relative maximum, a relative minimum, a saddle point, or insufficient information to determine the nature of the function $f(x, y)$ at the critical point $f_{x x}\left(x_{0}, y_{0}\right)=$ $-3, f_{y y}\left(x_{0}, y_{0}\right)=-8, f_{x y}\left(x_{0}, y_{0}\right)=2$.
9. Find the absolute extrema for the function f over the region R.
(In each case R contains the boundaries).
(a) $f(x, y)=2 x-2 x y+y^{2}$,
R : the region in the $x y$-plane bounded by the graphs of $y=x^{2}$ and $y=1$.
(b) $f(x, y)=x^{2}-4 x y+5$,
$R=\{(x, y): 0 \leq x \leq 4,0 \leq y \leq \sqrt{x}\}$.
