
Math 2000: Assignment #5, Due Feb 27

1. Find the radius of convergence and the interval of convergence of each power series. Don’t
forget to check the convergence of the endpoints seperately.
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2. Use the definition to find the Taylor series (centered at c) for the functions:

(a) f(x) = e3x, c = 0

(b) f(x) = sin x, c =
π
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(c) f(x) = tanx, c = 0 (calculate just the
first three nonzero terms)

3. Find the MacLaurin series for f(x) and its radius of convergence. You may use either the
definition of a Maclaurin series or start with a known MacLaurin series for ex, (1 + x)k, and
tan−1 x.

(a) f(x) = arctan(x2) (b) f(x) = xe2x (c) f(x) = (1− 3x)−5.

4. Find a power series representation for the following functions and determine their interval of
convergence.
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5. Express f(x) =
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as a power series by first using partial fractions. Find the

interval of convergence.

6. Find a power series represetation for f(x) = ln(1 + x). What is the radius of convergence?
Use the above result to find a power series for f(x) = x ln(1 + x).

7. If f(x) =
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(a) f(x) centered at 0,
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8. Find the sum of the power series:
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9. Expand f(x) = x−2 as a Taylor series around c = 1.


