Math 1001 Section 1 (Margo) Assignment \#1 Due Sept 18

1. Find antiderivative
(a) $\int\left(2 t^{2}-1\right)^{2} d t$
(b) $\int \frac{x-4}{x \sqrt{x}} d x$
(c) $\int \frac{(3 x+1)^{2}}{\sqrt{x}} d x$
(d) $\int \frac{4 x^{2}+3 x+1}{x^{2}} d x$
(e) $\int \sec \theta(\tan \theta+\cos \theta) d \theta$
(f) $\int(3 s+1)^{8} d s$
(g) $\int \frac{1}{(2 x-5)^{4}} d x$
(h) $\int \frac{8}{4 x+1} d x$
(i) $\int \frac{\left(e^{x}+1\right)^{3}}{2 e^{x}} d x$
(j) $\int(14 \sin 2 x-9 \cos 3 x) d x$
(k) $\int \frac{6}{\cos ^{2} 2 x} d x$
2. Find the original function using given information about its derivatives and values.
(a) $f^{\prime}(x)=\frac{x^{2}-1}{x^{5}}, \quad f(2)=3$
(b) $\frac{d y}{d x}=\frac{3}{\sqrt{2 x+1}}, \quad y(4)=-7$
(c) $y^{\prime \prime}=\frac{1}{2 x^{2}}, \quad y(1)=2, y^{\prime}(1)=3$
(d) $f^{\prime \prime}(x)=3 e^{x}+5 \sin x, \quad f(0)=1, f^{\prime}(0)=2$
3. A ball is thrown upward with a speed $320 \mathrm{ft} / \mathrm{c}$ from the ground. Find the time when the ball reaches its maximum hight and the maximum hight.
Hint: the acceleration due to gravity is $32 \mathrm{ft} / \mathrm{c}^{2}$.
4. A car travels with speed $88 \mathrm{ft} / \mathrm{c}$ when the brakes are applied. From this moment its acceleration is $-40 \mathrm{ft} / \mathrm{c}^{2}$. Find the distance the car travels before it comes to rest?
5. Rewrite using sigma-notation.
(a) $\frac{1}{3}+\frac{1}{5}+\frac{1}{9}+\frac{1}{17}+\frac{1}{33}+\frac{1}{65}$
(b) $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}$
6. Evaluate the sum (a) $\sum_{j=1}^{12}(2 j-1)^{2}$
(b) $\sum_{i=1}^{10} i\left(3 i^{2}+5\right)$
7. Find the area that lies under the graph of $f(x)$ above the given segment $[a, b]$ by setting an appropriate Riemann sum and evaluating its limit.
(a) $f(x)=(1+x)^{2}$ on $[0,2]$. (b) $f(x)=3 x-4$ on $[2,5]$.
(c) $f(x)=4-x^{2}$ on $[-1,1]$.
