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Abstract. Our aim is to construct new examples of totally ordered
and ∗-ordered noncommutative integral domains. We will discuss the
following classes of rings: enveloping algebras U(L), group rings kG and
smash products U(L)#ϕkG. All of them are examples of Hopf algebras.
Characterizations of orderability for enveloping algebras and group rings
and of ∗-orderability for enveloping algebras have been found before and
will be recalled in the article. Our main results are: for k = R and L
finite-dimensional, we characterize the orderability of U(L)#ϕkG; for
k = C, we give a necessary and a sufficient condition for ∗-orderability of
kG (G orderable, resp., G residually ‘torsion-free nilpotent’). Moreover,
for k = C and L finite-dimensional, we reduce the problem of character-
izing the ∗-orderability of U(L)#ϕkG to the problem of characterizing
the ∗-orderability of kG. The latter remains open.

1. Introduction

Let R be a ring. A subset P ⊂ R is called an ordering if P + P ⊂ P ,
P · P ⊂ P , P ∪ −P = R, and suppP := P ∩ −P is a prime ideal of R.
The set of all orderings of R is called the real spectrum of R. The study
of real spectra of noncommutative rings is known as noncommutative real
algebraic geometry. Rings with nonempty real spectrum are called semireal.
Orderings with zero support are of special importance. Rings that admit
such an ordering are called real.

We observed that many real rings carry the additional structure of a Hopf
algebra, e.g., group rings, universal enveloping algebras (see [8]), quantum
affine rings, quantized enveloping algebras, and quantized function algebras
(see [3]). This motivates the question of finding criteria for reality and
semireality of an arbitrary Hopf algebra (viewed as a ring). In the present
paper we set ourselves a more modest task of determining when a cocom-
mutative Hopf algebra is real. The results will be given in Section 3. The
basics about Hopf algebras are recalled below and the basics about ordered
structures in Section 2.
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In the context of rings with involution it seems more natural to work
with the so called ∗-orderings. We will recall the basic facts from [7],[4] in
Section 4. Although quantum groups have several interesting involutions,
they almost never carry a ∗-ordering. We will explain this phenomenon in
Section 6. However, we are able to construct a large class of cocommutative
Hopf algebras with involution which admit ∗-orderings — see Sections 5 and
6.

A few words about notation. Z, Q, R, and C have their usual meaning. N
and Z+ denote the sets of positive and nonnegative integers, resp. Through-
out the paper k will be a fixed ground field. All vector spaces, algebras,
tensor products, etc. will be assumed over k unless indicated otherwise.
Since we are interested in orderings, almost everywhere k will be of char-
acteristic zero, and for some of our results we will have to take k = R or
C.

For general theory of Hopf algebras we refer the reader to [11].

Definition. (H,m, u, ∆, ε) is called a bialgebra if
1) (H,m, u) is a unital associative algebra, i.e., m : H ⊗ H → H

(multiplication) and u : k → H (unit) are linear maps such that
m◦(m⊗idH) = m◦(idH ⊗m) and m◦(u⊗idH) = m◦(idH ⊗u) = idH ,

2) (H,∆, ε) is a counital coassociative coalgebra, i.e., ∆ : H → H ⊗H
(comultiplication) and ε : H → k (counit) are linear maps such that
(∆⊗ idH)◦∆ = (idH ⊗∆)◦∆ and (ε⊗ idH)◦∆ = (idH ⊗ε)◦∆ = idH ,
and

3) ∆, ε are homomorphisms of unital algebras, or, equivalently, m, u are
homomorphisms of counital coalgebras.

H is called a Hopf algebra if there exists a linear map S : H → H (antipode)
such that m ◦ (S ⊗ idH) ◦ ∆ = m ◦ (idH ⊗S) ◦ ∆ = u ◦ ε. This map is
uniquely determined and it is an anti-homomorphism of bialgebras. H is
commutative if m ◦ τ = m and cocommutative if τ ◦∆ = ∆ where τ is the
flip a⊗ b 7→ b⊗ a.

A common notation for ∆ : H → H ⊗ H is ∆h =
∑

h(1) ⊗ h(2) (the
so called “Σ-notation”). The simplest examples of Hopf algebras are group
algebras and universal enveloping algebras.

Example 1.1. Let G be a unital semigroup and H = kG. Then ∆ and ε
defined by ∆ : g 7→ g ⊗ g and ε : g 7→ 1 for g ∈ G make H a bialgebra. H is
a Hopf algebra iff G is a group. Then S(g) = g−1 for g ∈ G.

Example 1.2. Let L be a Lie algebra and H = U(L). The maps ∆ : x 7→
x⊗ 1+1⊗x and ε : x 7→ 0 for x ∈ L extend uniquely to the entire H. They
make H a Hopf algebra with S(x) = −x for x ∈ L.

The above two examples are cocommutative and in fact every pointed
cocommutative Hopf algebra can be built from them as follows.
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Definition. Let H be a Hopf algebra.
1) An nonzero element g ∈ H is group-like if ∆g = g⊗g. The group-like

elements of H form a multiplicative subgroup denoted by G(H).
2) An element x ∈ H is called primitive if ∆x = x ⊗ 1 + 1 ⊗ x. The

primitive elements of H form a Lie subalgebra denoted by P (H).
3) H is pointed if every simple subcoalgebra of H is one-dimensional.

(This condition is automatic if H is cocommutative and k is alge-
braically closed.) Every one-dimensional subcoalgebra is spanned by
a group-like element.

4) H is cosemisimple if H is the sum of its simple subcoalgebras.

Definition. Let H be a Hopf algebra and A a left H-module algebra, i.e.,
A is a left H-module via ϕ : H → Endk(A) : h 7→ ϕh such that ϕh(ab) =∑

ϕh(1)
(a)ϕh(2)

(b) and ϕh(1) = ε(h)1 for h ∈ H and a, b ∈ A. Then the
smash product A#ϕH is the vector space A⊗H endowed with multiplication

(a#h)(b#k) =
∑

aϕh(1)
(b)#h(2)k for a, b ∈ A and h, k ∈ H,

where we write a#h for a⊗ h, etc.

It is convenient to identify the algebras A and H with their isomorphic
copies A#1 and 1#H, resp., inside A#H. Then the multiplication on A#H
is defined by the commutation rule hb =

∑
ϕh(1)

(b)#h(2) for h ∈ H, b ∈ A.
In the case H = kG, the definition of an H-module algebra just says that

elements of G act as algebra automorphisms on A, i.e., ϕ : G → Aut(A),
and the commutation rule for A#ϕH simplifies to gb = ϕg(b)g, i.e., ϕg(b) =
gbg−1 for g ∈ G, b ∈ A.

Smash products arise very frequently in the theory of Hopf algebras. A
classical example is the following structure theorem for pointed cocommu-
tative Hopf algebras (see e.g. [11, Section 5.6]).

Theorem. Let H be a pointed cocommutative Hopf algebra over a field k
of characteristic zero. Then H is isomorphic to U(L)#ϕkG as an algebra,
where G = G(H), L = P (H), and ϕ(G) ⊂ Aut(U(L)) preserves L ⊂ U(L).
The isomorphism U(L)#ϕkG → H is defined by x#g 7→ xg for x ∈ L,
g ∈ G. �

2. Orderings and Valuations

The aim of this section is to recall the definitions and basic facts about
ordered algebraic structures. We also introduce some examples that we will
need later. Most of the results in this section are well-known to specialists.

A (total) order on a semigroup S is a total order on the set S which is
preserved by left and right translations, i.e., a ≤ b implies ac ≤ bc and
ca ≤ cb, for all a, b, c ∈ S.

An ordering of a group G is a subset P of G such that P ∩ P−1 = {1},
P ∪ P−1 = G, P · P ⊂ P , and gPg−1 ⊂ P for every g ∈ G. There is a
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one-to-one correspondence between the orderings of the group G and the
total orders on the group G, given by a ≤ b iff ba−1 ∈ P .

If A is an abelian group (written additively), then the axioms for an
ordering P simplify to P ∩ −P = {0}, P ∪ −P = A, P + P ⊂ P .

A subset P of a prime ring R is a ring ordering (with zero support) if P
is an ordering of the additive group (R,+) and P · P ⊂ P .

Let k be a field with fixed ordering k+. An ordering of a k-vector space
V is an ordering of the abelian group (V,+) which is closed under multipli-
cation by k+.

An ordering of a k-algebra R is an ordering of both the ring R and the
k-vector space R.

Orderable semigroups. Clearly, a subsemigroup of an orderable semi-
group is orderable. The direct product of a family of orderable semigroups
is orderable. Indeed, the index set can be well-ordered by the axiom of
choice, hence the direct product can be ordered lexicographically.

We will be interested only in semigroups S with cancellation property:
ac = bc ⇒ a = b and ca = cb ⇒ a = b, for all a, b, c ∈ S. We will also
assume that our semigroups have the identity element.

If a cancellation semigroup S satisfies the right Ore condition:

∀a, b ∈ S ∃c, d ∈ S : ac = bd,

then S embeds into its group of right quotients Qr(S) = {ab−1 | a, b ∈ S}.
By a result of Weinert [14, Corollary to Theorem 2], any order on S can be
uniquely extended to an order on Qr(S).

Orderable groups. In general, orderability of groups is not preserved un-
der extensions. Namely, the group 〈x, y|xyx−1 = y−1〉 is an extension of Z
by Z, but it is not orderable. However, Lemma 2.1 implies that orderability
is preserved by central extensions.

Lemma 2.1. Let G be a group, N / G. If G/N is orderable and N has an
ordering which is invariant under conjugation by elements of G, then G is
also orderable.

Proof. For a, b ∈ G, define a < b iff either π(a) < π(b) or π(a) = π(b)
and ab−1 < 1 in N where π : G → G/N is the natural homomorphism.
The verification that this ordering of G is invariant under left and right
multiplications is straightforward. �

Every orderable group is torsion-free. The converse fails for 〈x, y|xyx−1 =
y−1〉. However, we have the following well-known partial converse (we in-
clude a proof for completeness).

Proposition 2.2. Every torsion-free nilpotent group is orderable.

Proof. Torsion-free abelian groups are orderable (see the following sub-
section).
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Suppose now that G is torsion-free nilpotent of class c. Let ζiG, i =
0, . . . , c be the upper central series of G, i.e. ζ0G = {1} and ζi+1G/ζiG =
Z(G/ζiG) and ζcG = G. Clearly, ζ1G/ζ0G is torsion-free. Assume that
ζiG/ζi−1G is torsion-free and pick x ∈ ζi+1G such that xn ∈ ζiG. For
every y ∈ G we have that [x, y] ∈ ζiG and [x, y]n ≡ [xn, y] ≡ 1 mod ζi−1G.
Hence, [x, y] ∈ ζi−1G for every y by the induction hypothesis. It follows
that x ∈ ζiG. Therefore, ζi+1G/ζiG is torsion-free.

