Assignment 2 answer key

1. Determine which of the following series is divergent and explain why.

Solution: We will use the statement that if $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
a) $\sum_{n=1}^{\infty} \frac{n+1}{2 n-1} ; \lim _{n \rightarrow \infty} \frac{n+1}{2 n+1}=\frac{1}{2} \neq 0$. The series diverges.
b) $\sum_{n=1}^{\infty} \frac{3^{n}}{n^{3}}$; By L'Hospital's Rule
$\lim _{n \rightarrow \infty} \frac{3^{n}}{n^{3}}=\lim _{n \rightarrow \infty} \frac{(\ln 3) 3^{n}}{3 n^{2}}=\lim _{n \rightarrow \infty} \frac{(\ln 3)^{2} 3^{n}}{6 n}=\lim _{n \rightarrow \infty} \frac{(\ln 3)^{3} 3^{n}}{6}=\infty$
The series diverges.
c) $\sum_{n=1}^{\infty} \frac{2^{n}}{100}$, geometric series with $\mathrm{r}=2$. The series diverges.
d) $\sum_{n=1}^{\infty}\left(1+\frac{k}{n}\right)^{n}$,

For all k the limit $\lim _{n \rightarrow \infty}\left(1+\frac{k}{n}\right)^{n}=e^{k} \neq 0$. The series diverges.
e) $\sum_{n=1}^{\infty}\left(\frac{n}{n+3}\right)^{-2 n}$. The limit $\lim _{n \rightarrow \infty}\left(\frac{n}{n+3}\right)^{-2 n} \lim _{n \rightarrow \infty}\left(\frac{n+3}{n}\right)^{2 n}=e^{6} \neq 0$.

The series diverges.
2. For each of the following series, find the sum of the convergent series. Solution All of the following series are geometric related. Here we use $\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$.
(a) $\sum_{n=1}^{\infty}\left[(0.7)^{n}+(0.9)^{n}\right]=\sum_{n=0}^{\infty}\left(\frac{7}{10}\right)^{n}+\sum_{n=0}^{\infty}\left(\frac{9}{10}\right)^{n}-2$ $=\frac{1}{1-\frac{7}{10}}+\frac{1}{1-\frac{9}{10}}-2=\frac{10}{3}+10-2=\frac{34}{3}$
(b) $4-2+1-\frac{1}{2}+\ldots=\sum_{n=0}^{\infty} 4\left(\frac{-1}{2}\right)^{n}=\frac{4}{1-\left(-\frac{1}{2}\right)}=\frac{4}{\frac{3}{2}}=\frac{8}{3}$
(c) $\sum_{n=0}^{\infty}(-2)\left(\frac{-2}{3}\right)^{n}=\frac{-2}{1-\left(-\frac{2}{3}\right)}=-\frac{6}{5}$.
3. Find the values of x for which the series converges, and find the sum of the series for those values of x.
(a) $\sum_{n=0}^{\infty} \frac{(4 x-1)^{n}}{5^{n}}=\sum_{n=0}^{\infty}\left(\frac{4 x-1}{5}\right)^{n}=\sum_{n=0}^{\infty} r^{n}$; where $r=\frac{4 x-1}{5}$
\Rightarrow The series converges iff $|r|<1 \Leftrightarrow\left|\frac{4 x-1}{5}\right|<1 \Leftrightarrow$
$|4 x-1|<5 \Leftrightarrow-5<4 x-1<5 \Leftrightarrow-1<x<3 / 2$
So, the series converges iff x belongs to the interval $\left(-1, \frac{3}{2}\right)$ and the sum is
$\mathrm{S}=\frac{1}{1-r}=\frac{1}{1-\frac{4 x-1}{5}}=\frac{5}{5-(4-1)}=\frac{5}{6-4 x}$.
(b) $\sum_{n=0}^{\infty}(\cos x)^{n}=\sum_{n=0}^{\infty} r^{n}$, where $r=\cos x \Rightarrow$ the series converges iff
$|\cos x|<1 \quad \Leftrightarrow-1<\cos x<1 \Leftrightarrow x$ is any number from the interval $[0,2 \pi]$ except $0, \pi$ and 2π. The sum of the series is $\frac{1}{1-\cos x}$
P.S. Function $\cos x$ is 2π-periodic function thus it is enough to consider its restriction on its period.
4. Express the repeating decimal as a geometric series and write its sum as the ratio of two integers.
(a) $0.21515515515 \ldots=0.21+.000 \overline{515}=\frac{21}{100}+\frac{1}{100} \cdot 0.515=\frac{21}{100}+$ $\frac{1}{100} \sum_{n=1}^{\infty} \frac{515}{(1000)^{n}}=\frac{21}{100}+\frac{1}{100} \cdot \frac{515}{1000} \cdot \sum_{n=0}^{\infty} \frac{1}{(1000)^{n}}=$ $\frac{21}{100}+\frac{515}{10^{5}} \cdot \frac{1}{1-\frac{1}{10^{3}}}=\frac{21}{100}+\frac{515}{10^{5}} \cdot \frac{10^{3}}{999}=\frac{21494}{99900}$
(b) $1.8181818181818181818 \ldots=1.81 \overline{81}=1+0.81 \overline{81}=1+\sum_{n=0}^{\infty} \frac{81}{100}\left(\frac{1}{100}\right)^{n}$
\Leftrightarrow geom. series. $\sum_{n=0}^{\infty} \frac{81}{100}\left(\frac{1}{100}\right)^{n} ; r=\frac{1}{100} a=\frac{81}{100}$
$\mathrm{S}=\frac{a}{1-r}=\frac{\frac{81}{100}}{1-\frac{1}{100}}=\frac{9}{11}$ so, $1.81 \overline{81}=1+\frac{9}{11}=\frac{20}{11}$
5. Use the Integral test to determine the convergence or divergence of the series.
Solution: The integral test is applicable for series with $a_{n}=f(n)$, where $f(x)$ is a positive and continuous (for $x \geq 1$), and decreasing (for $x \geq a \geq 1$) function. Then convergence of the improper integral $\int_{1}^{\infty} f(x) d x$ implies convergence of the series $\sum_{n=1}^{\infty} a_{n}$.
(a) $\sum_{n=1}^{\infty}(n)^{k}(e)^{-n}$, for all integer $k \geq 1$;

