MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 2000	Assignment 8	Due Wed March 29, 2006

- 1. Use the Chain Rule to find $\frac{dw}{dt}$, given $w = \cos(x y)$ with $x = t^2$ and y = 1.
- 2. Use the Chain Rule to find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$, given $w = x \cos(yz)$, with $x = s^2, y = t^2$ and z = s 2t.
- 3. Let $w = \frac{yz}{x}$ with $x = \theta^2$, $y = r + \theta$ and $z = r \theta$. Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$, by:
 - (a) using the Chain Rule
 - (b) converting w to a function of r and θ before differentiating.
- 4. Show that function $w = (x y)\sin(y x)$ with x = u v, y = v u, satisfies the equation

$$\frac{\partial w}{\partial u} + \frac{\partial w}{\partial v} = 0$$

5. Differentiate implicitly to find $\frac{dy}{dx}$, given $\cos x + \tan xy + 5 = 0$.

6. Differentiate implicitly to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$:

(a)
$$z = e^x \sin(z+y)$$

- (b) $x \ln y + y^2 z + z^2 = 8.$
- 7. Examine each function for relative extrema.
 - (a) f(x,y) = |x+y| 2,
 - (b) $z = -3x^2 2y^2 + 3x 4y + 5.$
- 8. Determine whether there is a relative maximum, a relative minimum, a saddle point, or insufficient information to determine the nature of the function f(x, y) at the critical point $f_{xx}(x_0, y_0) = -3$, $f_{yy}(x_0, y_0) = -8$, $f_{xy}(x_0, y_0) = 2$.
- 9. Find the absolute extrema for the function f over the region R. (In each case R contains the boundaries).
 - (a) $f(x, y) = 2x 2xy + y^2$, R: the region in the *xy*-plane bounded by the graphs of $y = x^2$ and y = 1.
 - (b) $f(x,y) = x^2 4xy + 5,$ $R = \{(x,y) : 0 \le x \le 4, 0 \le y \le \sqrt{x}\}.$