Clearly G/ζcG = {1} is orderable. Suppose that G/ζiG is orderable for
some i. Since ζiG/ζi−1G is a torsion-free abelian group, it is orderable by the
first paragraph. Note that G/ζi−1G is a central extension of ζiG/ζi−1G by
G/ζiG, hence it is orderable by the remark above. By induction, it follows
that G = G/ζ0G is orderable. �

Example 2.3. Let k be an ordered field and n a positive integer. Let
UTn(k) be the group of upper unitriangular n×n matrices over k (i.e., upper
triangular matrices with diagonal entries equal to 1). It is well-known that
UTn(k) is torsion-free nilpotent, hence it is orderable by Proposition 2.2.
To construct an explicit ordering on G = UTn(k), we can use the fact that
ζiG consists of all upper unitriangular matrices whose k-th superdiagonals
are zero for k < i. In particular, ζiG/ζi−1G is isomorphic to the additive
group ki, which can be ordered lexicographically. Then the ordering given
by Proposition 2.2 can be described explicitly: [ars] > [brs] if and only if the
first nonzero element in the sequence

a12−b12, a23−b23, . . . , an−1,n−bn−1,n; a13−b13, . . . , an−2,n−bn−2,n; . . . ; a1n−b1n

is positive.

Example 2.4. Let k be an ordered field and n a positive integer. Let
PTn(k) be the group of upper triangular matrices whose diagonal entries
are positive. Note that UTn(k) is a normal subgroup of PTn(k) and that
PTn(k)/UTn(k) is isomorphic to the multiplicative group kn

>0, which can be
ordered lexicographically. The ordering of UTn(k) constructed in Example
2.3 is invariant under the conjugation by the elements from PTn(k). Hence
PTn(k) is orderable by Lemma 2.1. As above, we have [ars] > [brs] if and
only if the first nonzero element in the sequence

a11− b11, a22− b22, . . . , ann− bnn; a12− b12, . . . , an−1,n− bn−1,n; . . . ; a1n− b1n

is positive.

Example 2.5. For every positive integer n, Gn := 〈x, y |xyx−1 = yn〉 is an
orderable group.

Proof. We will construct a realization of Gn which is easier to work with.
Let Qn be the subgroup of (Q,+) that consists of the elements of the form
mnl where m, l ∈ Z. Consider the semidirect product Z n Qn where k ∈ Z
acts on Qn by q 7→ qnk. Obviously, x 7→ (0, 1) and y 7→ (1, 0) define a
homomorphism ϕ : Gn → Z n Qn. Replacing xyl by ylnx and ylx−1 by
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x−1yln, we can rewrite every word in x±1 and y±1 in the form x−kylxm

where k, m ≥ 0. Since ϕ(x−kylxm) = (m − k, l
nk ), it follows that ϕ is one-

to-one and onto. We can order Z n Qn as in Lemma 2.1: (a, b) > (c, d) if
and only if either a > c or a = c and b > d. Hence Gn is orderable. �

Recall that if A is a property of groups, then we say that a group G is
residually A if there is a family {Ni} of normal subgroups of G such that
∩iNi = {1} and G/Ni have the property A for all i.

Remark 2.6. Every residually orderable group is orderable. In particular,
every residually ‘torsion-free nilpotent’ group is orderable.

Proof. Let Ni be a family of normal subgroups such that ∩iNi = {1} and
G/Ni is orderable for each i. Then the product ΠiG/Ni is also orderable.
Since the natural mapping G → ΠiG/Ni is an embedding, it follows that G
is orderable. �

Let γi(G), i = 1, 2, . . ., be the lower central series of G, i.e., γ1(G) = G,
γi+1(G) = (γi(G), G). Then the sets√

γi(G) := {g ∈ G | ∃m ∈ N : gm ∈ γi(G)}
are normal subgroups of G (see e.g. [12, Lemma IV.1.3]). Clearly, the
quotient groups G/

√
γi(G) are nilpotent and torsion-free. Therefore, G is

residually ‘torsion-free nilpotent’ iff ∩∞i=1

√
γi(G) = {1}.

It is well-known that free groups are residually ‘torsion-free nilpotent’.
However, the groups PTn(k) and Gn are not. Indeed, for G = PTn(k),
n > 1, we have γi(G) = UTn(k) for all i > 1, so PTn(k) is not even
residually nilpotent. As to G = Gn = 〈x, y |xyx−1 = yn〉, n > 1, the
relations yl(n−1) = (x, yl) imply that y(n−1)i ∈ γi+1(G) for every i. Hence
y ∈ ∩∞i=1

√
γi(G) and G is not residually ‘torsion-free nilpotent’. (In fact,

for n = 2, G is not even residually nilpotent.)

Ordered abelian groups. An abelian group is orderable if and only if it
is torsion-free. Every torsion-free abelian group A can be embedded into its
divisible hull A⊗ZQ, which is a vector space over Q. Moreover, the mapping
P 7→ Q+P defines a one-to-one correspondence between orderings of A and
vector space orderings of A⊗Z Q.

Let A be an abelian group and Γ a totally ordered set. Fix the element
∞ /∈ Γ and declare γ < ∞ for all γ ∈ Γ. A mapping v : A → Γ ∪ {∞} is a
valuation if for any a, b ∈ A:

1) v(a) = ∞ if and only if a = 0,
2) v(a + b) ≥ min{v(a), v(b)}.

We say that a valuation v is compatible with an ordering P if for any a, b ∈ A
such that a ∈ P and v(b) > v(a) we have a + b ∈ P .

If v, w are two valuations on A (not necessarily with the same Γ), we
will say that w is finer than v (or, equivalently, v is coarser than w) if



ORDERINGS AND ∗-ORDERINGS ON COCOMMUTATIVE HOPF ALGEBRAS 7

w(a) ≥ w(b) ⇒ v(a) ≥ v(b). For every ordering P , there exists the finest
valuation vP compatible with P . It is constructed in the following way.

Let P be an ordering of an abelian group A. For any a ∈ A write |a| = a
if a ∈ P and |a| = −a if a ∈ −P . For a, b ∈ A, write a � b if and only
if |b| ≤ n|a| for some n ∈ N. Write a ∼ b iff a � b and b � a. Then ∼
is an equivalence relation on A. It is called the Archimedean equivalence
and its classes are called the Archimedean classes of the ordering. The
Archimedean class of zero is denoted by ∞, it has only one element. The set
of Archimedean classes of nonzero elements is denoted by ΓP . The relation
� defines a total order on the set ΓP ∪ {∞}, denoted by ≤. The natural
valuation of P is the map vP : A → ΓP ∪ {∞} that sends each element to
its Archimedean class. By construction, a valuation v on A is compatible
with P iff v is coarser than vP . The group A with ordering P is called
Archimedean if all nonzero elements of A are Archimedean equivalent, i.e.,
ΓP consists of a single element.

Remark 2.7. Any commutative cancellation semigroup S is canonically
embedded into its group of quotients A = Q(S). As noted earlier, any
order on S uniquely extends to A. Consequently, the above definitions of
Archimedean classes, natural valuation, etc. can be extended to ordered
commutative cancellation semigroups.

Remark 2.8. For any elements a, b ∈ P with vP (a) = vP (b), there exists
a unique real number r 6= 0 such that r ∈ [m

n , m+1
n ] implies mb ≤ na ≤

(m + 1)b, for any m ∈ Z, n ∈ N.

Ordered vector spaces. Let k be a field with a fixed ordering k+ and
let V be a k-vector space. Every ordered basis {ei}i∈I of V defines an or-
dering P by 0 6=

∑
i∈I ciei ∈ P (finite sum) if and only if the first nonzero

ci belongs to k+. Note that ΓP = I × Γk+ with lexicographic order and
that vP (

∑
i∈I ciei) = (i0, vk+(ci0)) where i0 = min{i | ci 6= 0}. If k is

Archimedean (i.e., a subfield of R), then Γk+ is a singleton, hence ΓP = I.
If V is a finite-dimensional vector space over R, then the construction

above gives all orderings of V . Namely, let Q be an ordering on V . For any
a, b ∈ V with vQ(a) = vQ(b), there is r ∈ R such that vQ(a − rb) > vQ(a)
(see Remark 2.8). Therefore, starting with any basis of V , we can transform
it into a basis e1, . . . , en such that vQ(e1) < . . . < vQ(en). Since vQ(−x) =
vQ(x) for every x ∈ V , we may assume that e1, . . . , en ∈ Q. Since vQ is
compatible with Q, an element

∑n
i=1 ciei ∈ V belongs to Q if and only if

the first nonzero ci is positive.

Ordered rings. Every orderable prime ring is a domain by [6, Proposition
2.1]. So in this paper we will be interested in domains only. By [5], a domain
R is orderable if and only if for any a1, . . . , ak ∈ R which are permuted
products of squares, a1 + . . . + ak = 0 implies that a1 = . . . = ak = 0. (An
example of a permuted product of squares: xyzyxz, which is a permutation
of x2y2z2.) Clearly, R must be of characteristic zero. The mapping P 7→
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Q+P defines a one-to-one correspondence between orderings of a ring R and
orderings of the Q-algebra R⊗Z Q. If the multiplicative semigroup R \ {0}
satisfies the right Ore condition, then the domain R embeds in its skew-field
of right quotients Qr(R) = {ab−1 | a, b ∈ R, b 6= 0}. By a result of Albert
[1], any ordering of R can be uniquely extended to an ordering of Qr(R).

Let R be a domain and (Γ,+,≤) an ordered semigroup with cancellation
property (not necessarily abelian, but written additively). As in the previous
subsection, pick ∞ /∈ Γ and extend the ordering of Γ to Γ∪{∞} so that ∞ is
the largest element. A mapping v : R → Γ∪{∞} is a valuation of the domain
R if v is a valuation of the abelian group (R,+) and v(ab) = v(a) + v(b)
for all nonzero a, b ∈ R. Replacing Γ with v(R \ {0}), we can assume that
v : R \ {0} → Γ is onto. Then Γ is called the value semigroup of v.

For every ordering P of a domain R, there exists the finest valuation
on R compatible with P . It is constructed in the same way as for abelian
groups. Note that the set ΓP of nonzero Archimedean classes is a semigroup
for v(a) + v(b) := v(ab). Clearly, ΓP has the cancellation property and the
ordering of ΓP is preserved by left and right translations. If R is unital (as
we will always assume), then v(1) is the zero element of ΓP .

