Math2000: Solutions for Asmignment \#3, Winter 2006

A professor had a file with convergent series and another file with divergent series. Accidently the files were mixed up. Please, help the professor to sort things out.
\# 1. The telescoping technique will help.
a) $\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)}$

Solution: Observe that

$$
\frac{2}{(n+1)(n+2)(n+3)}=\frac{1}{(n+1)(n+2)}-\frac{1}{(n+2)(n+3)} .
$$

Then the Nth partial sum becomes after telescoping

$$
S_{N}=\frac{1}{2}\left(\frac{1}{1 \cdot 2}-\frac{1}{(N+1)(N+2)}\right)
$$

Thus the series converges to $\lim _{N \rightarrow \infty} S_{N}=1 / 4$.
b) $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}$

Solution: Observe that

$$
\frac{2}{(2 n-1)(2 n+1)}=\frac{1}{(2 n-1)}-\frac{1}{(2 n+1)} .
$$

Then the Nth partial sum becomes after telescoping

$$
S_{N}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{(2 N+1)}\right)
$$

Thus the series converges to $\lim _{N \rightarrow \infty} S_{N}=1 / 2$.
c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}$

Solution: Multiply the nominator and denominator by $\sqrt{n+1}-\sqrt{n}$ to get

$$
a_{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{(n+1)-n}=\sqrt{n+1}-\sqrt{n} .
$$

Then the Nth partial sum becomes after telescoping

$$
S_{N}=\sqrt{N+1}-\sqrt{1}
$$

The series diverges since $\lim _{N \rightarrow \infty} S_{N}=\infty$.
\# 2. The comparison tests might be useful. Solution: In the majority of problems we will use the Limit Comparison Test which says that if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ is a finite positive number then series $\sum a_{n}$ and $\sum b_{n}$ behave the same way i.e. they either both converge or both diverge. The whole idea is to compare a given series to a simple one which convergence is much easier to study. We will often compare to a geometric $\sum_{n=0}^{\infty} r^{n}$ or p-series $\sum_{n=1}^{\infty} n^{-p}$. Remember that geometric series converges for $|r|<1$, and p-series converges for $p>1$.
a) $\sum_{n=1}^{\infty} \frac{1}{2 n+3} \quad$ Here $a_{n}=\frac{1}{2 n+3} . \quad$ Let $b_{n}=\frac{1}{n}$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n}{2 n+3}=\frac{1}{2}>0, \text { and }
$$

$$
\sum_{n=1}^{\infty} b_{n} \text { diverges, therefore } \sum_{n=1}^{\infty} \frac{1}{2 n+3} \text { diverges. }
$$

b) $\sum_{n=1}^{\infty} \frac{1}{2 n^{2}+3} . \quad$ Here $a_{n}=\frac{1}{2 n^{2}+3} . \quad$ Let $b_{n}=\frac{1}{n^{2}}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{2 n^{2}+3}=\frac{1}{2} \text { and } \\
& \sum_{n=1}^{\infty} \frac{1}{n^{2}} \text { converges, therefore } \sum_{n=1}^{\infty} \frac{1}{2 n^{2}+3} \text { converges. }
\end{aligned}
$$

Another way is to use The Comparison test:

$$
\sum_{n=1}^{\infty} \frac{1}{2 n^{2}+3}<\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \text { converges }
$$

c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{2 n^{2}+3}} \quad a_{n}=\frac{1}{\sqrt{2 n^{2}+3}} \quad$ Let $b_{n}=\frac{1}{n}$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{2 n^{2}+3}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{2+\frac{3}{n^{2}}}}=\frac{1}{\sqrt{2}}
$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{2 n^{2}+3}}$ diverges.
d) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{2 n^{3}+1}} \quad b_{n}=\frac{1}{n^{\frac{3}{2}}} \quad \mathrm{p}=\frac{3}{2}>1$ converges.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{1}{\sqrt{2}} \Rightarrow \text { converges }
$$

e) $\sum_{n=1}^{\infty} \frac{n+2}{\sqrt{2 n^{3}+1}}=\quad \sum_{n=1}^{\infty} \frac{n}{\sqrt{2 n^{3}+1}}+\sum_{n=1}^{\infty} \frac{2}{\sqrt{2 n^{3}+1}}$

The second series converges by (d) but the first does NOT.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{n}{\sqrt{2 n^{3}+1}} ; b_{n}=\frac{1}{n^{\frac{3}{2}-1}}=\frac{1}{n^{\frac{1}{2}}} \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n \cdot n^{\frac{1}{2}}}{\sqrt{2 n^{3}+1}}=\lim _{n \rightarrow \infty} \sqrt{\frac{n^{3}}{2 n^{3}+1}}=\frac{1}{\sqrt{2}} \\
& \sum_{n=1}^{\infty} b_{n} \text { diverges } \Rightarrow \sum_{n=1}^{\infty} \frac{n}{\sqrt{2 n^{3}+1}} \text { diverges. } \\
& \text { f) } \sum_{n=1}^{\infty}\left(2 n^{8}+n^{6}+n+1\right)^{-1 / 7} \quad \text { Let } b_{n}=\frac{1}{n^{\frac{8}{7}}} \\
& \lim _{n \rightarrow \infty} \frac{n^{\frac{8}{7}}}{\left(2 n^{8}+n^{6}+n+1\right)^{\frac{1}{7}}}=\lim _{n \rightarrow \infty}\left(\frac{n^{8}}{2 n^{8}+n^{6}+n+1}\right)^{\frac{1}{7}}=\frac{1}{2^{\frac{1}{7}}} \\
& p=\frac{8}{7}>1 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{\frac{8}{7}}} \text { converges } \Rightarrow \text { convergent. } \\
& \text { g) } \sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}+4}<\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}}=\sum_{n=1}^{\infty} r^{n}, \quad \text { where } r=\frac{2}{3}
\end{aligned}
$$

geometric series with $|r|<1$ converges. Thus $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}+4}$ converges.
h) $\sum_{n=1}^{\infty} \frac{3^{n}}{2^{n}+4}$, By The divergence test, since $\lim _{n \rightarrow \infty} \frac{3^{n}}{2^{n}+4}=\infty \neq 0 \Rightarrow$, the series is divergent.

