1. (a) $\int \frac{\sqrt{x^{2}-a^{2}}}{x^{4}} d x$


$$
\begin{aligned}
& =\int \frac{a \tan \theta}{(a \sec \theta)^{4}} \cdot a \sec \theta \tan \theta d \theta=\frac{1}{a^{2}} \int \frac{\tan ^{2} \theta}{\sec ^{3} \theta} d \theta=\frac{1}{a^{2}} \int \sin ^{2} \theta \cos \theta d \theta \quad \begin{array}{c}
u=\sin \theta \\
d u=\cos \theta d \theta
\end{array} \\
& =\frac{1}{a^{2}} \int u^{2} d u=\frac{1}{a^{2}} \cdot \frac{u^{3}}{3}+C=\frac{1}{3 a^{2}} \sin ^{3} \theta+C=\frac{1}{3 a^{2}}\left(\frac{\sqrt{x^{2}-a^{2}}}{x}\right)^{3}+C=\frac{\left(x^{2}-a^{2}\right)^{\frac{3}{2}}}{3 a^{2} x^{3}}+C
\end{aligned}
$$

(b) $\int \frac{1}{x \sqrt{4 x^{2}+9}} d x$

$$
\begin{aligned}
2 x & =3 \tan \theta \\
2 d x & =3 \sec ^{2} \theta d \theta \\
\sqrt{4 x^{2}+9} & =3 \sec \theta
\end{aligned}
$$

$$
=\int \frac{1}{\frac{3}{2} \tan \theta \cdot 3 \sec \theta} \cdot \frac{3}{2} \sec ^{2} d \theta=\frac{1}{3} \int \frac{\sec \theta}{\tan \theta} d \theta=\frac{1}{3} \int \frac{1}{\sin \theta} d \theta=\frac{1}{3} \int \csc \theta d \theta
$$

$$
=-\frac{1}{3} \ln |\csc \theta-\cot \theta|+C=-\frac{1}{3} \ln \left|\frac{\sqrt{4 x^{2}+9}}{2 x}-\frac{3}{2 x}\right|+C=-\frac{1}{3} \ln \left|\frac{\sqrt{4 x^{2}+9}-3}{2 x}\right|+C
$$

(c) $\int \frac{x^{2}}{\sqrt{25-x^{2}}} d x$

$$
\begin{aligned}
x & =5 \sin \theta \\
d x & =5 \cos \theta d \theta \\
\sqrt{25-x^{2}} & =5 \cos \theta
\end{aligned}
$$


$=\int \frac{(5 \sin \theta)^{2}}{5 \cos \theta} \cdot 5 \cos \theta d \theta=25 \int \sin ^{2} \theta d \theta=25 \int \frac{1-\cos 2 \theta}{2} d \theta=\frac{25}{2}\left(\theta-\frac{1}{2} \sin 2 \theta\right)+C$ $=\frac{25}{2}(\theta-\sin \theta \cos \theta)=\frac{25}{2}\left(\sin ^{-1} \frac{x}{5}-\frac{x}{5} \cdot \frac{\sqrt{25-x^{2}}}{5}\right)+C=\frac{25}{2} \sin ^{-1} \frac{x}{5}-\frac{1}{2} x \sqrt{25-x^{2}}+C$
(d) $\int \frac{1}{x^{2} \sqrt{9+16 x^{2}}} d x$

$$
\begin{aligned}
4 x & =3 \tan \theta \\
4 d x & =3 \sec ^{2} \theta d \theta \\
\sqrt{9+16 x^{2}} & =3 \sec \theta
\end{aligned}
$$



$$
=\int \frac{1}{\left(\frac{3}{4} \tan \theta\right)^{2} \cdot 3 \sec \theta} \cdot \frac{3}{4} \sec ^{2} \theta d \theta=\frac{4}{9} \int \frac{\sec \theta}{\tan ^{2} \theta} d \theta=\frac{4}{9} \int \frac{\cos \theta}{\sin ^{2} \theta} d \theta \quad \begin{aligned}
u & =\sin \theta \\
d u & =\cos \theta d \theta
\end{aligned}
$$

$$
=\frac{4}{9} \int \frac{1}{u^{2}} d u=-\frac{4}{9 u}+C=-\frac{4}{9 \sin \theta}+C=-\frac{4}{9} \csc \theta+C=-\frac{4}{9} \cdot \frac{\sqrt{9+16 x^{2}}}{4 x}+C=-\frac{\sqrt{9+16 x^{2}}}{9 x}+C
$$