Now let R be a domain, Γ a totally ordered semigroup and v : R →
Γ ∪ {∞} a valuation. The associated graded ring gr(R, v) is defined by

gr(R, v) = ⊕γ∈ΓRγ ,

where Rγ = Rγ/R+
γ , Rγ = {a ∈ R | v(a) ≥ γ}, R+

γ = {a ∈ R | v(a) > γ},
with componentwise addition and multiplication induced by (a, b) 7→ ab for
a ∈ Rα, b ∈ Rβ (here a denotes the coset a + R+

α , etc.). Clearly, gr(R, v)
is a domain with valuation v = gr(v) : gr(R, v) → Γ ∪ {∞} defined by
v(

∑
α aα) = γ where γ is the least α such that aα 6= 0. The following

observation is very useful [9, Theorem 2.1].

Proposition 2.9. There is a natural one-to-one correspondence P 7→ P be-
tween orderings of R compatible with v and orderings of gr(R, v) compatible
with v. Namely, P \{0} consists of all nonzero a =

∑
α aα such that aγ ∈ P

where γ = v(a) and, conversely, P \ {0} consists of all nonzero b such that
b := b + R+

β , where β = v(b), belongs to P . �

Remark 2.10. Let α be an automorphism of R that preserves v, i.e., v◦α =
v. Then α induces an automorphism α of gr(R, v) such that v ◦α = v. Since
α(a) = α(a) for every a ∈ R, it follows that α(P ) ⊂ P if and only if
α(P ) ⊂ P .

Ordered algebras. We consider two examples that are of particular inter-
est in the context of Hopf algebras.

Example 2.11. Let k be a domain and G a unital semigroup with cancel-
lation property. The semigroup algebra kG is orderable if and only if k and
G are orderable.
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Proof. If P is an ordering of kG, then P ∩ k is an ordering of k, and
g1 ≤ g2 ⇔ |g2|− |g1| ∈ P defines an ordering of G. Conversely, suppose G is
an ordered unital semigroup with cancellation and k is an ordered domain,
then we can construct an ordering P on kG in the following way. Every
nonzero a ∈ kG can be expressed uniquely as a = a1g1 + · · · + argr where
g1 < · · · < gr are in G and ak 6= 0, k = 1, . . . r, are in k. We declare
a ∈ P iff a1 > 0. Note that ΓP = G × Γk+ with lexicographic order, and
vP (

∑r
k=1 akgk) = (g1, vk+(a1)). �

Example 2.12. Let L be a Lie algebra over a field k. Then the universal
enveloping algebra U(L) is orderable iff k is orderable.

Proof. If k is ordered, then we can always construct an ordering on U(L)
as follows. Pick a totally ordered basis {xi}i∈I of L. By Poincaré-Birkhoff-
Witt Theorem, the monomials

xi1 . . . xin where xi1 ≤ · · · ≤ xin , n ≥ 0,

form a basis of U(L). We define a total ordering on the monomials as follows.
We declare xi1 . . . xin < xj1 . . . xjm to hold if either n > m (note the reversed
inequality!) or if n = m and xi1 . . . xin <lex xj1 . . . xjm where <lex stands for
the usual lexicographic order on words.

Now using this ordering of the PBW basis, we can order U(L) by the sign
of the lowest coefficient. Namely, every nonzero element z ∈ U(L) can be
written uniquely as z = c1M1 + · · · + crMr where ck ∈ k are nonzero and
M1 < · · · < Mr are PBW monomials. We declare z ∈ P iff c1 > 0. One can
verify directly that P is indeed an ordering of U(L). Alternatively, one can
use Proposition 2.9 as follows. Observe that −deg : U(L) → Z− ∪ {∞} is a
valuation, where deg z is the highest degree of PBW monomials appearing
in the expression for nonzero z ∈ U(L) and deg(0) := −∞. (Of course, deg
does not depend on the choice of a basis for L.) Clearly, gr(U(L),−deg)
is isomorphic to the algebra of polynomials k[xi|i ∈ I]. The ordering of
monomials that we constructed gives rise to an ordering P of k[xi]. Since P
is compatible with −deg, we conclude that P is indeed an ordering of U(L)
by Proposition 2.9.

Note that ΓP = Γ× Γk+ with lexicographic order, where (Γ,+, <) is the
free commutative semigroup generated by the symbols w(xi) with the order-
ing induced by the monomial ordering, i.e.,

∑n
s=1 ksw(xis) <

∑m
t=1 ltw(xjt)

iff xk1
i1

. . . xkn
in

< xl1
j1

. . . xlm
jm

. (In other words, Γ is just the semigroup of
monomials, but written additively.) The natural valuation is given by
vP (

∑r
k=1 ckMk) = (w(M1), vk+(c1)) where the map w sends each monomial

M = xk1
i1
· · ·xkn

in
to

∑n
s=1 ksw(xis). �

In Section 4, we will develop an analog of the above construction of an
ordering for N-graded Lie algebras in such a way that the ordering will be
compatible with the valuation v : U(L) → Z+ ∪ {∞} determined by the
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grading, i.e., v(z) is the lowest degree of the homogeneous components of z
with respect to the grading of U(L) induced by the given grading of L.

3. Orderability of Smash Products

The aim of this section is to find necessary and sufficient conditions for
the orderability of smash products. Proposition 3.1 is a general result and
Theorem 3.7 gives a more precise result in a special case.

Proposition 3.1. Let G be a group, A a k-algebra and ϕ an action of G
on A. Then A#ϕkG is an orderable domain if and only if

1) G is an orderable group, and
2) A is a domain that admits an ordering P0 such that ϕg(P0) ⊂ P0 for

every g ∈ G.

Proof. The necessity of condition 1) is clear. Also if A#ϕkG is a domain,
then so is its subalgebra A. If P is an ordering of A#ϕkG, then P0 = P ∩A
is an ordering of A. For every x ∈ A and every g ∈ G, xg and gx have
the same sign with respect to P . It follows that x ∈ P0 if and only if
ϕg(x) = gxg−1 ∈ P0.

Assume now that 1) and 2) hold. Every nonzero element z ∈ A#ϕkG
can be written uniquely as z = a1#g1 + · · ·+ ak#gk with g1 < · · · < gk and
a1, . . . , ak ∈ A nonzero. If 0 6= x =

∑k
i=1 ai#gi and 0 6= y =

∑l
j=1 a′j#g′j ,

then xy = a1(g1a
′
1g
−1
1 )#g1g

′
1 + o, where a1(g1a

′
1g
−1
1 ) 6= 0 and o is a sum of

terms b#g with g > g1g
′
1. Thus A#ϕkG is a domain.

Set P = {0} ∪ {z ∈ A#ϕkG \ {0} | a1 ∈ P0}. It is clear that P + P ⊂ P ,
P ∩−P = {0} and P ∪−P = A#ϕkG. Now suppose x, y ∈ P , then a1, a

′
1 ∈

P0. Since P0 · P0 ⊂ P0 and g1P0g
−1
1 ⊂ P0, it follows that a1(g1a

′
1g
−1
1 ) ∈ P0,

so that xy ∈ P . Therefore, P is an ordering of A#ϕkG. �

Now we want to examine condition 2) for the case A = U(L), the universal
enveloping algebra of a Lie algebra L over R.

Proposition 3.2. Let L be a real Lie algebra and U(L) its universal en-
veloping algebra. Every ordering Q of the vector space L can be extended
to an ordering Q̃ of the algebra U(L). Moreover, Q̃ can be chosen so that
α̃(Q̃) ⊂ Q̃ for every Lie algebra automorphism α of L such that α(Q) ⊂ Q,
where α̃ is the extension of α to U(L).

Proof. Applying Proposition 2.9 and Remark 2.10, we can pass from
U(L) to gr(U(L),−deg), which is isomorphic the symmetric algebra S(L).
So without loss of generality we may assume that L is abelian.

Suppose that we have elements e1, . . . , en of L such that vQ(e1) < · · · <
vQ(en) and e1, · · · , en ∈ Q. Then e1, . . . , en form an ordered basis for their
span L0. This basis gives rise to a valuation w : U(L0) → Γ ∪ {∞} as
in Example 2.12. Write Q0 for the corresponding ordering of U(L0), i.e.,
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Q0 \ {0} is the set of elements whose w-lowest term has positive coefficient.
Note that Q0 ∩ L0 = Q ∩ L0.

Now pick any finite-dimensional subspaces L1 and L2 of L and let η : L1 →
L2 be an injective linear map such that η(Q∩L1) ⊂ Q∩L2. Since L1 and L2

are finite-dimensional real vector spaces, we can find a basis e1, . . . , em of L1

such that vQ(e1) < · · · < vQ(em) and e1, . . . , em ∈ Q, and a basis f1, . . . , fn

of L2 such that vQ(f1) < · · · < vQ(fn) and f1, . . . , fn ∈ Q. Let Q1 and Q2 be
the corresponding orderings of U(L1) and U(L2), respectively. We claim that
η̃(Q1) ⊂ Q2. For each i = 1, . . . ,m, pick ki such that vQ(fki

) = vQ(η(ei)).
Since η(Q ∩ L1) ⊂ Q ∩ L2, we conclude that k1 < · · · < km and, for each
i = 1, . . . ,m, η(ei) =

∑n
j=ki

cijfj where ci,ki
> 0. It follows that for any

l1, . . . , ln, we have η̃(el1
1 · · · elm

m ) = cf l1
k1
· · · f ln

kn
+ o where c > 0 and o is a sum

of terms with larger w. This proves the claim.
Finally, U(L) a the direct limit of U(Li) where Li runs through all finite-

dimensional subspaces of L. By the second paragraph, each U(Li) has an
ordering extending Q ∩ Li. By the third paragraph, these orderings are
compatible with each other. Hence the direct limit U(L) has an ordering Q̃
extending Q. Moreover, if α is an automorphism of L such that α(Q) ⊂ Q,
then α̃(Q̃ ∩ U(L1)) ⊂ Q̃ ∩ U(L2), for any finite-dimensional subspaces L1,
L2 of L such that α(L1) ⊂ L2. It follows that α̃(Q̃) ⊂ Q̃. �

Proposition 3.1 and Proposition 3.2 imply:

Corollary 3.3. Let ϕ be an action of a group G on a real Lie algebra L.
Then U(L)#ϕRG is an orderable domain if and only if G is orderable and
L has a vector space ordering Q such that ϕg(Q) ⊂ Q for every g ∈ G. �

If dim L < ∞, we can give a more explicit characterisation:

Proposition 3.4. Let ϕ be an action of a group G on a finite-dimensional
Lie algebra L over R. The following assertions are equivalent:

1) L has a vector space ordering Q such that ϕg(Q) ⊂ Q for every g ∈ G.