Another way: by the Limit Comparison Test.
Let $b_{n}=\frac{3^{n}}{2^{n}} \quad \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{3^{n}}{2^{n}+4} \cdot \frac{2^{n}}{3^{n}}=\lim _{n \rightarrow \infty} \frac{2^{n}}{2^{n}+4}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{1+\frac{4}{2^{n}}}=1 \quad \sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty}\left(\frac{3}{2}\right)^{n} \text { is a geometric series with } r=\frac{3}{2} . \\
& r>1 \Rightarrow \text { it diverges. Thus } \sum_{n=1}^{\infty} \frac{3^{n}}{2^{n}+4} \text { diverges. }
\end{aligned}
$$

i) $\sum_{n=1}^{\infty} \frac{2^{n}+3^{n / 2}+2^{2 n}}{3^{n}}=\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}+\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{3}}\right)^{n}+\sum_{n=1}^{\infty}\left(\frac{4}{3}\right)^{n}$

All are geometric. The last one is divergent, thus divergent.
j) $\sum_{n=1}^{\infty} \frac{n!}{(n+1)!}=\sum_{n=1}^{\infty} \frac{1}{n+1}=\sum_{k=2}^{\infty} \frac{1}{k} \quad$ divergent.
k) $\sum_{n=1}^{\infty} \frac{n!}{(n+2)!}=\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}=\sum_{n=1}^{\infty} \frac{1}{n+1}-\sum_{n=1}^{\infty} \frac{1}{n+2}=\frac{1}{2}$. Thus converges.
(Prove it by taking limit of partial sums of the telescoping series.)
Another way: by Comparison Test, $b_{n}=\frac{1}{n^{2}} \quad \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges \Rightarrow convegent.
l) $\sum_{n=1}^{\infty} \frac{1}{n!}<\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges \Rightarrow convergent.
P.S. $\sum_{n=1}^{\infty} \frac{1}{n!}=e-1$.
m) $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right) \quad$ Let $b_{n}=\frac{1}{n}$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} n \sin \frac{1}{n}=1 \quad b_{n} \text { diverges } \Rightarrow \sum_{n=1}^{\infty} \sin \frac{1}{n} \text { diverges. }
$$

n) $\sum_{n=1}^{\infty} \cos \left(\frac{1}{n}\right) \quad$ By the Divergence Test: $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \cos \frac{1}{n}=\cos 0=1 \neq 0$

Thus the series is divergent.
o) $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n^{2}}\right) \quad$ Let $b_{n}=\frac{1}{n^{2}}$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} n^{2} \sin \frac{1}{n^{2}}=1
$$

$$
\text { Sequence } \sum_{n=1}^{\infty} \frac{1}{n^{2}} \text { converges } \Rightarrow \sum_{n=1}^{\infty} \sin \frac{1}{n^{2}} \text { converges }
$$

\# 3. Which of the alternating series is convergent?
a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{2 n+3}$
$a_{n}=\frac{1}{2 n+3}$. This sequence decreases, $a_{n}>0$, and $\lim _{n \rightarrow \infty} a_{n} \rightarrow 0$.
Thus $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges.
b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{n}$

First, $a_{n}=\frac{\ln n}{n}>0$ for $n>1$.
Sequence decreases: $f(x)=\frac{\ln x}{x}, f^{\prime}=\frac{1-\ln x}{x^{2}}<0 \quad$ for all $x \geq e$
$\Rightarrow a_{n}$ decreases for $n \geq 3$. $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$ (by L'Hospital rule) \Rightarrow the series converges.
c) $\sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{1}{n}\right)$

$$
a_{n}=\sin \frac{1}{n}>0 \text { for } n \geq 1 .
$$

Function $\frac{1}{x}$ is decreasing for $x \geq 1$ and takes values in $[0,1]$.

Function $\sin x$ is increasing for $x \in[0,1]$
$\Rightarrow \sin \frac{1}{x}$ is decreasing for $x \in[1, \infty)$
$\lim _{n \rightarrow \infty} \sin \frac{1}{n}=\sin 0=0 \Rightarrow$ convergent
d) $\sum_{n=1}^{\infty}(-1)^{n} \cos \left(\frac{1}{n}\right)$

Again, $\lim _{n \rightarrow \infty} \cos \frac{1}{n}=1 \neq 0$. Thus the series is divergent.
e) $-\frac{1}{3}+\frac{2}{4}-\frac{3}{5}+\frac{4}{6}-\frac{5}{7}+\cdots=\sum_{n=1}^{\infty} \frac{n}{n+2}(-1)^{n}$

$$
a_{n}=\frac{n}{n+2} \quad \lim _{n \rightarrow \infty} a_{n}=1 \quad \text { Thus the series is divergent }
$$

f) $-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n+2}(-1)^{n}$

$$
a_{n}=\frac{1}{n+2}>0 \quad a_{n} \text { is decreasing }
$$

and $\lim _{n \rightarrow \infty} a_{n}=0$. Thus the series is convergent.

