Math 2000: Solutions for Assignment \#1, W 2006

1a) First five terms of the sequence $a_{n}=\frac{n+1}{3 n+1}$, where $n=1,2,3,4,5$ are

$$
\left\{\frac{1}{2}, \frac{3}{7}, \frac{2}{5}, \frac{5}{13}, \frac{3}{8}\right\} .
$$

1b) First five terms of the sequence given by the reccurence relation $a_{n+1}=\frac{a_{n}}{a_{n}-1}$, where $a_{1}=4$ are

$$
\left\{4, \frac{4}{3}, 4, \frac{4}{3}, 4\right\}
$$

2. Formulas for general terms are
а) $a_{n}=\frac{3^{n-1}}{2^{n}}, n=1,2, \ldots$
b) $a_{n}=(-1)^{n+1}\left(\frac{2 n-1}{2 n}\right), n=1,2, \ldots$
3.

a) $\lim _{n \rightarrow \infty} \frac{n+1}{3 n+1}=\lim _{n \rightarrow \infty} \frac{1+1 / n}{3+1 / n}=\frac{1}{3}$
b) $\lim _{n \rightarrow \infty} \frac{3^{n}}{n!}=\lim _{n \rightarrow \infty}\left(\frac{3}{n} \cdot \frac{3}{n-1} \cdot \frac{3}{n-2} \cdot \frac{3}{n-3} \cdots \frac{3}{3} \cdot \frac{3}{2} \cdot \frac{3}{1}\right)$
\Rightarrow each of terms $\frac{3}{k} \leq 1$, for $k \geq 4 \Rightarrow$ the total product $\frac{3}{4} \frac{3}{5} \cdots \frac{3}{n-1}$ is also less then 1
So,
$\leq \lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{3}{2} \cdot \frac{3}{1}\right)=\lim _{n \rightarrow \infty} \frac{27}{2 n}=0$
$\Rightarrow 0 \leq \frac{3^{n}}{n!} \leq \frac{27}{2 n}$ So by the squeeze therom, $\lim _{n \rightarrow \infty} \frac{3^{n}}{n!}=0$
c) $c_{n}=(-1)^{n} \frac{n}{n+1}$ doesn't converge. $\frac{n}{n+1} \rightarrow 1$ as $n \rightarrow \infty$
so the $(-1)^{n}$ causes late terms in the series to alternate between +1 and -1 , approaching bot
d) $b_{n}=\frac{n!}{(n+1)!}=\frac{1}{n+1} \Rightarrow \lim _{n \rightarrow \infty} \frac{n!}{(n+1)!}=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0$
e) $c_{n}=\cos \left(\frac{2}{n}\right)$ As $n \rightarrow \infty, \frac{2}{n} \rightarrow 0 \Rightarrow \lim _{n \rightarrow \infty} \cos \left(\frac{2}{n}\right)=\cos (0)=1$
f) $a_{n}=\frac{\sqrt{n}}{\sqrt{n+1}} \rightarrow \lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n+1}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+1 / n}}=1$
g) $c_{n}=\frac{(-3)^{n}}{(n+1)!}$ Note that $\lim _{n \rightarrow \infty} \frac{3^{n}}{(n+1)!}=\lim _{n \rightarrow \infty} \frac{1}{n+1} \lim _{n \rightarrow \infty} \frac{3^{n}}{n!}$

From problem 3. b) We know that $\lim _{n \rightarrow \infty} \frac{3^{n}}{n!}=0$
Hence, by the absolute value theorem, $\lim _{n \rightarrow \infty} c_{n}=0$
h) $a_{n}=\arctan (2 n) \rightarrow \lim _{n \rightarrow \infty} a_{n}=\arctan (\infty)=\frac{\pi}{2}$
i) $b_{n}=\frac{\ln (n)}{\ln (2 n)}=\frac{\ln (n)}{\ln (2)+\ln (n)}$ dividing everything by $\ln (n)$ yeilds $\frac{1}{\frac{\ln (2)}{\ln (n)}+1}$

$$
\text { As } n \rightarrow \infty, \frac{\ln (2)}{\ln (n)}=0, \text { so } \lim _{n \rightarrow \infty} b_{n}=1
$$