2) There exists a basis of L in which all ϕg are lower triangular with
positive diagonal entries.

3) ϕ(G) is a solvable group and every ϕg ∈ ϕ(G) has positive spectrum.
The implications 2) ⇒ 1) and 2) ⇔ 3) are true over any ordered field k.

Proof. Suppose 2) holds. Let e1, . . . , en be a basis of L in which all ϕg

are lower triangular. Write Q for the set of all elements
∑n

i=1 ciei such that
either all ci are zero or the first nonzero ci is positive. Then Q satisfies 1).
Conversely, if 1) holds, then we can pick a basis e1, . . . , en of L such that
vQ(e1) < · · · < vQ(en) (here we use that k = R). For every automorphism
α of L such that α(Q) ⊂ Q, we have vQ(α(e1)) < · · · < vQ(α(en)). Since
{vQ(e1), . . . , vQ(en)} = ΓQ = {vQ(α(e1)), . . . , vQ(α(en))}, we conclude that
vQ(α(ei)) = vQ(ei) for i = 1, . . . , n. It follows that α(ei) =

∑n
j=i cijej . Since

vQ is compatible with Q, cii > 0. So e1, . . . , en satisfies 2).
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Clearly, 2) implies 3). Conversely, if 3) holds, then G̃ := ϕ(G) is a solvable
matrix group and its elements have positive spectrum. We claim that G̃ has
a common eigenvector in L. The usual argument by induction on dim L then
implies that G̃ is triangularizable over k, proving 2). By Malcev’s theorem
(see [13, Theorem 3.6]), G̃ contains a (normal) subgroup G0 of finite index
that has a common eigenvector u in L ⊗ k̄ where k̄ is the algebraic closure
of k. Fix a basis {ξi}i∈I , with ξ0 = 1, of k̄ as a k-vector space. Then
we can write: u =

∑
i∈I ui ⊗ ξi with ui ∈ L. Without loss of generality,

u0 6= 0. Since all elements of G0 have matrices with entries and eigenvalues
in k, we conclude that u0 is also a common eigenvector of G0. To prove
that u0 is a common eigenvector for the entire group G̃, take any element
g ∈ G̃ \ G0. Pick k ∈ N such that gk ∈ G0 and thus gku0 = λu0 for some
positive λ ∈ k. Let U be the span of {u0, gu0, . . . , g

k−1u0}. Let µ(t) and
µU (t) be the minimal polynomials of g and g|U , respectively. Note that both
µ(t) and tk − λ annihilate g|U , hence µU (t) divides both. Since all roots of
µ(t) are positive and tk−λ has at most one positive root λ

1
k , it follows that

µU (t) = t− λ
1
k . Hence u0 is an eigenvector of g. �

Remark 3.5. Example 2.4 and Proposition 3.4 imply that a necessary con-
dition for the orderability of U(L)#ϕRG is the orderability of ϕ(G).

The following example shows that the orderability of G and k alone is not
enough to ensure the orderability of U(L)#ϕkG.

Example 3.6. Recall the noncommutative orderable groups

Gn+1 := 〈x, y| xyx−1 = yn+1〉

considered in Example 2.5. Let Ln be the abelian real Lie algebra with basis
e1, . . . , en. We define a representation of Gn+1 on Ln by ϕx(ei) = ei and
ϕy(ei) = ei+1 (mod n). Since ϕ(Gn+1) is isomorphic to the cyclic group of
order n, which is not orderable, it follows from the remark above that the
ring U(Ln)#ϕRGn+1 is not orderable.

Combining Propositions 3.1 and 3.4, we obtain:

Theorem 3.7. Let ϕ be an action of a group G on a finite-dimensional real
Lie algebra L. Then U(L)#ϕRG is an orderable domain if and only if

1) G is an orderable group, and
2) ϕ(G) is a solvable group and every ϕg ∈ ϕ(G) has positive spectrum.

�

To conclude this section, we observe that because of the following proposi-
tion, the orderings of U(L)#ϕkG often give rise to orderings on the skew-field
of quotients.

Proposition 3.8. Let L be a locally finite Lie algebra over a field k and G
a torsion-free locally nilpotent group. Let ϕ be a locally finite action of G on
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L, i.e., for every x ∈ L and g ∈ G, the span of the orbit {ϕn
g (v) |n ∈ Z} is

finite-dimensional. Then U(L)#ϕkG is an Ore domain.

Proof. Let G0 be any finitely generated subgroup of G. Then G0 is
torsion-free nilpotent, hence orderable. It follows that U(L)#ϕkG0 is a
domain. Since G0 is arbitrary, we conclude that U(L)#ϕkG is a domain.

To verify the (right) Ore condition, let x =
∑

i ai#gi and y =
∑

j bj#hj

be nonzero elements of U(L)#ϕkG. Let G0 be the subgroup generated
by gi and hj . Since G0 is finitely-generated torsion-free nilpotent, it is
polycyclic. It follows that every finite subset of L is contained in a finite-
dimensional ϕ(G0)-invariant subspace, which, in its turn, generates a finite-
dimensional ϕ(G0)-invariant Lie subalgebra. Let L0 be a finite-dimensional
G0-invariant Lie subalgebra such that U(L0) contains ai and bj . Then x, y ∈
U(L0)#ϕkG0. Since dim L0 < ∞ and G0 is polycyclic, U(L0) and kG0 are
noetherian, hence U(L0)#ϕkG0 is also noetherian by [10, Theorem 5.12].
Therefore, U(L0)#ϕkG0 is an Ore domain and we can find nonzero z, w ∈
U(L0)#ϕkG0 such that xz = yw. �

4. ∗-Orderings and ∗-Valuations

In this section we recall the generalities on ∗-orderings and ∗-valuations
and construct certain ∗-orderings on universal enveloping algebras that we
will need in Section 5.

Let R be a domain with involution ∗, i.e ∗ : R → R is such that (a+b)∗ =
a∗ + b∗, (ab)∗ = b∗a∗, and a∗∗ = a, for all a, b ∈ R. An element a ∈ R is
called symmetric if a∗ = a, skew if a∗ = −a. We will denote by S = S(R)
the set of symmetric elements: S = {a ∈ R|a∗ = a}. Clearly, a, b ∈ S
implies ab + ba ∈ S, so S is a Jordan ring. The following is the definition of
a ∗-ordering (with zero support) given in [7].

Definition. A ∗-ordering (also called a Jordan ordering) on R is a subset
P ⊂ S such that

1) P + P ⊂ P ,
2) a, b ∈ P ⇒ ab + ba ∈ P ,
3) P ∩ −P = {0},
4) P ∪ −P = S,
5) rPr∗ ⊂ P for any r ∈ R.

Note that it follows from this definition that P is an ordering of the
abelian group S, 1 ∈ P , and R has zero characteristic.

It is often convenient to extend a ∗-ordering so that it becomes closed
under multiplication.

Definition. A subset Q ⊂ R is called an extended ∗-ordering if
1) Q + Q ⊂ Q,
2) Q ·Q ⊂ Q,
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3) Q∗ = Q,
4) Q ∩ −Q = {0},
5) Q ∪ −Q ⊃ S,
6) rQr∗ ⊂ Q for any r ∈ R.

We will say that Q is an extension of a ∗-ordering P if Q ∩ S = P .

By [7, Theorem 2.2], every ∗-ordering P has such an extension. Moreover,
there exists a unique minimal extension of P , which is referred to as the
extended ∗-ordering generated by P [7, Proposition 2.4]. Generally speaking,
the notion of ∗-ordering seems more natural, but extended ∗-orderings are
easier to work with.

Consider for a moment the case when R is commutative. Then an invo-
lution on R is the same as an automorphism of order ≤ 2 and S = S(R) is a
subring. Also every ∗-ordering is automatically an extended ∗-ordering, i.e.
closed under multiplication. Therefore, a ∗-ordering on R is the same as an
ordering on S that contains the elements of the form rr∗, r ∈ R.

Let k be a field with involution and let k0 be the subfield of symmetric
elements of k. Then either k0 = k or k is a quadratic extension of k0,
generated by some ξ, which we can choose so that ξ∗ = −ξ. In the first
case, a ∗-ordering of k is of course the same as an ordering of k (and thus√
−1 /∈ k). In the second case, a ∗-ordering of k is the same as an ordering

of k0 such that ξ2 is negative. In particular, if k0 contains square roots of
positive elements, we can make ξ =

√
−1.

Suppose now that R is a k-algebra with involution (a “∗-algebra” for
short). We require in this case that (λa)∗ = λ∗a∗, for all a ∈ R, λ ∈ k, i.e.
∗ must agree with the given involution on k. Also if P is a ∗-ordering on
R, we require that λP ⊂ P for all positive λ ∈ k, i.e., P ∩ k is the given
∗-ordering of k.

Remark 4.1. In the case k0 = k, if R is a k-algebra with involution,
consider the k(

√
−1)-algebra R̃ = R ⊗k k(

√
−1) where the involution is

extended to k(
√
−1) and R̃ by

√
−1 7→ −

√
−1. Clearly, if P is a ∗-ordering

on R̃, then P ∩R is a ∗-ordering on R. This observation reduces the problem
of constructing a ∗-ordering in the case k0 = k to the case k0 6= k.

If R is a commutative ∗-algebra and k0 6= k, then S = S(R) is a k0-
subalgebra and R = S ⊗k0 k. As we know, a ∗-ordering on R is the same as
an ordering of S that contains rr∗ for all r ∈ R. Writing r = a+ bξ, a, b ∈ S
(where, as before, k = k0(ξ), ξ∗ = −ξ), we obtain: rr∗ = a2− b2ξ2. Since ξ2

is negative in k, we see that every ordering of S contains the elements rr∗,
r ∈ R. Therefore, ∗-orderings of R are precisely orderings of S.

We will need the notion of a ∗-valuation on a ring R with involution.

Definition. A valuation v : R → Γ∪ {∞} is called a ∗-valuation if v(a∗) =
v(a) for all a ∈ R. This forces the value semigroup Γ to be commutative,
so Γ can be canonically embedded into an ordered abelian group, which is
called the value group of v.
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A ∗-valuation v on R is said to be compatible with a ∗-ordering P ⊂ S =
S(R) if for all a ∈ P and b ∈ S, v(b) > v(a) implies that a + b ∈ P .

It is shown in [7] that for every ∗-ordering P , there exists the finest
∗-valuation compatible with P , which is called the natural ∗-valuation asso-
ciated to P . It is denoted vP and constructed in the following way.