$$
\begin{aligned}
& \text { (e) } \int_{0}^{2} x^{3} \sqrt{4-x^{2}} d x \\
& \begin{aligned}
x & =2 \sin \theta & & x=2 \Rightarrow \theta=\frac{\pi}{2} \\
d x & =2 \cos \theta d \theta & & x=0 \Rightarrow \theta=0 \\
\sqrt{4-x^{2}} & =2 \cos \theta & &
\end{aligned} \\
& =\int_{0}^{\frac{\pi}{2}}(2 \sin \theta)^{3} \cdot 2 \cos \theta \cdot 2 \cos \theta d \theta=32 \int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta \cos ^{2} \theta d \theta=32 \int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta \cdot \cos ^{2} \theta \cdot \sin \theta d \theta \\
& =32 \int_{0}^{\frac{\pi}{2}}\left(1-\cos ^{2} \theta\right) \cos ^{2} \theta \cdot \sin \theta d \theta \quad u=\cos \theta \quad \theta=\frac{\pi}{2} \Rightarrow u=0 \\
& d u=-\sin \theta d \theta \quad \theta=0 \Rightarrow u=1 \\
& =-32 \int_{1}^{0}\left(1-u^{2}\right) u^{2} d u=-32 \int_{1}^{0}\left(u^{2}-u^{4}\right) d u=-\left.32\left(\frac{u^{3}}{3}-\frac{u^{5}}{5}\right)\right|_{1} ^{0}=-32\left[0-\left(\frac{1}{3}-\frac{1}{5}\right)\right]=\frac{64}{15} \\
& \text { (f) } \int_{0}^{3 \sqrt{3}} \frac{x^{3}}{\sqrt{x^{2}+9}} d x \\
& x=3 \sqrt{3} \Rightarrow \theta=\frac{\pi}{3} \\
& x=0 \quad \Rightarrow \theta=0 \\
& \sqrt{x^{2}+9}=3 \sec \theta \\
& =\int_{0}^{\frac{\pi}{3}} \frac{(3 \tan \theta)^{3}}{3 \sec \theta} \cdot 3 \sec ^{2} \theta d \theta=27 \int_{0}^{\frac{\pi}{3}} \tan ^{3} \theta \sec \theta d \theta=27 \int_{0}^{\frac{\pi}{3}} \tan ^{2} \theta \cdot \sec \theta \tan \theta d \theta \\
& =27 \int_{0}^{\frac{\pi}{3}}\left(\sec ^{2} \theta-1\right) \sec \theta \tan \theta d \theta \quad \begin{aligned}
u & =\sec \theta & \theta=\frac{\pi}{3} & \Rightarrow u=2 \\
d u & =\sec \theta \tan \theta d \theta & \theta & =0 \Rightarrow u=1
\end{aligned} \\
& =27 \int_{1}^{2}\left(u^{2}-1\right) d u=\left.27\left(\frac{u^{3}}{3}-u\right)\right|_{1} ^{2}=27\left[\left(\frac{8}{3}-2\right)-\left(\frac{1}{3}-1\right)\right]=27\left(\frac{4}{3}\right)=36 \\
& \text { (g) } \int \frac{x^{2}}{\sqrt{4 x-x^{2}}} d x=\int \frac{x^{2}}{\sqrt{4-(x-2)^{2}}} d x \\
& x-2=2 \sin \theta \\
& \begin{aligned}
d x & =2 \cos \theta d \theta \\
\sqrt{4-(x-2)^{2}} & =2 \cos \theta
\end{aligned} \\
& =\int \frac{(2+2 \sin \theta)^{2}}{2 \cos \theta} \cdot 2 \cos \theta d \theta=\int(2+2 \sin \theta)^{2} d \theta=\int\left(4+8 \sin \theta+4 \sin ^{2} \theta\right) d \theta \\
& =\int[4+8 \sin \theta+2(1-\cos 2 \theta)] d \theta=\int(6+8 \sin \theta-2 \cos 2 \theta) d \theta=6 \theta-8 \cos \theta-\sin 2 \theta+C \\
& =6 \theta-8 \cos \theta-2 \sin \theta \cos \theta+C=6 \cdot \sin ^{-1} \frac{x-2}{2}-8 \cdot \frac{\sqrt{4 x-x^{2}}}{2}-2 \cdot \frac{x-2}{2} \cdot \frac{\sqrt{4 x-x^{2}}}{2}+C \\
& =6 \sin ^{-1} \frac{x-2}{2}-4 \sqrt{4 x-x^{2}}-\frac{1}{2}(x-2) \sqrt{4 x-x^{2}}+C
\end{aligned}
$$

