MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

TEST 2
MATHEMATICS 1001
March 24, 2003

NAME:

Lab Section:
Marks

1. A bottle of good Canadian beer is placed into a fridge. The temperature inside the fridge is +3 C. After one hour the beer has temperature +11 C , and after two hours it has temperature +7 C and is consumed with a great pleasure. What was the initial temperature of the beer if it cools down according to the Newton's law $T(t)=T_{m}+\left(T_{0}-T_{m}\right) e^{k t}$.
(a) Set up equations

Solution. The temperature in the fridge $T_{m}=3$. After 1 hour the temperature of the beer is

$$
T(1)=3+(x-3) e^{k}=11
$$

where the initial temperature $T_{0}=x$ is unknown. Atter two hours we have

$$
T(2)=3+(x-3) e^{2 k}=7
$$

Therefore we have 2 equations and 2 unknowns x and k.
(b) solve the equations

Solution. From the first equation we obtain $e^{k}=8 /(x-3)$. So, $e^{2 k}=64 /(x-3)^{2}$. Substituting this into the second equation we get $64 /(x-3)=4$. Therefore $x-3=16$, and $x=19$.
Answer: The initial temperature of the beer was 19 C. No wonder it was not consumed at that time.
2. Evaluate any three of the following four integrals. Check your answer by differentiation.
(a) $\int \ln (1000 x) d x$

Solution. By parts. $u=\ln (1000 x), u^{\prime}=1 / x, v^{\prime}=1, v=x$.

$$
\int \ln (1000 x) d x=x \ln (1000 x)-\int x \cdot \frac{1}{x} d x=x \ln (1000 x)-x+C
$$

(b) $\int \frac{x-3}{(x-1)^{2}+4} d x$

Solution. Substitution $u=x-1, d u=d x$ leads to

$$
\int \frac{u-2}{u^{2}+4} d x=\int \frac{u}{u^{2}+4} d x-2 \int \frac{1}{u^{2}+4} d x
$$

The second integral gives us $\int \frac{1}{u^{2}+4} d x=\frac{1}{2} \arctan \frac{u}{2}$. One more substitution for the first integral $v=u^{2}+4, d v=2 d u$ gives $\int \frac{u}{u^{2}+4} d x=\frac{1}{2} \int \frac{1}{v} d v=\ln |v|=\ln \left|u^{2}+4\right|$. After back substitution we finaly get

$$
\int \frac{x-3}{(x-1)^{2}+4} d x=\frac{1}{2} \ln \left|(x-1)^{2}+4\right|-\arctan \frac{x-1}{2}+C
$$

[10]
(c) $\int x^{2} \cos (2 x) d x$

Solution. By parts twice. First, $u=x^{2}, u^{\prime}=2 x, v^{\prime}=\cos (2 x), v=\frac{1}{2} \sin (2 x)$. It gives

$$
\int x^{2} \cos (2 x) d x=\frac{x^{2} \sin (2 x)}{2}-\int x \sin (2 x) d x
$$

Now take $u=x, u^{\prime}=1, v^{\prime}=\sin (2 x), v=-\frac{1}{2} \cos (2 x)$. Then

$$
\int x \sin (2 x) d x=-\frac{x \cos (2 x)}{2}+\frac{1}{2} \int \cos (2 x) d x=-\frac{x \cos (2 x)}{2}+\frac{1}{4} \sin (2 x)
$$

Finaly we obtain

$$
\int x^{2} \cos (2 x) d x=\frac{x^{2} \sin (2 x)}{2}+\frac{x \cos (2 x)}{2}-\frac{1}{4} \sin (2 x)+C
$$

[10]
(d) $\int \frac{1+4 x^{2}}{x \sqrt{x^{2}-1}} d x$

Solution. Rewrite as a sum of two integrals

$$
\int \frac{1+4 x^{2}}{x \sqrt{x^{2}-1}} d x=\int \frac{1}{x \sqrt{x^{2}-1}} d x+4 \int \frac{x^{2}}{x \sqrt{x^{2}-1}} d x
$$

