Math 2000: Assignment \#6, Winter 2006

1. A Professor lost his calculator. Help him to find an approximate value of $\ln (1.5)$ and $\ln (0.5)$ using the Taylor expansion.
$\ln |1+x|=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{x^{k}}{k}$.
How many terms do you need in each case to find 3 correct digits of the numbers?

We use $\ln |1+x|=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{x^{k}}{k}$. First set $x=0.5$ to get
$\ln (1.5)=\ln \left(1+\frac{1}{2}\right)=\sum_{k=1}^{\infty}(-1)^{k+1}\left(\frac{1}{2}\right)^{k} \cdot \frac{1}{k}$
$\approx \frac{1}{2}-\frac{1}{8}+\frac{1}{24}-\frac{1}{64} \cdots \approx 0.401 \ldots($ exact value $=0.405464 \cdots)$
Now set $x=-0.5$ to obtain $\ln (0.5)=\ln \left(1-\frac{1}{2}\right)=\sum_{k=1}^{\infty}(-1)^{k+1}\left(-\frac{1}{2}\right)^{k} \cdot \frac{1}{k}$
$=(-1) \sum_{k=1}^{\infty}(-1)^{k}(-1)^{k}\left(\frac{1}{2}\right)^{k} \cdot \frac{1}{k}=-\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k} \cdot \frac{1}{k}$
$\approx-\frac{1}{2}-\frac{1}{8}-\frac{1}{24}-\frac{1}{64}-\cdots=-0.682 \ldots($ exact value $-0.69314 \ldots)$
How many terms are needed to find 3 correct digits? We see that four terms in not enough yet!
For $\ln (1.5)$ we have alternating series. Thus the error $\left|\ln (1.5)-\sum_{k=1}^{n}(-1)^{k+1}\left(\frac{1}{2}\right)^{k} \frac{1}{k}\right|$ is less the absolute value of the $(n+1)$-th term which is $\left(\frac{1}{2}\right)^{n+1} \frac{1}{n+1}$. We need 3 correct digits. Thus set the error $\left(\frac{1}{2}\right)^{n+1} \frac{1}{n+1} \leq 0.0001$ and find that $n=9$ is the smallest number that works.
So, 9 terms are enough to get 3 correct digits for $\ln (1.5)$. For $\ln (0.5)$ the story is more
complicated. Here we have to use the Taylor inequality $\left|R_{n}\left(x_{0}\right)\right|<\frac{M}{(n+1)!}\left|x_{0}-a\right|^{n+1}$,
$M=\max _{\left[2 a-x_{0}, x_{0}\right]}\left|f^{(n+1)}(x)\right|$. Here $a=0, x_{0}=-\frac{1}{2}, M=\max _{\left[-\frac{1}{2}, \frac{1}{2}\right]} \frac{n!}{(1+x)^{n+1}}=2^{n+1} \cdot n!$
Thus $\left|R_{n}\left(x_{0}\right)\right|<\frac{2^{n+1} n!}{(n+1)!\cdot 2^{n+1}}=\frac{1}{n+1}$. This must be equal to 0.0001
So, to make error less than $\frac{1}{10000}$ it is enough $n=9.999$ terms. This estimate is too rough!!!

In reality 10 terms gives 3 correct digits.
2. Estimate the range of values of x for which the approximation $\sin x \approx x-\frac{x^{3}}{6}$ is accurate to within the error 0.0001? Graph both functions on the same Figure to support you statement.
$\sin x \approx x-\frac{x^{3}}{6}$
For $x>0 \sin x$ is represented by an alternating series. Thus $\left|\sin x-\left(x-\frac{x^{3}}{6}\right)\right|<\frac{\left|x^{5}\right|}{5!}$.
Set the error $\frac{x^{5}}{5!} \leq 0.0001$
So $|x|^{5}<\frac{5!}{10000},|x|<\sqrt[5]{\frac{5!}{10,000}}$, so $|x|<\sqrt[5]{.012} \approx 0.41289$.
Check, for example, $\sin (0.4)=0.38941$
$0.4-\frac{(0.4)^{3}}{6}=0.38933$ o.k.

For $x<0$ the series is no longer alternating. We will use the Taylor inequality. Here $a=0$, $x_{0}=x, n=4$ and $M=1$.

Thus the error is $\left|\sin x-\left(x-\frac{x^{3}}{6}\right)\right|<\frac{\left|x^{5}\right|}{5!}$, the same again.
So we obtain from both cases, $x>0$ and $x<0$, that the answer is $|x|<\sqrt[5]{.012} \approx 0.41289$.
Next we plot functions $\sin x$ and $x-x^{3} / 6$ to show that their graphs are almost indistinguishable when the argument x is near zero.

Problem 3. Find domain of the function of two variables.
a) $F(x, y)=\sqrt{x-y}$. Domain is $x \geq y$. It is the area below the line $y=x$.

b) $F(x, y)=\sqrt{x-y} \ln (x+y)$. Domain is $x \geq y$ and $x \geq-y$. It is the quater which contains positive part of x -axis.

c) $F(x, y)=\sqrt{x^{2}+y^{2}-16}$. Domain $x^{2}+y^{2}-16 \geq 0$. It is the exterior of the circle of radius 4 and center at the origin.

d) $F(x, y)=\sqrt{4-x^{2}-y^{2}}$. Domain $4-x^{2}-y^{2} \geq 0$. It is the interior of the circle of radius 2 and center at the origin.

e) $F(x, y)=\frac{3 x+y}{3 x-y}$ Domain exclude points $3 x-y=0$. This is the whole plane except the line $y=3 x$.

f) $f(x, y)=\arcsin (x+y)$.Domain is $|x+y| \leq 1$. This is the strip betweeen the lines $y=1-x$ and $y=-1-x$.

\# 4. For given function sketch the level curve $F(x, y)=1$, the counter map of the function and the graph of the function. Give the name or a word description of the surface (like "This is a plane", "This is a paraboloid ", or "That is bizarre..." etc).
a) $F(x, y)=4 x^{2}+y^{2}+1$

The level curve consists of just one point - the origin.
The counter map is a collection of ellipses $4 x^{2}+y^{2}=k$, where $k \geq 0$ is a constant.
This is an elliptic paraboloid opened up and shifted up by 1.
b) $F(x, y)=1-x-y$

The level curve is the line $x=-y$.
The counter map is a collection of lines with slope -1 .
This is a plane.
c) $F(x, y)=-2$

The level curve does not exist for any level other then $F=-2$.
For $F=-2$ the whole xy-plane is the "level curve".
The surface is a plane parallel to xy-plane.
d) $F(x, y)=y$

The level curve is the line $y=1$.
The counter map is a collection of lines $y=k$, where k is a constant.
This is a plane.
e) $F(x, y)=1+\cos x$

The level curve is the set of lines line $x=\pi / 2+\pi k, k=0, \pm 1, \pm 2, \ldots$.
The surface looks like a wave.
f) $F(x, y)=-4 x^{2}-y^{2}+2$

The level curve is an ellipse $4 x^{2}+y^{2}=1$.
The counter map is a collection of ellipses $4 x^{2}+y^{2}=k$, where $k \geq 0$ is a constant.
This is an elliptic paraboloid opened down and shifted up by 2 .

