
Math2000: Solutions for Asmignment #3, Winter 2006

A professor had a file with convergent series and another file with divergent series. Ac-
cidently the files were mixed up. Please, help the professor to sort things out.

# 1. The telescoping technique will help.

a)
∞∑

n=0

1

(n + 1)(n + 2)(n + 3)

Solution: Observe that

2

(n + 1)(n + 2)(n + 3)
=

1

(n + 1)(n + 2)
− 1

(n + 2)(n + 3)
.

Then the Nth partial sum becomes after telescoping

SN =
1

2

(
1

1 · 2
− 1

(N + 1)(N + 2)

)
Thus the series converges to limN→∞ SN = 1/4.

b)
∞∑

n=1

1

(2n− 1)(2n + 1)

Solution: Observe that

2

(2n− 1)(2n + 1)
=

1

(2n− 1)
− 1

(2n + 1)
.

Then the Nth partial sum becomes after telescoping

SN =
1

2

(
1

1
− 1

(2N + 1)

)
Thus the series converges to limN→∞ SN = 1/2.

c)
∞∑

n=1

1√
n + 1 +

√
n

Solution: Multiply the nominator and denominator by
√

n + 1−
√

n to get

an =
1√

n + 1 +
√

n
=

√
n + 1−

√
n

(n + 1)− n
=
√

n + 1−
√

n.

Then the Nth partial sum becomes after telescoping

SN =
√

N + 1−
√

1

The series diverges since limN→∞ SN = ∞.

# 2. The comparison tests might be useful. Solution: In the majority of problems we will
use the Limit Comparison Test which says that if limn→∞

an

bn
is a finite positive number then

series
∑

an and
∑

bn behave the same way i.e. they either both converge or both diverge.
The whole idea is to compare a given series to a simple one which convergence is much easier
to study. We will often compare to a geometric

∑∞
n=0 rn or p-series

∑∞
n=1 n−p. Remember

that geometric series converges for |r| < 1, and p-series converges for p > 1.
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a)
∞∑

n=1

1

2n + 3
Here an =

1

2n + 3
. Let bn =

1

n

lim
n→∞

an

bn

= lim
n→∞

n

2n + 3
=

1

2
> 0, and

∞∑
n=1

bn diverges, therefore
∞∑

n=1

1

2n + 3
diverges.

b)
∞∑

n=1

1

2n2 + 3
. Here an =

1

2n2 + 3
. Let bn =

1

n2

lim
n→∞

an

bn

= lim
n→∞

n2

2n2 + 3
=

1

2
and

∞∑
n=1

1

n2
converges, therefore

∞∑
n=1

1

2n2 + 3
converges.

Another way is to use The Comparison test:
∞∑

n=1

1

2n2 + 3
<

1

2

∞∑
n=1

1

n2
converges

c)
∞∑

n=1

1√
2n2 + 3

an =
1√

2n2 + 3
Let bn =

1

n

lim
n→∞

an

bn

= lim
n→∞

n√
2n2 + 3

= lim
n→∞

1√
2 + 3

n2

=
1√
2

Since
∞∑

n=1

1

n
diverges,

∞∑
n=1

1√
2n2 + 3

diverges.

d)
∞∑

n=1

1√
2n3 + 1

bn =
1

n
3
2

p =
3

2
> 1 converges.

lim
n→∞

an

bn

=
1√
2
⇒ converges.

e)
∞∑

n=1

n + 2√
2n3 + 1

=
∞∑

n=1

n√
2n3 + 1

+
∞∑

n=1

2√
2n3 + 1
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The second series converges by (d) but the first does NOT.

∞∑
n=1

n√
2n3 + 1

; bn =
1

n
3
2
−1

=
1

n
1
2

lim
n→∞

an

bn

= lim
n→∞

n · n 1
2

√
2n3 + 1

= lim
n→∞

√
n3

2n3 + 1
=

1√
2

∞∑
n=1

bn diverges ⇒
∞∑

n=1

n√
2n3 + 1

diverges.

f)
∞∑

n=1

(2n8 + n6 + n + 1)−1/7 Let bn =
1

n
8
7

lim
n→∞

n
8
7

(2n8 + n6 + n + 1)
1
7

= lim
n→∞

(
n8

2n8 + n6 + n + 1

) 1
7

=
1

2
1
7

p =
8

7
> 1 ⇒

∞∑
n=1

1

n
8
7

converges ⇒ convergent.

g)
∞∑

n=1

2n

3n + 4
<

∞∑
n=1

2n

3n
=

∞∑
n=1

rn, where r =
2

3

geometric series with |r| < 1 converges. Thus
∞∑

n=1

2n

3n + 4
converges.

h)
∞∑

n=1

3n

2n + 4
, By The divergence test, since lim

n→∞

3n

2n + 4
= ∞ 6= 0 ⇒, the series is divergent.

