Math 2000: Assignment #5, Due Feb 27

1. Find the radius of convergence and the interval of convergence of each power series. Don't forget to check the convergence of the endpoints seperately.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n+1}$$
 (d) $\sum_{n=1}^{\infty} \frac{n(x-4)^n}{n^3+1}$ (g) $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n^{25n}}$
(b) $\sum_{n=1}^{\infty} \sqrt{n} x^n$ (e) $\sum_{n=2}^{\infty} (-1)^n \frac{(2x+3)^n}{n \ln n}$ (h) $\sum_{n=1}^{\infty} \frac{2^n (x-2)^n}{(2+n)!}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$ (f) $\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{1 \cdot 3 \cdot 5 \cdots (2n-1)} x^n$

- 2. Use the definition to find the Taylor series (centered at c) for the functions:
 - (a) $f(x) = e^{3x}, c = 0$ (b) $f(x) = \sin x, c = \frac{\pi}{4}$ (c) $f(x) = \tan x, c = 0$ (calculate just the first three nonzero terms)
- 3. Find the MacLaurin series for f(x) and its radius of convergence. You may use either the definition of a Maclaurin series or start with a known MacLaurin series for e^x , $(1 + x)^k$, and $\tan^{-1} x$.
 - (a) $f(x) = \arctan(x^2)$ (b) $f(x) = xe^{2x}$ (c) $f(x) = (1-3x)^{-5}$.
- 4. Find a power series representation for the following functions and determine their interval of convergence.
 - (a) $f(x) = \frac{x}{4x+1}$ (b) $f(x) = \frac{x^2}{a^3 x^3}, (a \neq x).$
- 5. Express $f(x) = \frac{7x-1}{3x^2+2x-1}$ as a power series by first using partial fractions. Find the interval of convergence.
- 6. Find a power series representation for $f(x) = \ln(1+x)$. What is the radius of convergence? Use the above result to find a power series for $f(x) = x \ln(1+x)$.

8. Find the sum of the power series:

(a)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n n x^{n-1}$.

9. Expand $f(x) = x^{-2}$ as a Taylor series around c = 1.