Math 2000: Solutions for Assignment #1, W 2006

1a) First five terms of the sequence $a_n = \frac{n+1}{3n+1}$, where n = 1, 2, 3, 4, 5 are

$$\left\{\frac{1}{2}, \frac{3}{7}, \frac{2}{5}, \frac{5}{13}, \frac{3}{8}\right\}.$$

1b) First five terms of the sequence given by the reccurence relation $a_{n+1} = \frac{a_n}{a_n-1}$, where $a_1 = 4$ are

$$\left\{4,\frac{4}{3},4,\frac{4}{3},4\right\}$$

2. Formulas for general terms are

a)
$$a_n = \frac{3^{n-1}}{2^n}$$
, $n = 1, 2, ...$ b) $a_n = (-1)^{n+1} (\frac{2n-1}{2n})$, $n = 1, 2, ...$

3.

a)
$$\lim_{n \to \infty} \frac{n+1}{3n+1} = \lim_{n \to \infty} \frac{1+1/n}{3+1/n} = \frac{1}{3}$$

b)
$$\lim_{n \to \infty} \frac{3^n}{n!} = \lim_{n \to \infty} \left(\frac{3}{n} \cdot \frac{3}{n-1} \cdot \frac{3}{n-2} \cdot \frac{3}{n-3} \cdots \frac{3}{3} \cdot \frac{3}{2} \cdot \frac{3}{1} \right)$$

 \Rightarrow each of terms $\frac{3}{k} \leq 1$, for $k \geq 4 \Rightarrow$ the total product $\frac{3}{4} \frac{3}{5} \cdots \frac{3}{n-1}$ is also less then 1

So,

$$\leq \lim_{n \to \infty} \frac{3}{n} \left(\frac{3}{2} \cdot \frac{3}{1} \right) = \lim_{n \to \infty} \frac{27}{2n} = 0$$

$$\Rightarrow 0 \leq \frac{3^n}{n!} \leq \frac{27}{2n} \text{ So by the squeeze therom, } \lim_{n \to \infty} \frac{3^n}{n!} = 0$$
c) $c_n = (-1)^n \frac{n}{n+1}$ doesn't converge. $\frac{n}{n+1} \to 1$ as $n \to \infty$

so the $(-1)^n$ causes late terms in the series to alternate between +1 and -1, approaching bot

d)
$$b_n = \frac{n!}{(n+1)!} = \frac{1}{n+1} \Rightarrow \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0$$

e)
$$c_n = \cos\left(\frac{2}{n}\right)$$
 As $n \to \infty, \frac{2}{n} \to 0 \Rightarrow \lim_{n \to \infty} \cos\left(\frac{2}{n}\right) = \cos(0) = 1$

f)
$$a_n = \frac{\sqrt{n}}{\sqrt{n+1}} \to \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1}} = \lim_{n \to \infty} \frac{1}{\sqrt{1+1/n}} = 1$$

g)
$$c_n = \frac{(-3)^n}{(n+1)!}$$
 Note that $\lim_{n \to \infty} \frac{3^n}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} \lim_{n \to \infty} \frac{3^n}{n!}$
From problem 3. b) We know that $\lim_{n \to \infty} \frac{3^n}{n!} = 0$
Hence, by the absolute value theorem, $\lim_{n \to \infty} c_n = 0$

h)
$$a_n = \arctan(2n) \rightarrow \lim_{n \to \infty} a_n = \arctan(\infty) = \frac{\pi}{2}$$

i)
$$b_n = \frac{\ln(n)}{\ln(2n)} = \frac{\ln(n)}{\ln(2) + \ln(n)}$$
 dividing everything by $\ln(n)$ yields $\frac{1}{\frac{\ln(2)}{\ln(n)} + 1}$
As $n \to \infty$, $\frac{\ln(2)}{\ln(n)} = 0$, so $\lim_{n \to \infty} b_n = 1$

4.

a) $a_n = \frac{1}{3^n} \rightarrow$ this is decreasing since $a_{n+1} = \frac{1}{3^{n+1}} = \frac{1}{3}a_n$ Therefore, it is bounded from above by its first term $\rightarrow \frac{1}{3}$ and is bounded from below by 0

b) $b_n = \frac{2n-3}{3n+4} \rightarrow \text{this is increaseing since } \frac{d}{dx} \left(\frac{2x-3}{3x+4}\right) = \frac{17}{3x+4} > 0 \text{ for } x \ge 1.$ Therefore it is bounded from below by its first term: $b_1 = \frac{1}{7}$, and is bounded from above by $\frac{2}{3}$

because
$$\lim_{n \to \infty} \frac{2n-3}{3n+4} = \frac{2}{3}$$

c) This sequence is not monotonic since $\sin(\frac{\pi n}{4})$ alternates between $1, \frac{\sqrt{2}}{2}, 0, \frac{-\sqrt{2}}{2}$, and 1 However it is bound from above by 1 and below by -1(or some tighter bound)

5. This is a harder one. We proceed by induction. If

$$\begin{array}{l} a_{n+1} < a_n \\ -a_{n+1} > -a_n \\ 3 - a_{n+1} > 3 - a_n \\ \frac{1}{3 - a_{n+1}} < \frac{1}{3 - a_n} \end{array}$$

 $a_{n+2} < a_{n+1}$ So if $a_1 \ge a_2$, then $a_2 \ge a_3 \Rightarrow a_3 \ge a_4 \Rightarrow a_4 \ge a_5$, etc $a_1 = 2, a_2 = \frac{1}{3-a_n} = \frac{1}{3-2} = 1$ so, $a_1 > a_2$ and in general $a_{n+1} < a_n \Rightarrow$ sequence is decreasing and monotonic. Therefore it is bound from above by its first term. Is it bound from below as well?

Yes, $a_n \leq 2$ for all n. Thus $a_{n+1} = \frac{1}{3-a_n}$ is positive. So, the sequence is bounded $0 \leq a_n \leq 2$ and monotonic, thus it converges.

Next,
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1}{3-a_n} \Rightarrow L = \frac{1}{3-L} \Rightarrow L(3-L) = 1$$

 $\Rightarrow L^2 - 3L + 1 = 0 \Rightarrow L = \frac{3+\sqrt{5}}{2} \text{ or } \frac{3-\sqrt{5}}{2}.$ Now $\frac{3+\sqrt{5}}{2} > 2$ so that isn't the limit.
Therfore $\lim_{n \to \infty} a_n = \frac{3-\sqrt{5}}{2}.$

6.

a)
$$\sum_{n=1}^{\infty} \frac{2n^2 - 1}{3n^2 + 1} \to S_n = \begin{pmatrix} \frac{1}{4}, \frac{41}{52}, \frac{127}{91}, \frac{1292}{637}, \frac{129405}{48412}, 3.324..., 3.979..., 4.637..., 5.297..., 5.958... \end{pmatrix}$$

This series is divergent because $\lim_{n \to \infty} \frac{2n^2 - 1}{3n^2 + 1} = \frac{2}{3} \neq 0$

b)
$$\sum_{n=1}^{\infty} \frac{2^n}{3^{n-1}} \Longrightarrow S_n = \left(2, \frac{10}{3}, \frac{38}{9}, \frac{130}{27}, \ldots\right)$$

 $\sum_{n=1}^{\infty} \frac{2^n}{3^{n-1}} = 2\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^{n-1} = 2\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n = \frac{2}{1-2/3} = 6$

 \rightarrow This is a geometric series, $r = \frac{2}{3} < 1 \Rightarrow$ The series is convergent.