(h) $\begin{array}{rlrl}\int \frac{x}{\sqrt{x^{2}-6 x+5}} d x=\int \frac{x}{\sqrt{(x-3)^{2}-4}} d x & x-3 & = \\ d x & = \\ \sqrt{(x-3)^{2}-4} & = \\ =\int \frac{3+2 \sec \theta}{2 \tan \theta} \cdot 2 \sec \theta \tan \theta d \theta=\int\left(3 \sec \theta+2 \sec ^{2} \theta\right) d \theta\end{array}$

$$
=3 \ln |\sec \theta+\tan \theta|+2 \tan \theta+C=3 \ln \left|\frac{x-3}{2}+\frac{\sqrt{x^{2}-6 x+5}}{2}\right|+2 \cdot \frac{\sqrt{x^{2}-6 x+5}}{2}+C
$$

$$
=3 \ln \left|\frac{x-3+\sqrt{x^{2}-6 x+5}}{2}\right|+\sqrt{x^{2}-6 x+5}+C
$$

(i) $\int \frac{1}{\left(25-4 x^{2}\right)^{\frac{3}{2}}} d x$

$$
\begin{aligned}
2 x & =5 \sin \theta \\
2 d x & =5 \cos \theta d \theta \\
\sqrt{25-4 x^{2}} & =5 \cos \theta
\end{aligned}
$$


$=\int \frac{1}{(5 \cos \theta)^{3}} \cdot \frac{5}{2} \cos \theta d \theta=\frac{1}{50} \int \frac{1}{\cos ^{2} \theta} d \theta=\frac{1}{50} \int \sec ^{2} \theta d \theta=\frac{1}{50} \tan \theta+C$
$=\frac{1}{50} \cdot \frac{2 x}{\sqrt{25-4 x^{2}}}+C=\frac{x}{25 \sqrt{25-4 x^{2}}}+C$

$$
\text { (j) } \int \frac{1}{x^{4}+10 x^{2}+25} d x=\int \frac{1}{\left(x^{2}+5\right)^{2}} d x \quad x=\sqrt{5} \tan \theta\left\{\begin{aligned}
d x & =\sqrt{5} \sec ^{2} \theta d \theta \\
\sqrt{x^{2}+5} & =\sqrt{5} \sec \theta
\end{aligned}\right.
$$



$$
=\int \frac{1}{(\sqrt{5} \sec \theta)^{4}} \cdot \sqrt{5} \sec ^{2} \theta d \theta=\frac{\sqrt{5}}{25} \int \frac{1}{\sec ^{2} \theta} d \theta=\frac{\sqrt{5}}{25} \int \cos ^{2} \theta d \theta=\frac{\sqrt{5}}{25} \int \frac{1+\cos 2 \theta}{2} d \theta
$$

$$
=\frac{\sqrt{5}}{25}\left(\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right)+C=\frac{\sqrt{5}}{25}\left(\frac{1}{2} \theta+\frac{1}{2} \sin \theta \cos \theta\right)+C
$$

$$
=\frac{\sqrt{5}}{25}\left(\frac{1}{2} \tan ^{-1} \frac{x}{\sqrt{5}}+\frac{1}{2} \cdot \frac{x}{\sqrt{x^{2}+5}} \cdot \frac{\sqrt{5}}{\sqrt{x^{2}+5}}\right)+C=\frac{\sqrt{5}}{50} \tan ^{-1} \frac{x}{\sqrt{5}}+\frac{x}{10\left(x^{2}+5\right)}+C
$$

