Math 2000: Assignment \#5, Due Feb 27

1. Find the radius of convergence and the interval of convergence of each power series. Don't forget to check the convergence of the endpoints seperately.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n+1}$
(d) $\sum_{n=1}^{\infty} \frac{n(x-4)^{n}}{n^{3}+1}$
(g) $\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n^{2} 5^{n}}$
(b) $\sum_{n=1}^{\infty} \sqrt{n} x^{n}$
(e) $\sum_{n=2}^{\infty}(-1)^{n} \frac{(2 x+3)^{n}}{n \ln n}$
(h) $\sum_{n=1}^{\infty} \frac{2^{n}(x-2)^{n}}{(2+n)!}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$
(f) $\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots(2 n)}{1 \cdot 3 \cdot 5 \cdots(2 n-1)} x^{n}$
2. Use the definition to find the Taylor series (centered at c) for the functions:
(a) $f(x)=e^{3 x}, c=0$
(c) $f(x)=\tan x, c=0$ (calculate just the
(b) $f(x)=\sin x, c=\frac{\pi}{4}$ first three nonzero terms)
3. Find the MacLaurin series for $f(x)$ and its radius of convergence. You may use either the definition of a Maclaurin series or start with a known MacLaurin series for $e^{x},(1+x)^{k}$, and $\tan ^{-1} x$.
(a) $f(x)=\arctan \left(x^{2}\right)$
(b) $f(x)=x e^{2 x}$
(c) $f(x)=(1-3 x)^{-5}$.
4. Find a power series representation for the following functions and determine their interval of convergence.
(a) $f(x)=\frac{x}{4 x+1}$
(b) $\quad f(x)=\frac{x^{2}}{a^{3}-x^{3}},(a \neq x)$.
5. Express $f(x)=\frac{7 x-1}{3 x^{2}+2 x-1}$ as a power series by first using partial fractions. Find the interval of convergence.
6. Find a power series represetation for $f(x)=\ln (1+x)$. What is the radius of convergence? Use the above result to find a power series for $f(x)=x \ln (1+x)$.
7. If $f(x)=\frac{3}{x+2}$, find the power series for
(a) $f(x)$ centered at 0 ,
(c) $\frac{d f}{d x}$ centered at 0
(b) $f(x)$ centered 1
(d) $\frac{d f}{d x}$ centered at 1 .
8. Find the sum of the power series:
(a) $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} n x^{n-1}$.
9. Expand $f(x)=x^{-2}$ as a Taylor series around $c=1$.