The ∗-ordering P gives an order relation ≤ on S = S(R), which induces
the Archimedean equivalence ∼ on S. We extend the latter to the whole
R by declaring, for all 0 6= a, b ∈ R, that a � b if aa∗ ≤ nbb∗ for some
integer n, and a ∼ b if a � b and b � a (by [7, Proposition 3.1], this is
equivalent to our earlier definition of a ∼ b for a, b ∈ S). Denote vP (a) the
equivalence class of 0 6= a ∈ R (and vP (0) := ∞). Then the relation �
induces a total order on the set ΓP = vP (R \ {0}). By [7, Theorem 3.3],
the binary operation vP (a) + vP (b) := vP (ab) is well-defined on ΓP , so ΓP

becomes an ordered commutative cancellation semigroup. It is also shown
that vP is a ∗-valuation and

(1) vP (ab− ba) > vP (a) + vP (b) for all 0 6= a, b ∈ S(R).

Remark 4.2. If R is a C-algebra, then applying Remark 2.8 to the ordered
R-vector space S(R) we see that, for every a, b ∈ S(R) such that vP (a) =
vP (b), there exists r ∈ R such that vP (a − rb) > vP (a). This holds true,
with r ∈ C, even if a /∈ S(R), because we can write a = a1 + a2

√
−1 where

a1, a2 ∈ S(R).

Suppose now that R is a domain with involution and v : R → Γ∪{∞} is a
∗-valuation. Then the graded ring gr(R, v) is also a domain with involution
a 7→ a∗, and v = gr(v) is a ∗-valuation on gr(R, v). Decomposing a ∈ R
as a = s + t with s symmetric, t skew, we see that v(a∗ − a) > v(a) iff
v(a − s) > v(a). Thus the symmetric elements of gr(R, v) have the form
a =

∑
α aα, with aα symmetric. We will make use of the following analog

of Proposition 2.9 from [8].

Proposition 4.3. There is a natural one-to-one correspondence P 7→ P
between ∗-orderings on R compatible with v and ∗-orderings on gr(R, v)
compatible with v. Namely, P \ {0} consists of all nonzero symmetric a =∑

α aα such that aγ ∈ P where γ = v(a) and, conversely, P \ {0} consists of
all nonzero symmetric b such that b := b + R+

β , where β = v(b), belongs to
P . �

Now we turn our attention to Hopf algebras.

Definition. Let H be a Hopf algebra with multiplication m and comultipli-
cation ∆ over a field k with involution. A Hopf involution of H is a mapping
∗ : H → H such that

1) (λx+µy)∗ = λ∗x∗+µ∗y∗ and x∗∗ = x, for all x, y ∈ H and λ, µ ∈ k.
2) ∗ ◦m = m ◦ τ ◦ (∗ ⊗ ∗), where τ(u⊗ v) = v ⊗ u,
3) ∆ ◦ ∗ = (∗ ⊗ ∗) ◦ τ ◦∆,
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Note that conditions 1) and 2) simply say that (H,m) is a ∗-algebra.
Condition 3) is the formal dual of 2). It can be written in Σ-notation as
follows:

∆(x) =
∑

x(1) ⊗ x(2) ⇒ ∆(x∗) =
∑

x∗(2) ⊗ x∗(1).

Since the counit ε and antipode S are uniquely determined by m and ∆,
one checks that ε(x∗) = ε(x)∗ and S(x∗) = S(x)∗ for all x ∈ H. Also 3)
implies that G(H)∗ = G(H) and P (H)∗ = P (H).

Now we look at our simplest examples of Hopf algebras: group algebras
and universal enveloping algebras.

Example 4.4. A group involution on a group G is a group anti-automor-
phism of order ≤ 2. The standard involution on G is g 7→ g−1. Every
group involution ∗ of G can be extended uniquely to a Hopf involution of
H = kG by (

∑
λgg)∗ =

∑
λ∗gg

∗. Conversely, every Hopf involution of H
preserves G(H) = G and its restriction to G is a group involution. This
gives a one-to-one correspondence between Hopf involutions of H = kG and
group involutions of G.

Example 4.5. Suppose L is a Lie algebra over a field k with involution
and char k 6= 2. A Lie involution on L is a map ∗ : L → L such that
(λx+µy)∗ = λ∗x∗+µ∗y∗, x∗∗ = x, and [x, y]∗ = [y∗, x∗] for all x, y ∈ H and
λ, µ ∈ k. Every Hopf involution of H = U(L) preserves L = P (H) and its
restriction to L is a Lie involution. The universal property of U(L) implies
that every involution of L can be lifted to U(L). This gives a one-to-one
correspondence between Hopf involutions of H = U(L) and Lie involutions
of L.

It should be noted that there is no standard Lie involution on a Lie algebra
L. Depending on whether or not the involution on the ground field is trivial,
we have the following two possibilities.

If k0 = k, set

L0 = {x ∈ L|x∗ = −x} and L1 = {x ∈ L|x∗ = x}.

Then L0 and L1 are k-subspaces and L = L0 ⊕ L1 is a Z2-grading of the
Lie algebra L. Conversely, every Z2-grading of the Lie algebra L gives a Lie
involution.

If k0 6= k, then L0, defined as above, is only a k0-subspace. In fact, it
is a k0-subalgebra of L and L1 = ξL0 where ξ ∈ k is such that ξ∗ = −ξ.
Therefore, L = L0⊗k0 k. Conversely, if we can write L as L0⊗k0 k for some
Lie k0-algebra L0, then we can define a Lie involution on L by (

∑
λixi)∗ =

−
∑

λ∗i xi for any xi ∈ L0 and λi ∈ k. We conclude that a Lie algebra over k
has a Lie involution iff it admits a basis such that all “structure constants”
lie in k0.
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Recall that if H is a commutative ∗-algebra over a ∗-ordered field k and
k0 6= k, then ∗-orderings of H are just orderings of S(H). If H is a com-
mutative and cocommutative Hopf algebra and ∗ is a Hopf involution, then
one checks that S(H) is again a Hopf algebra (over k0).

Example 4.6. Consider the Hopf algebra of complex polynomial functions
on the unit circle H = C[s, c]/(s2+c2−1), ∆s = s⊗c+c⊗s, ∆c = c⊗c−s⊗s.
Then the usual complex conjugation is a Hopf involution and S(H) is the
Hopf algebra of real polynomial functions on the unit circle:

HR = R[s, c]/(s2 + c2 − 1) with ∆s = s⊗ c + c⊗ s, ∆c = c⊗ c− s⊗ s.

We can construct an ordering on S(H) as follows. Define an embedding of
S(H) into the algebra of power series R[[t]] by s 7→ sin(t) and c 7→ cos(t).
Then the ordering of R[[t]] by the sign of the lowest coefficient induces
an ordering P on S(H). Now observe that H is isomorphic (as a Hopf
algebra) to the group algebra C〈g〉 of the infinite cyclic group, where g =
c + is, g∗ = c − is = g−1, i =

√
−1. Thus P is a ∗-ordering on C〈g〉 with

standard involution. In terms of g, this ordering can be described as follows:∑
n λngn ∈ P iff λn = λ−n and the (real) power series

∑
n λn exp(int) has a

positive lowest coefficient. We will revisit this example in Section 5.

More generally, if HR is a real Hopf algebra that is commutative, cocom-
mutative and cosemisimple, then so is its complexification H = HR ⊗ C.
Moreover, since C is algebraically closed, H is also pointed, which implies
by the structure theorem that H = CG where G = G(H) is an abelian
group. Complex conjugation on C induces a Hopf involution on HR⊗C = H
with respect to which HR = S(H). The restriction of this involution to G
is an automorphism σ of order ≤ 2. Thus HR is determined by the pair
(G, σ), and orderings of HR are precisely ∗-orderings of CG with involution∑

g λgg 7→
∑

g λgσ(g).
Now consider H = U(L). If L has a Lie involution and k0 6= k, then we can

pick a basis {xi}i∈I of L consisting of symmetric elements (see the discussion
after Example 4.5). Invoking Proposition 4.3 and the PBW Theorem, we see
that the ∗-orderings of U(L) compatible with the valuation −deg : U(L) →
Z− ∪ {∞} are in one-to-one correspondence with the ∗-orderings of the
polynomial algebra k[xi|i ∈ I] compatible with −deg, but the latter are the
same as the orderings of k0[xi|i ∈ I] compatible with −deg. Thus we obtain

Corollary 4.7. 1) If the field k is ordered and L is a Lie algebra over
k, then there exists an ordering on U(L) extending the ordering on k
and compatible with the valuation −deg on U(L).

2) If the ∗-field k is ∗-ordered and (L, ∗) is a Lie algebra with involu-
tion over k, then there exists a ∗-ordering on U(L) extending the
∗-ordering on k and compatible with the ∗-valuation −deg on U(L).

Proof. 1) This is done in Example 2.12.
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2) If k0 6= k, any ordering of k0[xi|i ∈ I] compatible with −deg gives rise
to a ∗-ordering of U(L) by the discussion above. In the case k0 = k, we can
obtain a ∗-ordering of U(L) by restricting a ∗-ordering on U(L)⊗k(

√
−1) =

U(L⊗ k(
√
−1)) — see Remark 4.1. �

Remark 4.8. Assertion 1) is well-known. Assertion 2) was proved in [8] in
the case k = C and dim L < ∞.

The problem of ∗-orderability of group algebras of groups with involution
seems more difficult. We give some partial results in Section 5. We will
need the following analog of the above construction of orderings on U(L)
for the case when L is an N-graded Lie algebra and the valuation −deg is
replaced by v : U(L) → Z+ ∪ {∞}, where v(f) is the lowest degree of the
homogeneous components of f ∈ U(L) with respect to the grading on U(L)
induced by the given grading on L.

Let L = ⊕i∈NLi be a graded Lie algebra over a field k. Let

{xij |i ∈ N, j ∈ Ji}

be a basis for L chosen so that, for each i, {xij |j ∈ Ji} is a basis for Li. Order
this basis by fixing a total ordering < on each Ji and declaring xij < xi′j′

to mean that either i < i′ or (i = i′ and j < j′).
By the PBW Theorem, the monomials xi1j1 . . . xinjn , xi1j1 ≤ · · · ≤ xinjn ,

n ≥ 0, form a basis for U(L), i.e., as a k-vector space, U(L) is identical to
the polynomial algebra k[xij ]. The multiplication on U(L) is determined by
the relations xijxi′j′ − xi′j′xij = [xij , xi′j′ ]. Since L is graded, [xij , xi′j′ ] is
some finite linear combination of elements xi+i′,s, s ∈ Ji+i′ .