4.

a) $a_{n}=\frac{1}{3^{n}} \rightarrow$ this is decreasing since $a_{n+1}=\frac{1}{3^{n+1}}=\frac{1}{3} a_{n}$

Therefore, it is bounded from above by its first term $\rightarrow \frac{1}{3}$ and is bounded from below by 0
b) $b_{n}=\frac{2 n-3}{3 n+4} \rightarrow$ this is increaseing since $\frac{d}{d x}\left(\frac{2 x-3}{3 x+4}\right)=\frac{17}{3 x+4}>0$ for $x \geq 1$.

Therefore it is bounded from below by its first term: $b_{1}=\frac{1}{7}$, and is bounded from above by $\frac{2}{3}$

$$
\text { because } \lim _{n \rightarrow \infty} \frac{2 n-3}{3 n+4}=\frac{2}{3}
$$

c) This sequence is not monotonic $\operatorname{since} \sin \left(\frac{\pi n}{4}\right)$ alternates between $1, \frac{\sqrt{2}}{2}, 0, \frac{-\sqrt{2}}{2}$,and 1 However it is bound from above by 1 and below by -1 (or some tighter bound)
5. This is a harder one. We proceed by induction. If

$$
\begin{aligned}
& a_{n+1}<a_{n} \\
& -a_{n+1}>-a_{n} \\
& 3-a_{n+1}>3-a_{n} \\
& \frac{1}{3-a_{n+1}}<\frac{1}{3-a_{n}}
\end{aligned}
$$

$$
a_{n+2}<a_{n+1}
$$

So if $a_{1} \geq a_{2}$, then $a_{2} \geq a_{3} \Rightarrow a_{3} \geq a_{4} \Rightarrow a_{4} \geq a_{5}$, etc $a_{1}=2, a_{2}=\frac{1}{3-a_{n}}=\frac{1}{3-2}=1$ so, $a_{1}>a_{2}$ and in general $a_{n+1}<a_{n} \Rightarrow$ sequence is decreasing and monotonic. Therefore it is bound from above by its first term. Is it bound from below as well?

Yes, $a_{n} \leq 2$ for all n. Thus $a_{n+1}=\frac{1}{3-a_{n}}$ is positive. So, the sequence is bounded $0 \leq a_{n} \leq 2$ and monotonic, thus it converges.

Next, $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \frac{1}{3-a_{n}} \Rightarrow L=\frac{1}{3-L} \Rightarrow L(3-L)=1$
$\Rightarrow L^{2}-3 L+1=0 \Rightarrow L=\frac{3+\sqrt{5}}{2}$ or $\frac{3-\sqrt{5}}{2}$. Now $\frac{3+\sqrt{5}}{2}>2$ so that isn't the limit.
Therfore $\lim _{n \rightarrow \infty} a_{n}=\frac{3-\sqrt{5}}{2}$.
6.
a) $\sum_{n=1}^{\infty} \frac{2 n^{2}-1}{3 n^{2}+1} \rightarrow S_{n}=$

$$
\left(\frac{1}{4}, \frac{41}{52}, \frac{127}{91}, \frac{1292}{637}, \frac{129405}{48412}, 3.324 \ldots, 3.979 \ldots, 4.637 \ldots, 5.297 \ldots, 5.958 \ldots\right)
$$

This series is divergent because $\lim _{n \rightarrow \infty} \frac{2 n^{2}-1}{3 n^{2}+1}=\frac{2}{3} \neq 0$
b) $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n-1}}=\rightarrow S_{n}=\left(2, \frac{10}{3}, \frac{38}{9}, \frac{130}{27}, \ldots\right)$

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n-1}}=2 \sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n-1}=2 \sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}=\frac{2}{1-2 / 3}=6
$$

\rightarrow This is a geometric series, $r=\frac{2}{3}<1 \Rightarrow$ The series is convergent.