The first integral gives us $\int \frac{1}{x \sqrt{x^{2}-1}} d x=\operatorname{arcsec}|x|$. The second, after cancelation x and substitution $u=x^{2}-1$ becomes

$$
\int \frac{x^{2}}{x \sqrt{x^{2}-1}} d x=\int \frac{x}{\sqrt{x^{2}-1}} d x=\frac{1}{2} \int \frac{1}{\sqrt{u}} d u=u^{1 / 2}=\sqrt{x^{2}-1} .
$$

Finaly,

$$
\int \frac{1+4 x^{2}}{x \sqrt{x^{2}-1}} d x=\operatorname{arcsec}|x|+4 \sqrt{x^{2}-1}
$$

[5] 3. (a) Sketch the region bounded by $y=\sqrt{x}, x=1$ and $y=3$.
Mark all curves and points of intersection. Double check yourself because it is critical for the whole problem.

(b) Find the area of the region by two different ways: (1) integrating w.r.t x; (2) integrating w.r.t y

Solution.
(1) $V=\int_{1}^{9} 3-\sqrt{x} d x=20 / 3$.
(2) $V=\int_{1}^{3} y^{2}-1 d y=20 / 3$.
[10] (c) Find the volume of the solid generated by revolving the region about x-axis using the disk/washer method
Solution. Outer radius $R=3$. Inner radius $r=\sqrt{x}$.

$$
\begin{equation*}
V=\pi \int_{1}^{9}(9-x) d x=32 \pi \tag{10}
\end{equation*}
$$

(d) Find the volume of the solid generated by revolving the region about x-axis using the cylindrical shell method. Compare to your result in (c).
Solution. Radius $p(y)=y$, hight $h(y)=y^{2}-1$.

$$
V=2 \pi \int_{1}^{3} y\left(y^{2}-1\right) d y=32 \pi
$$

Bonus Problem (optional) Show that

$$
\int \sqrt{1+x^{2}} d x=\frac{1}{2}\left(x \sqrt{1+x^{2}}+\ln \left|x+\sqrt{1+x^{2}}\right|\right)
$$

Solution. Differeniate the RHS using the Product rule and the Chain rule.

$$
\frac{d}{d x}\left(x \sqrt{1+x^{2}}+\ln \left|x+\sqrt{1+x^{2}}\right|\right)=\sqrt{1+x^{2}}+\frac{x^{2}}{\sqrt{1+x^{2}}}+\frac{1}{x+\sqrt{1+x^{2}}} \cdot\left(1+\frac{x}{\sqrt{1+x^{2}}}\right)
$$

now simplify the last summand

$$
=\sqrt{1+x^{2}}+\frac{x^{2}}{\sqrt{1+x^{2}}}+\frac{1}{x+\sqrt{1+x^{2}}} \cdot\left(\frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}}\right)=\sqrt{1+x^{2}}+\frac{x^{2}}{\sqrt{1+x^{2}}}+\frac{1}{\sqrt{1+x^{2}}}
$$

and now make common denominator and cancel like terms to get

$$
=\frac{\left(1+x^{2}\right)+x^{2}+1}{\sqrt{1+x^{2}}}=\frac{2\left(1+x^{2}\right)}{\sqrt{1+x^{2}}}=\sqrt{1+x^{2}}
$$

We have shown that

$$
\frac{d}{d x}\left(x \sqrt{1+x^{2}}+\ln \left|x+\sqrt{1+x^{2}}\right|\right)=\sqrt{1+x^{2}}
$$

Therefore

$$
\int \sqrt{1+x^{2}} d x=\frac{1}{2}\left(x \sqrt{1+x^{2}}+\ln \left|x+\sqrt{1+x^{2}}\right|\right)
$$

P.S. This formula ulternatively could be derived using integration by trig substitution $x=\tan \Theta, d x=\sec ^{2} \Theta d \Theta$. Try it.