We define a total ordering < on the monomials

xi1j1 . . . xinjn where xi1j1 ≤ · · · ≤ xinjn , n ≥ 0

by declaring xi1j1 . . . xinjn < xp1q1 . . . xpmqm to hold if either i1 + · · ·+ in <
p1 + · · · + pm or if i1 + · · · + in = p1 + · · · + pm and xi1j1 . . . xinjn <lex

xp1q1 . . . xpmqm , where <lex is the lexicographic order on words.
This is an ordering on the multiplicative semigroup of monomials in

the commuting variables {xij}. Consequently, it determines a valuation,
call it w, on the polynomial algebra k[xij ] as follows. The value semi-
group of w is the free commutative semigroup (Γ,+, <) generated by the
symbols w(xij) with the ordering induced by the monomial ordering, i.e.,∑n

s=1 ksw(xisjs) <
∑m

t=1 ltw(xptqt) iff xk1
i1j1

. . . xkn
injn

< xl1
p1q1

. . . xlm
pmqm

. De-
fine w(xk1

i1j1
. . . xkn

injn
) :=

∑n
s=1 ksw(xisjs). For an arbitrary non-zero f ∈

k[xij ], set w(f) := w(xk1
i1j1

. . . xkn
injn

), where xk1
i1j1

. . . xkn
injn

is the least mono-
mial appearing in f . As usual, w(0) := ∞.

Since w is a valuation on k[xij ], w(f +g) ≥ min{w(f), w(g)} and w(fg) =
w(f) + w(g) for the multiplication on k[xij ]. The point is that w(fg) =
w(f) + w(g) also holds for the multiplication on U(L), i.e., w is also a
valuation on U(L). The proof of this reduces to establishing the following
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Lemma 4.9. Suppose xi1j1 ≤ · · · ≤ xinjn and π is any permutation of
1, . . . , n. Then xiπ(1)jπ(1)

. . . xiπ(n)jπ(n)
≡ xi1j1 . . . xinjn modulo a linear com-

bination of monomials strictly greater than xi1j1 . . . xinjn.

Proof. By induction on n. The cases n = 0, n = 1 are trivial. For n = 2
the result follows from the fact that [xi1j1 , xi2j2 ] is a linear combination of
xi1+i2,s, s ∈ Si1+i2 plus the fact that xi1j1xi2j2 < xi1+i2,s for any s ∈ Si1+i2 .
Suppose now that n ≥ 3. Since π is a product of adjacent interchanges, it
suffices to check what happens when we make one additional interchange,
replacing xiπ(t)jπ(t)

xiπ(t+1)jπ(t+1)
by xiπ(t+1)jπ(t+1)

xiπ(t)jπ(t)
say. We have

(. . . xiπ(t)jπ(t)
xiπ(t+1)jπ(t+1)

. . . )− (. . . xiπ(t+1)jπ(t+1)
xiπ(t)jπ(t)

. . . ) =
∑

s

dsys,

where ys = . . . xiπ(t)+iπ(t+1),s . . . , ds ∈ k. Denote by ys
′ the monomial ob-

tained from ys by writing the factors in non-decreasing order. Let u = π(t),
u′ = π(t + 1). The factors appearing in y′s are the xirjr , r /∈ {u, u′} and
xiu+iu′ ,s. Thus y′s is obtained from x := xi1j1 . . . xinjn by removing two
factors xiuju and xiu′ju′ and inserting one new factor xiu+iu′ ,s. Since xiuju

and xiu′ju′ are both strictly less than xiu+iu′ ,s one checks that in all pos-
sible cases (xiuju < xiu′ju′ , xiuju = xiu′ju′ , xiuju > xiu′ju′ ), the defini-
tion of the monomial ordering implies that x < y′s. At the same time,
by induction on n, ys − y′s is a linear combination of monomials strictly
greater than y′s (so also strictly greater than x). Finally, this implies that∑

s dsys =
∑

s ds(ys − y′s) +
∑

s dsy
′
s is a linear combination of monomials

each strictly greater than x. �

Using Lemma 4.9, we see that fg and gf both have the same lowest term,
i.e., not only do we have w(fg) = w(f) + w(g) = w(gf), but we also have
w(fg−gf) > w(fg) = w(gf), i.e., the associated graded algebra gr(U(L), w)
is commutative. One checks that, in fact, gr(U(L), w) = k[xij ], where the
grading on k[xij ] is the one induced by the valuation w on k[xij ].

For clarity of exposition it is useful to distinguish between w, viewed as
a valuation on the k-algebra U(L) and w, viewed as a valuation on the k-
algebra k[xij ]. Following the notation of Propositions 2.9 and 4.3, we denote
the former by w and the latter by w, i.e., w = gr(w).

Now recall the valuation v associated to the grading on U(L). We have
v(xk1

i1j1
. . . xkn

injn
) =

∑n
s=1 ksis and, for arbitrary nonzero f ∈ U(L), v(f) is

the minimum of the v(xk1
i1j1

. . . xkn
injn

), xl1
i1j1

. . . xln
injn

a monomial appearing in
f . It is clear from the definition of w that w is a refinement of v. Since the
value semigroup of v is commutative, v also satisfies v(fg) = v(f) + v(g) =
v(gf), but gr(U(L), v) = U(L), which is not commutative in general.

It remains to put the involution into picture. So suppose (L, ∗) is a N-
graded Lie algebra with involution respecting the grading, i.e., ∗ : Li → Li

for i ∈ N. Then the extension of ∗ to an involution on U(L) also respects
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the grading and therefore, for each f ∈ U(L), v(f∗) = v(f), i.e., v is a
∗-valuation.

We choose the basis {xij : i ≥ 1, j ∈ Ji} so that each xij is either symmet-
ric or skew, say x∗ij = εijxij , εij ∈ {1,−1}. By Lemma 4.9, (xi1j1 . . . xinjn)∗ =
x∗injn

. . . x∗i1j1
= (±1)xinjn . . . xi1j1 ≡ (±1)xi1j1 . . . xinjn modulo a linear com-

bination of monomials strictly greater than xi1j1 . . . xinjn . This implies
w(f∗) = w(f) for any f ∈ U(L), i.e., w is a ∗-valuation. The induced
involution on gr(U(L), w) = k[xij ] is the one defined by x∗ij = εijxij .

Thus we obtain the following

Proposition 4.10. 1) If the field k is ordered and L = ⊕i∈NLi is a
graded Lie algebra over k, then there exists an ordering on U(L)
extending the ordering on k and compatible with the valuation v on
U(L) determined by the grading.

2) If the ∗-field k is ∗-ordered and (L, ∗) is a graded Lie algebra with
involution over k such that ∗ respects the grading, then there exists
a ∗-ordering on U(L) extending the ∗-ordering on k and compatible
with the ∗-valuation v on U(L) determined by the grading.

Proof. 1) Pick any ordering on k[xij ] extending the given ordering on
k and compatible with the valuation w = gr(w) on k[xij ]. According to
Proposition 2.9, this yields an ordering of U(L) extending the given ordering
on k and compatible with the valuation w on U(L). Since v is a coarsening
of w, this ordering is also compatible with v.

The proof of 2) is similar. We pick a ∗-ordering on k[xij ] extending the
∗-ordering on k and compatible with the ∗-valuation w on k[xij ] and then
use Proposition 4.3. That the required ∗-ordering on k[xij ] exists is clear in
the case k0 6= k, because then we can choose all xij symmetric. In the case
k0 = k, use Remark 4.1. �

Remark 4.11. Note that the valuation w is so fine that there are not so
many orderings (resp., ∗-orderings) compatible with it. Every such ordering
(resp., ∗-ordering) P is determined by prescribing a sign to each variable xij

(resp., to each yij where yij = xij if xij is symmetric and yij =
√
−1xij if xij

is skew). Note also that the natural valuation vP is given by vP (cM + o) =
(w(M), vk+(c)) ∈ Γ × Γk+ (with lexicographic order) where M is a PBW
monomial, 0 6= c ∈ k, and o is a linear combination of monomials M ′ with
w(M ′) > w(M).

5. ∗-Orderability of Group Algebras

Let G be a group with involution and k a field with involution. In this
section we investigate the problem when the group algebra kG is ∗-orderable.
Theorem 5.1 gives a sufficient condition for ∗-orderability of kG where the
∗-field k and the group involution are arbitrary. Theorem 5.5 is a necessary
condition in the case of k = C and the standard group involution, i.e.,
g 7→ g−1.
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We will use the following general facts in the proof of Theorem 5.1. Let
G be a group, k a field, and d the augmentation ideal of kG. Define the
“dimension subgroups” Dn ⊂ G, n ∈ N, by

Dn := (1 + dn) ∩G.

Then by [12, Theorem IV.1.5] the subgroups Dn depend only on the char-
acteristic of k and in the case char k = 0 (which we assume from now on)
we have

(2) Dn =
√

γn(G)

where γn(G) is the lower central series of G, i.e., γ1(G) = G, γn+1(G) =
(γn(G), G), and

√
γn(G) := {g ∈ G | ∃m ∈ N : gm ∈ γn(G)}. It follows

that the quotients Dn/Dn+1 are abelian and torsion-free.
The graded Lie ring associated to G is constructed as follows:

LZ(G) := ⊕∞n=1Dn/Dn+1

as an abelian group (written additively), with the bracket defined by

(3) [x, y] := (g, h)Dn+m+1

where x = gDn+1, y = hDm+1, g ∈ Dn, h ∈ Dm, and (g, h) = ghg−1h−1.
Set L(G) := LZ(G)⊗Z k. Then L(G) is a graded Lie algebra over k. Let

gr(kG) be the associated graded algebra of kG filtered by the powers of d,
i.e.,

gr(kG) := ⊕∞n=0d
n/dn+1.

Consider the mapping

(4) θ : U(L(G)) → gr(kG) : x1 · · ·xm 7→ (g1 − 1) · · · (gm − 1) + dn+1

where xi ∈ Dni/Dni+1, xi = giDni+1 and n = n1 + . . . + nm.
According to Quillen’s result (see [12, Theorem VIII.5.2]), θ is an iso-

morphism of graded algebras. Recall from Section 4 that the grading of
U(L(G)) determines a valuation, which we called v. Transporting v by the
isomorphism θ, we obtain a valuation on gr(kG), which by abuse of notation
we also denote by v.

Now assume that ∩∞n=0d
n = {0}. By [12, Theorem VI.2.26], this is equiv-

alent to the assumption that G is residually ‘torsion-free nilpotent’. Then
we have a valuation u on kG defined by u(a) = the greatest n such that
a ∈ dn, u(0) = ∞. (The fact that u is a valuation, i.e., u(ab) = u(a) + u(b)
follows from the fact that v is a valuation.) Clearly, gr(kG) = gr(kG, u) and
v = gr(u).