Another way: by the Limit Comparison Test.

Let bn =
3n

2n
lim

n→∞

an

bn

= lim
n→∞

3n

2n + 4
· 2n

3n
= lim

n→∞

2n

2n + 4

lim
n→∞

1

1 + 4
2n

= 1
∞∑

n=1

bn =
∞∑

n=1

(
3

2

)n

is a geometric series with r =
3

2
.

r > 1 ⇒ it diverges. Thus
∞∑

n=1

3n

2n + 4
diverges.
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i)
∞∑

n=1

2n + 3n/2 + 22n

3n
=

∞∑
n=1

(
2

3

)n

+
∞∑

n=1

(
1√
3

)n

+
∞∑

n=1

(
4

3

)n

All are geometric. The last one is divergent, thus divergent.

j)
∞∑

n=1

n!

(n + 1)!
=

∞∑
n=1

1

n + 1
=

∞∑
k=2

1

k
divergent.

k)
∞∑

n=1

n!

(n + 2)!
=

∞∑
n=1

1

(n + 1)(n + 2)
=

∞∑
n=1

1

n + 1
−

∞∑
n=1

1

n + 2
=

1

2
. Thus converges.

(Prove it by taking limit of partial sums of the telescoping series.)

Another way: by Comparison Test, bn =
1

n2

∞∑
n=1

1

n2
converges ⇒convegent.

l)
∞∑

n=1

1

n!
<

∞∑
n=1

1

n2
converges ⇒ convergent.

P.S.
∞∑

n=1

1

n!
= e− 1.

m)
∞∑

n=1

sin(
1

n
) Let bn =

1

n

lim
n→∞

an

bn

= lim
n→∞

n sin
1

n
= 1 bn diverges ⇒

∞∑
n=1

sin
1

n
diverges.

n)
∞∑

n=1

cos(
1

n
) By the Divergence Test: lim

n→∞
an = lim

n→∞
cos

1

n
= cos 0 = 1 6= 0

Thus the series is divergent.

o)
∞∑

n=1

sin(
1

n2
) Let bn =

1

n2

lim
n→∞

an

bn

= lim
n→∞

n2 sin
1

n2
= 1
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Sequence
∞∑

n=1

1

n2
converges ⇒

∞∑
n=1

sin
1

n2
converges

# 3. Which of the alternating series is convergent?

a)
∞∑

n=1

(−1)n 1

2n + 3

an =
1

2n + 3
. This sequence decreases, an > 0, and lim

n→∞
an → 0.

Thus
∞∑

n=1

(−1)nan converges.

b)
∞∑

n=1

(−1)n ln n

n

First, an =
ln n

n
> 0 for n > 1.

Sequence decreases: f(x) =
ln x

x
, f ′ =

1− ln x

x2
< 0 for all x ≥ e

⇒ an decreases for n ≥ 3. lim
n→∞

ln n

n
= 0(by L’Hospital rule)⇒ the series converges.

c)
∞∑

n=1

(−1)n sin(
1

n
)

an = sin
1

n
> 0 for n ≥ 1.

Function
1

x
is decreasing for x ≥ 1 and takes values in [0, 1].

Function sin x is increasing for x ∈ [0, 1]

⇒ sin
1

x
is decreasing for x ∈ [1,∞)

lim
n→∞

sin
1

n
= sin 0 = 0 ⇒ convergent

d)
∞∑

n=1

(−1)n cos(
1

n
)
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Again, lim
n→∞

cos
1

n
= 1 6= 0. Thus the series is divergent.

e) −1

3
+

2

4
− 3

5
+

4

6
− 5

7
+ · · · =

∞∑
n=1

n

n + 2
(−1)n

an =
n

n + 2
lim

n→∞
an = 1 Thus the series is divergent

f) −1

3
+

1

4
− 1

5
+

1

6
− 1

7
+ · · · =

∞∑
n=1

1

n + 2
(−1)n

an =
1

n + 2
> 0 an is decreasing

and lim
n→∞

an = 0. Thus the series is convergent.
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