NAME:

Student \#:

Problem 1 (25 points)
Let a "triangular" region be bounded by curves given by their equations:

$$
y=2 x^{2}, \quad y=8, \quad y=-4 x
$$

a) Sketch the region and mark all curves and points of their intersections Answer: The region is bounded by three curves:
a line segment connecting point $(-2,8)$ and the origin $(0,0)$;
horizontal line connecting points $(-2,8)$ and $(2,8)$;
a segment of parabola connecting points $(2,8)$ and the origin.
b) Find the area of the region by integrating with respect to x-variable Answer:

$$
\int_{-2}^{0} 8-(-4 x) d x+\int_{0}^{2} 8-\left(2 x^{2}\right) d x=8+\frac{32}{3}=\frac{56}{3}
$$

c) Find the area of the region by integrating with respect to y-variable. Compare your answer with (b).

Answer:

$$
\int_{0}^{8} \sqrt{\frac{y}{2}}-\left(-\frac{y}{4}\right) d y=\frac{56}{3}
$$

d) Find the volume of the solid of revolution obtained by revolving the region about the line $y=8$. Show your work: set up the integral and evaluate it.

Answer: Disk method for two parts separately.

$$
\pi \int_{-2}^{0}(8-(-4 x))^{2} d x+\pi \int_{0}^{2}\left(8-\left(2 x^{2}\right)\right)^{2} d x=\frac{1664 \pi}{15}
$$

e) Find the volume of the solid of revolution obtained by revolving the region about the line $x=2$. Show your work: set up the integral and evaluate it.

Answer: Washer method.

$$
\pi \int_{0}^{8}\left(2-\left(-\frac{y}{4}\right)\right)^{2}-\left(2-\sqrt{\frac{y}{2}}\right)^{2} d y=\frac{208 \pi}{3}
$$

Problem 2 (35 points) Evaluate the integrals
a) $[4 \mathrm{pt}] \int_{0}^{\frac{1}{3}} \frac{1}{\sqrt{4-9 x^{2}}} d x$

Answer: $\pi / 18$ or 10 degrees.
b) $[5 \mathrm{pt}] \int \frac{1}{x\left(25+16 \ln ^{2} x\right)} d x$

Answer: $\frac{1}{20} \arctan \left(\frac{4 \ln x}{5}\right)+C$.
c) $[4 \mathrm{pt}] \int \arctan \left(\frac{x}{2}\right) d x$

Answer: $x \arctan \left(\frac{x}{2}\right)-\ln \left(x^{2}+4\right)+C$
d) $[4 \mathrm{pt}] \int x \sin (1000 x) d x$

Answer: $\frac{\sin (1000 x)}{1,000,000}-\frac{x \cos (1000 x)}{1000}+C$
e) $[4 \mathrm{pt}] \int \sin ^{3} 3 x \cos ^{4} 3 x d x$

Answer: $\frac{\cos ^{7}(3 x)}{21}-\frac{\cos ^{5}(3 x)}{15}+C$
f) $[4 \mathrm{pt}] \int \sec ^{5} x \tan ^{3} x d x$

Answer: $\frac{\sec ^{7}(x)}{7}-\frac{\sec ^{5}(x)}{5}+C$
g) $[5 \mathrm{pt}] \int \frac{x^{2}}{\sqrt{4-x^{2}}} d x$

Answer: $2 \arcsin \left(\frac{x}{2}\right)-\frac{x \sqrt{4-x^{2}}}{2}+C$
h) [5 pt] $\int e^{3 x} \cos (x) d x$

Answer: $e^{3 x}\left(\frac{\sin x+3 \cos x}{10}\right)+C$

Bonus Problem

Evaluate and check your result by differentiation:

$$
\int\left(x^{-2}+x\right)\left(x^{2}+a^{2}\right)^{-1 / 2} d x
$$

Answer: $\sqrt{x^{2}+a^{2}}-\frac{\sqrt{x^{2}+a^{2}}}{a^{2} x}+C$