Now we are ready to prove our sufficient condition for ∗-orderability of
kG.

Theorem 5.1. Suppose G is a group which is residually ‘torsion-free nilpo-
tent’.
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1) If the field k is ordered, then there exists an ordering on the group
algebra kG extending the ordering on k and compatible with the val-
uation u on kG determined by the augmentation ideal.

2) If the ∗-field k is ∗-ordered, then, for any involution ∗ of G, the group
algebra kG with the induced involution admits a ∗-ordering extending
the given ∗-ordering on k and compatible with the ∗-valuation u on
kG determined by the augmentation ideal.

Proof. 1) Using Proposition 4.10 1) and the isomorphism θ, we can con-
struct an ordering P on gr(kG) extending the ordering on k and compatible
with the valuation v on gr(kG). By Proposition 2.9, P pulls back to an
ordering P on kG compatible with u.

2) First we notice that by (2), any group involution preserves the sub-
groups Dn and, therefore, induces a mapping on LZ(G). It follows from (3)
that this mapping will be an involution of the Lie ring and thus induces an
involution of the Lie algebra L(G) = LZ(G)⊗Z k compatible with the given
involution on k. Then it follows from (4) that θ is a ∗-isomorphism.

Now by Proposition 4.10 2) we can produce a ∗-ordering P on gr(kG)
extending the given ∗-ordering on k and compatible with the ∗-valuation
v. Finally, we use Proposition 4.3 to pull P back to a ∗-ordering P on kG
compatible with the ∗-valuation u. �

Remark 5.2. We know in general that for k orderable, kG is orderable iff
G is orderable. This, taken together with Theorem 5.1 1), gives another
proof that every residually ‘torsion-free nilpotent’ group is orderable.

Now we consider the case k = C in more detail. We will use the notation
i =

√
−1 and bars for complex conjugates. The following example illustrates

Theorem 5.1 in the simplest possible case.

Example 5.3. Let G = 〈g〉 be the infinite cyclic group. Consider CG with
the standard involution. Then L(G) is the 1-dimensional Lie algebra Ct with
involution λt 7→ −λt. Thus U(L(G)) = C[t] with involution f(t)∗ = f(−t)
and the usual grading, so the valuation v(f) is equal to the lowest degree of
t occuring in f . The isomorphism θ sends tn to (g − 1)n + (g − 1)n+1CG.
Clearly, the symmetric elements of U(L(G)) are of the form f(it), f ∈ R[t].
Order them by the sign of the lowest coefficient. This is a ∗-ordering of
U(L(G)) compatible with v. The corresponding ∗-ordering of CG declares
a symmetric element

∑
n λngn positive or negative according to the sign of

the lowest coefficient of the power series
∑

n λn(1+ it)n ∈ R[[t]]. One checks
that it is the same ∗-ordering as in Example 4.6 and that the valuation u is
its natural valuation.

Suppose now that G is any group such that CG is ∗-orderable and fix a
∗-ordering P on CG. Let vP : CG → ΓP ∪ {∞} be the natural ∗-valuation
associated to P . First we observe that for z ∈ C, z 6= 0, we have vP (z) = 0.
Indeed, by the definition of the natural valuation, we must show that z ∼ 1,
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i.e., that there exists a positive integer n such that nzz ≥ 1 and n ≥ zz.
This is clear.

Now assume that ΓP ≥ 0, i.e., vP (a) ≥ 0 holds for all a ∈ CG. Then the
set m defined by

m = {a ∈ CG | vP (a) > 0}
is an ideal in CG. Also by Remark 4.2, for each a ∈ CG, there exists a
unique z ∈ C such that vP (a−z) > 0. It follows that the natural embedding
C ↪→ CG/m is an isomorphism and, in particular, m is a maximal ideal of
CG. Then the natural homomorphism CG → CG/m = C restricts to a
group homomorphism χ : G → C∗. In other words, χ is defined by χ(g) = z
where z is the unique element of C satisfying vP (g − z) > 0.

Define G̃ ⊂ CG by G̃ = {g/χ(g) | g ∈ G}. Clearly, G̃ is a multiplicative
group and G ∼= G̃ via g 7→ g/χ(g). Furthermore, CG = CG̃. Consequently,
replacing G by G̃, we can assume without loss of generality that χ(g) = 1,
i.e., vP (g − 1) > 0 for all g ∈ G (so now m is the augmentation ideal d of
CG).

Corollary 5.4. Let G be a group with involution. Then the following are
equivalent:

1) G is residually ‘torsion-free nilpotent’.
2) There exists a ∗-ordering P of CG such that the value semigroup ΓP

of vP has the properties: a) ΓP ≥ 0, b) there exists a least positive
element γ0 ∈ ΓP , c) the multiples of γ0 are cofinal in ΓP .

Proof. To prove 1)⇒ 2), we apply the proof of Theorem 5.1 2) to construct
a ∗-ordering P and observe that by Remark 4.11 the value semigroup ΓP of
vP is isomorphic to the semigroup of monomials in a certain set of variables,
with a degree-lexicographic order. So a) and c) are clear. Condition b) will
also hold if the set of variables has the least element (which is then also the
least monomial 6= 1). The choice of the order on the variables allows enough
freedom to achieve this.

Conversely, suppose 2) holds. Let m = {a ∈ CG | vP (a) > 0}. As
we showed, a) implies that replacing G with the isomorphic group G̃ =
{g/χ(g) | g ∈ G}, we can assume without loss of generality that m equals
the augmentation ideal d. Now if a ∈ dn, then from b) it follows that
vP (a) ≥ nγ0. So if a ∈ ∩∞n=0d

n, then vP (a) ≥ nγ0 for all n ∈ N, which
implies by c) that vP (a) = ∞, i.e., a = 0. Hence G is residually ‘torsion-free
nilpotent’. �

Now we prove our necessary condition for ∗-orderability of CG.

Theorem 5.5. If CG with the standard involution is ∗-orderable, then G is
orderable.

Proof. Suppose P is a ∗-ordering of CG and v = vP is its natural val-
uation. By assumption, the involution ∗ on CG is defined by

∑
g cgg 7→
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g cgg

−1. Then v(g) = v(g∗) = v(g−1) = −v(g), so v(g) = 0 for g ∈ G.
It follows that v(a) ≥ 0 for all a ∈ CG. Consequently, we have a group
homomorphism χ : G → C∗ defined by v(g−χ(g)) > 0 for g ∈ G. Note that
if χ(g) = z, then χ(g−1) = χ(g∗) = z∗ = z, so zz = χ(g)χ(g−1) = χ(1) = 1.
Thus, in the case of the standard involution, the image of G under χ is a
subgroup of the unit circle. As before, we replace G by G̃ = {g/χ(g) | g ∈ G}.

Each g ∈ G decomposes in CG as

g =
g + g−1

2
+ i

i(g−1 − g)
2

with g + g−1 and i(g−1− g) symmetric. Since g + g−1 ≡ 2 (mod d), g + g−1

is strictly positive, i.e., belongs to P \ {0}. However, i(g−1 − g) may be
either positive or negative. It cannot be zero, because CG is a domain and,
consequently, the group G is torsion-free.

We claim that if i(g−1− g) and i(h−1−h) are both strictly positive, then
so is i(g−1h−1 − hg). Indeed,

i(g−1 − g)(h−1 + h) + (h−1 + h)i(g−1 − g)

and
i(h−1 − h)(g−1 + g) + (g−1 + g)i(h−1 − h)

are both strictly positive. Adding and dividing by 2 yields

i(g−1h−1 − hg) + i(h−1g−1 − gh).

At the same time,

gi(g−1h−1 − hg)g−1 = i(h−1g−1 − gh),

so i(g−1h−1 − hg) and i(h−1g−1 − gh) have the same sign. Consequently,
i(g−1h−1 − hg) and i(h−1g−1 − gh) are both strictly positive.

Now define

(5) T = {g ∈ G | i(g−1 − g) ∈ P}.

It is immediate that G = T ∪ T−1, T ∩ T−1 = {1}, and gTg−1 ⊂ T for
each g ∈ G. By the claim that we have just proved, T · T ⊂ T . Therefore,
T is an ordering on G. �

To illustrate Theorem 5.5, consider the infinite cyclic group G = 〈g〉.
Recall that in Example 4.6 we constructed a ∗-ordering on CG by declaring
that a symmetric a =

∑
n λngn positive or negative according to the sign of

the lowest coefficient of the power series
∑

n λn exp(int) ∈ R[[t]]. Clearly,
the natural valuation v(a), for arbitrary a, is equal to the lowest degree of t
appearing in the corresponding series. So we see that in this case v(g−1) > 0
and thus χ(g) = 1. Further, i(g−n− gn) has the same sign as n, because the
corresponding power series is 2 sin(nt), whose lowest term is 2nt. Thus we
see that the ordering on G ∼= Z defined by (5) is just the standard ordering
of Z.
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Example 5.6. There exists an orderable group G such that the group al-
gebra CG is not ∗-orderable. Take

G = 〈x, y| xy = y2x〉
with the standard involution (this is the group of Example 2.3 with n = 2).

Proof. Assume that there exists a ∗-ordering P on CG. Let v = vP be its
natural valuation. As in the proof of Theorem 5.5, it follows that v(g) = 0
for all g ∈ G. Replacing x and y by x/χ(x) and y/χ(y), we may assume
that v(x − 1) > 0 and v(y − 1) > 0. Writing x = 1 + s and y = 1 + t, the
defining relation xy = y2x gives

st = t(2s + 1) + t2(s + 1).

Since v(t2(s + 1)) = 2v(t) > v(t) = v(t(2s + 1)), it follows that v(st) =
v(t(2s + 1)). Hence v(s) = 0, a contradiction. �

6. ∗-Orderability of Smash Products

The aim of this section is to find necessary and sufficient conditions for
the ∗-orderability of the smash products of the form U(L)#ϕCG under some
natural assumptions. Theorem 6.2 is the ∗-analog of Theorem 3.7.

Let H be a cocommutative Hopf algebra over an algebraically closed field
k of characteristic 0. Then H = U(L)#ϕkG where G = G(H), L = P (H),
and ϕ : G → Aut(L) is a group homomorphism. Suppose now k is a ∗-field.
We want to find all Hopf involutions of H.

Lemma 6.1. There exists a natural one-to-one correspondence between
Hopf algebra involutions of H = U(L)#ϕkG and pairs of group and Lie
involutions on G and L, respectively, that satisfy

(6) ϕg∗(x∗) = ϕg−1(x)∗ for all g ∈ G and x ∈ L.

