Math 2000: Assignment \#1, Due Jan 20. W-2006

1. Find the first 5 terms of following sequences.
a) $a_{n}=\frac{n+1}{3 n+1}$
b) $a_{1}=4, \quad a_{n+1}=\frac{a_{n}}{a_{n}-1}$
2. Find a formula for the general term a_{n} of the following sequences, assuming that the pattern of the first few terms continues.
a) $\left\{\frac{1}{2}, \frac{3}{4}, \frac{9}{8}, \frac{27}{16}, \frac{81}{32}, \frac{243}{64} \ldots\right\}$
b) $\left\{\frac{1}{2},-\frac{3}{4}, \frac{5}{6},-\frac{7}{8}, \frac{9}{10},-\frac{11}{12} \ldots\right\}$
3. Determine if the following sequences converge or diverge. Find the limit of convergent sequences.
a) $a_{n}=\frac{n+1}{3 n-1}$
b) $b_{n}=\frac{3^{n}}{n!}$
c) $c_{n}=(-1)^{n} \frac{n}{n+1}$
d) $b_{n}=\frac{n!}{(n+1)!}$
e) $c_{n}=\cos \left(\frac{2}{n}\right)$
f) $a_{n}=\frac{\sqrt{n}^{n}}{\sqrt{n+1}}$
g) $c_{n}=\frac{(-3)^{n}}{(n+1)!}$
h) $a_{n}=\arctan (2 n)$
i) $b_{n}=\frac{\ln (x)}{\ln (2 x)}$
4. Determine whether the following sequences are increasing, decreasing, or not monotonic. Which ones are bounded?
a) $a_{n}=\frac{1}{3^{n}}$
b) $b_{n}=\frac{2 n-3}{3 n+4}$
c) $c_{n}=\frac{1}{n} \sin \left(\frac{\pi n}{4}\right)$
5. Show that the sequence defined by

$$
a_{1}=2, \quad a_{n+1}=\frac{1}{3-a_{n}}
$$

satisfies $0 \leq a_{n} \leq 2$ and is decreasing. Deduce that the sequence is convergent and find its limit.
6. Find the first 5 partial sums of the following series. Is the series convergent or divergent? Explain.
a) $\sum_{n=1}^{\infty} \frac{2 n^{2}-1}{3 n^{2}+1}$
b) $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n-1}}$