2. (a) $\int \frac{x^{3}}{\sqrt{x^{2}-4}} d x$

$$
\begin{aligned}
x & =2 \sec \theta \\
d x & =2 \sec \theta \tan \theta d \theta \\
\sqrt{x^{2}-4} & =2 \tan \theta
\end{aligned}
$$



$$
\begin{aligned}
& =\int \frac{(2 \sec \theta)^{3}}{2 \tan \theta} \cdot 2 \sec \theta \tan \theta d \theta=8 \int \sec ^{4} \theta d \theta=8 \int \sec ^{2} \theta \sec ^{2} \theta d \theta \\
& =8 \int\left(1+\tan ^{2} \theta\right) \sec ^{2} \theta d \theta \quad \begin{aligned}
u & =\tan \theta \\
d u & =\sec ^{2} \theta d \theta
\end{aligned}
\end{aligned}
$$

$$
=8 \int\left(1+u^{2}\right) d u=8\left(u+\frac{u^{3}}{3}\right)+C=8\left(\tan \theta+\frac{\tan ^{3} \theta}{3}\right)+C=8\left[\frac{\sqrt{x^{2}-4}}{2}+\frac{1}{3}\left(\frac{\sqrt{x^{2}-4}}{2}\right)^{3}\right]+\mathrm{C}
$$

$$
=4 \sqrt{x^{2}-4}+\frac{1}{3}\left(x^{2}-4\right)^{3 / 2}+C
$$

(b) $\int \frac{x^{3}}{\sqrt{x^{2}-4}} d x=\int \frac{x^{2}}{\sqrt{x^{2}-4}} \cdot x d x \quad \begin{aligned} u & =x^{2}-4 \quad \Rightarrow \quad x^{2}=u+4 \\ d u & =2 x d x\end{aligned}$

$$
\begin{aligned}
& =\frac{1}{2} \int \frac{u+4}{\sqrt{u}} d u=\frac{1}{2} \int\left(u^{\frac{1}{2}}+4 u^{-\frac{1}{2}}\right) d u=\frac{1}{2}\left[\frac{u^{\frac{3}{2}}}{\frac{3}{2}}+\frac{4 u^{\frac{1}{2}}}{\frac{1}{2}}\right]+C=\frac{1}{3} u^{\frac{3}{2}}+4 u^{\frac{1}{2}}+C \\
& =\frac{1}{3}\left(x^{2}-4\right)^{\frac{3}{2}}+4\left(x^{2}-4\right)^{\frac{1}{2}}+C
\end{aligned}
$$

3. $\int \sqrt{e^{2 t}-9} d t=\int \sqrt{\left(e^{t}\right)^{2}-9} d t$

$$
\begin{aligned}
u & =e^{t} \\
d u & =e^{t} d t \quad \Rightarrow \quad d t=\frac{1}{e^{t}} d u=\frac{1}{u} d u
\end{aligned}
$$

$$
\begin{aligned}
& =\int \sqrt{u^{2}-9} \cdot \frac{1}{u} d u=\int \frac{\sqrt{u^{2}-9}}{u} d u \quad u=3 \sec \theta \\
& d u=3 \sec \theta \tan \theta d \theta \\
& \sqrt{u^{2}-9}=3 \tan \theta \\
& =\int \frac{3 \tan \theta}{3 \sec \theta} \cdot 3 \sec \theta \tan \theta d \theta=3 \int \tan ^{2} \theta d \theta=3 \int\left(\sec ^{2} \theta-1\right) d \theta=3(\tan \theta-\theta)+C \\
& =3 \cdot \frac{\sqrt{u^{2}-9}}{3}-3 \sec ^{-1} \frac{u}{3}+C=\sqrt{e^{2 t}-9}-3 \sec ^{-1} \frac{e^{t}}{3}+C
\end{aligned}
$$


4. We solve for $y$ to get the top half of the ellipse as $y=\frac{b}{a} \sqrt{a^{2}-x^{2}}$.


The area is four times the area in the first quadrant. So

$$
\begin{aligned}
& A=4 \int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x \quad x=a \sin \theta \quad x=a \Rightarrow \theta=\frac{\pi}{2} \\
& d x=a \cos \theta d \theta \quad x=0 \Rightarrow \theta=0 \\
& \sqrt{a^{2}-x^{2}}=a \cos \theta \\
& =\frac{4 b}{a} \int_{0}^{\frac{\pi}{2}} a \cos \theta \cdot a \cos \theta d \theta=4 a b \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta=4 a b \int_{0}^{\frac{\pi}{2}} \frac{1+\cos 2 \theta}{2} d \theta \\
& =\left.2 a b\left[\theta+\frac{1}{2} \sin 2 \theta\right]\right|_{0} ^{\frac{\pi}{2}}=2 a b\left[\left(\frac{\pi}{2}+0\right)-0\right]=\pi a b
\end{aligned}
$$