Proof. Every Hopf involution on H preserves 1#G and L#1, hence we
can define involutions on G and L respectively by

1#g∗ := (1#g)∗, x∗#1 := (x#1)∗.

We can express (x#g)∗ in two ways:

(x#g)∗ = ((x#1)(1#g))∗ = (1#g)∗(x#1)∗ = (1#g∗)(x∗#1) = ϕg∗(x∗)#g∗

and

(x#g)∗ = ((1#g)(ϕg−1(x)#1))∗ = (ϕg−1(x)#1)∗(1#g)∗

= (ϕg−1(x)∗#1)(1#g∗) = ϕg−1(x)∗#g∗.

Condition (6) follows.
Conversely, suppose we have a pair of involutions on L and G such that

(6) holds. Then we can lift the first involution (as well as ϕ) from L to
U(L). Note that (6) now holds for all x ∈ U(L). Set

(x#g)∗ := ϕg∗(x∗)#g∗ = ϕg−1(x)∗#g∗ for all g ∈ G and x ∈ U(L)
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and extend to the entire H by additivity. Clearly, ∗ agrees with the involu-
tion on k. For all x, y ∈ U(L) and g, h ∈ G, we have

(x#g)∗∗ = (ϕg∗(x∗)#g∗)∗ = ϕ(g∗)−1(ϕg∗(x∗))∗#g = x#g

and

((x#g)(y#h))∗ = (xϕg(y)#gh)∗ = ϕh−1g−1(xϕg(y))∗#h∗g∗

= ϕh−1(y)∗ϕh−1g−1(x)∗#h∗g∗

= (ϕh−1(y)∗#h∗)(ϕg−1(x)∗#g∗) = (y#h)∗(x#g)∗.

It remains to verify that ∆ ◦ ∗ = (∗ ⊗ ∗) ◦ τ ◦ ∆. Since both maps are
anti-homomorphisms of algebras, it suffices to check the equality on any set
of generators of H. Clearly, L#1 and 1#G generate H, and the desired
equality holds for these elements (see Examples 4.4 and 4.5). �

Condition (6) can be restated in the following way. Suppose L is an
algebra (not necessarily Lie or associative) with involution ∗. If α is an
automorphism of L, then so is the composition (∗ ◦ α−1 ◦ ∗). In fact, the
map α 7→ (∗ ◦ α−1 ◦ ∗) is a group involution on Aut(L). Then condition
(6) simply says that ϕ : G → Aut(L) is a homomorphism of groups with
involution.

Theorem 6.2. Let L be a finite-dimensional complex Lie algebra with in-
volution, G a group with involution and ϕ : G → Aut(L) a homomorphism
of groups with involution. Then U(L)#ϕCG with the induced involution is
∗-orderable if and only if

1) CG is ∗-orderable, and
2) ϕ(G) is a unipotent matrix group.

Proof. Observe first of all that condition 2) is equivalent to 2′) that says
that L has a basis consisting of symmetric elements in which all ϕg, g ∈ G,
have a lower unitriangular matrix. Clearly, 2′) implies 2). Suppose that
2) holds. Then all ϕg ∈ ϕ(G) have a common eigenvector x ∈ L (with
eigenvalue 1). If we can show that we can always find a symmetric common
eigenvector, then condition 2′) will follow by induction on dim L. Write
x = x1 + ix2 where x1, x2 are symmetric. Without loss of generality, x1 6= 0.
Using (6), we compute: ϕg(x∗) = ϕ(g∗)−1(x)∗ = w∗. Hence x∗ = x1 − ix2

is also a common eigenvector for ϕg ∈ ϕ(G) (with eigenvalue 1). It follows
that x1 is a symmetric common eigenvector.

Now suppose 1) and 2′) hold. Fix an extended ∗-ordering Q of CG and a
basis e1, . . . , en of L consisting of symmetric elements in which the matrices
of ϕg are lower unitriangular. Define an ordering on PBW monomials as
in Example 2.12. Every nonzero element z ∈ H := U(L)#ϕCG can be
expressed uniquely as z =

∑r
k=1 Mk#ak where Mk are PBW monomials

such that M1 < . . . < Mr and ak ∈ CG. Define lc(z) := a1 and lc(0) := 0.
We claim that the set

P := {z ∈ H| lc(z) ∈ Q}
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is an extended ∗-ordering on H. Therefore, 1) is true.
It is clear that P +P ⊂ P and P ∩−P = {0}. In the verification of other

properties we will use the following observations. Let w : U(L) → Γ ∪ {∞}
be the valuation determined by our monomial ordering (see Example 2.12).
Then gr(U(L), w) is the algebra of polynomials in e1, . . . , en. Since e1, . . . , en

are symmetric, we also have M∗ = M + o where w(o) > w(M). For every
PBW monomial M and every g ∈ G we have that ϕg(M) = M + o where
w(o) > w(M), because ϕg is unitriangular.

Now we extend w to the entire H by setting w(z) := w(M1) for nonzero
z =

∑r
k=1 Mk#ak ∈ H with M1 < . . . < Mr. Then w : H → Γ ∪ {∞} is a

vector space valuation (but we do not know at this point that w is a ring
valuation).

To prove that P ∗ ⊂ P , it suffices to show that lc(z∗) = lc(z)∗ for every
z ∈ H. If z = M#(

∑
cgg) + o =

∑
cg(M#g) + o where w(o) > w(M),

then z∗ =
∑

cgϕg∗(M∗)#g∗ + o∗ =
∑

cgM#g∗ + o′ = M#(
∑

cgg)∗ + o′

where w(o′) > w(M). Hence lc(z∗) =
∑

cgg = lc(z)∗. This computation
also shows that w(z∗) = w(z).

To prove that P ·P ⊂ P , it suffices to show that lc(z1z2) = lc(z1) lc(z2). If
z1 = M#a + o = M#(

∑
cgg) + o1 =

∑
cg(M#g) + o1 with w(o1) > w(M)

and z2 = N#b + o2 with w(o2) > w(N), then

z1z2 = (M#a)(N#b) + o′ =
∑

cg(M#g)(N#b) + o′

=
∑

cgMϕg(N)#gb + o′ =
∑

cgMN#gb + o′′

= MN#ab + o′′ where w(o′), w(o′′) > w(MN).

Hence lc(z1z2) = ab = lc(z1) lc(z2). This also shows that w(z1z2) = w(M)+
w(N) = w(z1) + w(z2), so w is a ∗-valuation on H.

Since lc(uzu∗) = lc(u) lc(z) lc(u)∗, it follows that uPu∗ ⊂ P for any u ∈
H. Every symmetric element can be written as a sum of elements of the
form M#a + (M#a)∗. As we already computed, (M#a)∗ = M#a∗ + o, so
M#a + (M#a)∗ = M#(a + a∗) + o where w(o) > w(M). Since a + a∗ is
symmetric, it belongs to Q∪−Q. It follows that M#a+(M#a)∗ ∈ P ∪−P .
This completes the proof that P is an extended ∗-ordering (compatible with
the ∗-valuation w).

Conversely, suppose H is ∗-orderable. Let P be a ∗-ordering on H. Then
P ∩ CG is a ∗-ordering on CG, so 1) holds. Pick a basis e1, . . . , en of L
consisting of positive symmetric elements such that vP (e1) < · · · < vP (en).
For g ∈ G and x ∈ L we have ϕg(x) = gxg−1 and thus vP (ϕg(x)) =
vP (x) (recall that the value semigroup of vP is commutative!). In particular,
vP (ϕg(ei)) = vP (ei) for i = 1, . . . , n. Therefore, we can write

(7) ϕg(ek) =
n∑

l=k

ckl(g)el = ckk(g)ek + ok, vP (ok) > vP (ek).
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In other words, the matrices of ϕg, g ∈ G, are lower triangular. We claim
that ckk(g) = 1 for every g ∈ G and every k = 1, . . . , n. Indeed, from (1) it
follows that symmetric elements commute in H := gr(H, vP ). Since every
z ∈ H can be written z = z1+iz2 with z1, z2 symmetric, we conclude that H
is commutative. Therefore, vP (ϕg(x)−x) = vP (gxg−1−x) > vP (x) for x ∈ L
and g ∈ G. Comparing this with (7), we obtain vP (ckk(g)ek − ek) > vP (ek).
Hence vP (ckk(g)− 1) > 0, so ckk(g) = 1, proving 2′). �

Example 6.3. Consider H = C〈x±1, y〉/(xy − qyx) where q ∈ C∗. Clearly,
H = U(L)#ϕCG where L = 〈y〉, G = 〈x〉, and ϕx(y) = qy. For any Lie
involution on L, we can scale y so that y∗ = y. There are two involutions on
G: x∗ = x−1 and x∗ = x. In the first case, condition (6) is satisfied iff q ∈ R.
In the second case, it is satisfied iff |q| = 1. In both cases, by Theorem 6.2,
H is not ∗-orderable unless q = 1.

7. Open Problems

1) Find exact conditions on G for CG to be ∗-orderable, at least in the
case of the standard involution. (It is possible for CG to be ∗-order-
able without G being residually ‘torsion-free nilpotent’ — see I. Klep
& P. Moravec, ∗-Orderable groups, a work in progress.)

2) If G is orderable, then U(L)#kG is a domain. When can U(L)#kG be
embedded in a skew field? Can every ordering (resp., ∗-ordering) be
extended from U(L)#kG to a skew-field containing it? (The answer
is yes in the Ore case since every ordering (resp., ∗-ordering) on an
Ore domain can be extended to its skew-field of quotients — see [1],
[4], and our Proposition 3.8.)

3) Is Corollary 3.3 true if R is replaced by Q (or any other Archimedean
field)? What about Theorem 3.7?

4) If H is a pointed Hopf algebra over k (not necessarily cocommuta-
tive), then it is filtered by the so called coradical filtration. The
associated graded Hopf algebra gr(H) is isomorphic to the biproduct
R#ρ

ϕkG (which is just the smash product R#ϕkG as far as the al-
gebra structure is concerned), where G = G(H). If char k = 0 and
H is generated by its group-like and skew-primitive elements, then R
is the so called Nichols algebra B(V ) of a braided vector space V —
see e.g. [2]. What are the necessary and sufficient conditions for the
smash product B(V )#ϕkG to be orderable (resp., ∗-orderable)? Can
one construct orderings (resp., ∗-orderings) on gr(H) = B(V )#ϕkG
in such a way that they can be pulled back to H?

5) In this paper we constructed orderings and ∗-orderings (with zero
support) of Hopf algebras viewed just as algebras, i.e., forgetting the
comultiplication ∆. Should one impose any compatibility conditions
between the (∗-)ordering and ∆?
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