Case $k=1$ we did in class. Now consider case $k=2$. We have $\sum_{n=1}^{\infty} n^{2} e^{-n}$; Then $f(x)=x^{2} e^{-x}$ is positive and continuous. To check that the function is decreasing we find its derivative $f^{\prime}(x)=e^{-x}\left(-x^{2}+2 x\right)$ and show that $f^{\prime}(x)<0$ for all $x>2$.
The integral can be evaluated by parts $\int_{1}^{\infty} x^{2} e^{-x} d x=-\left.e^{-x}\left(x^{2}+2 x+2\right)\right|_{1} ^{\infty}=\frac{5}{e}$. Thus the series $\sum_{n=1}^{\infty} n^{2} e^{-n}$ converges.
Similarly, for $k=3$. We have $\sum_{n=1}^{\infty} n^{3} e^{-n}$; Then $f(x)=x^{3} e^{-x}$ is positive (for $x>0$) and continuous. To check that the function is decreasing we find its derivative $f^{\prime}(x)=e^{-x}\left(-x^{3}+3 x\right)$ and show that $f^{\prime}(x)<0$ for all $x>3$.
The integral can be evaluated by parts
$\int_{1}^{\infty} x^{3} e^{-x} d x=-\left.e^{-x}\left(x^{3}+3 x^{2}+6 x+6\right)\right|_{1} ^{\infty}=\frac{16}{e}$. Thus the series $\sum_{n=1}^{\infty} n^{3} e^{-n}$ converges.
For any integer $k \geq 1$ we have: $f(x)=x^{k} e^{-x}$ is positive (for $x>0$)and continuous. To check that the function is decreasing we find its derivative $f^{\prime}(x)=e^{-x}\left(-x^{k}+k x^{k-1}\right)$ and show that $f^{\prime}(x)<0$ for all $x>k$.
Using integration by parts and mathematical induction we show that $\int_{1}^{\infty} x^{k} e^{-x} d x=$
$=\left[-x^{k} e^{-x}\right]_{1}^{\infty}+k \int_{1}^{\infty} x^{k-1} e^{-x} d x=\frac{1}{e}+\frac{k}{e}+\frac{k(k-1)}{e}+\cdots+\frac{k!}{e}$.
Thus the series converges for any $k \geq 1$.
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 3}}$.

Function $f(x)=\frac{1}{x^{1 / 3}}$ is positive, continuous and decreasing for $x>0$.
$\int_{1}^{\infty} \frac{1}{x^{1 / 3}} d x=\lim _{A \rightarrow \infty}\left[\frac{3}{2} x^{\frac{2}{3}}\right]_{1}^{A}=\infty$. Thus the series diverges.
(c) $\sum_{n=1}^{\infty} \frac{1}{n^{\pi}}$ Convergent p-series with $p=\pi>1$.
(d) $\sum_{n=2}^{\infty} \frac{\ln n}{n^{3}}$. Function $f(x)=\frac{\ln x}{x^{3}}$ is continous and positive for $x \geq 2$.
$f^{\prime}(x)=\frac{1-3 \ln x}{x^{4}}<0$ for $x>e^{1 / 3}$. Thus the function is decreasing.
$\int_{2}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{\ln x}{x^{3}} d x=\lim _{t \rightarrow \infty}\left[-\frac{1}{2} \frac{\ln x}{x^{2}}-\frac{1}{4 x^{2}}\right]_{2}^{t}$
$=\lim _{t \rightarrow \infty}\left(\frac{-\ln t}{2 t^{2}}-\frac{1}{4 t^{2}}+\frac{\ln 2}{8}+\frac{1}{16}\right)=\frac{1+2 \ln 2}{16}-\lim _{t \rightarrow \infty} \frac{1}{4 t^{2}}-\lim _{t \rightarrow \infty} \frac{\ln t}{2 t^{2}}=$ $\frac{1+2 \ln 2}{16}-0-0=\frac{1+\ln 4}{16} \Rightarrow$ the series is convergent.

