Assignment 2 answer key

1. Determine which of the following series is divergent and explain why.
Solution: We will use the statement that if lim, . a, 7# 0 then series

o0 . .
Y meq Gp is divergent.

n+1 . n—+1
; lim =
2n—1 n—oc2n+1

1
— # 0. The series diverges.
2

o0 3n
b) Z 5 By L’Hospital’s Rule

n=1
n n 29n 3an
lim 3—: lim (In3)3 = lim M = lim M =00
n—oo N3 n—oo  3n2 n—00 6n n—00 6
The series diverges.
o n
— tri i ith r=2. Th ies di .
c) ; 100 geometric series with r e series diverges
o
k
d) (1 + 7)71,
n
n=1
k n
For all k£ the limit lim (1 + > = ¢e¥ £ 0. The series diverges.
n—oo n
= n n+3
—2n s : —2n 73 2n _ 6
e) ;(n+3> . The limit 7111320(”_’_3) nhj& — ) e’ # 0.

The series diverges.

2. For each of the following series, find the sum of the convergent series.
Solution All of the following series are geometric related. Here we use
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3. Find the values of x for which the series converges, and find the sum
of the series for those values of x.
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P.S. Function cos x is 2m—periodic function thus it is enough to
consider its restriction on its period.

4. Express the repeating decimal as a geometric series and write its sum
as the ratio of two integers.
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5. Use the Integral test to determine the convergence or divergence of the
series.

Solution: The integral test is applicable for series with a, = f(n),
where f(z) is a positive and continuous (for x > 1), and decreasing
(for x > a > 1) function. Then convergence of the improper integral
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Case k = 1 we did in class. Now consider case k = 2. We

have Zn e™™ ; Then f(x) = 2%e is positive and continuous.

To check that the function is decreasing we find its derivative
f'(z) = e *(—2? + 22) and show that f'(x) < 0 for all z > 2.

The integral can be evaluated by parts
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positive (for > 0)and continuous. To check that the function is
decreasing we find its derivative f/(x) = e=*(—a3+3x) and show
that f'(z) < 0 for all z > 3.
The integral can be evaluated by parts
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For any integer & > 1 we have: f(x) = xFe™® is positive (for
x > 0)and continuous. To check that the function is decreasing
we find its derivative f'(z) = e *(—2* + kz*~') and show that
f(xz) <0 for all x > k.

Using integration by parts and mathematical induction we show
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f(z) = 1_2# < 0 for z > e'/3. Thus the function is decreasing.

< £ 11 17t
/ f@)de = tim [ g — lim [_M_}
2

t—oo Jy a3 tooo | 2 22 da?],
_ —Int 1 +1n2+ 1 _1+21n2 . 1 . Int
Tt \ 22 42 8 T16) T 16 o2 im0 22
14+2In2 14+1In4
+176n —0-0= +1 6n = the series is convergent.



