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Abstract

We give a complete and rigorous proof of the Unruh effect, in the
following form. We show that the state of a two-level system, uniformly
accelerated with proper acceleration a, and coupled to a scalar bose field
initially in the Minkowski vacuum state will converge, asymptotically in
the detector’s proper time, to the Gibbs state at inverse temperature
β = 2π

a
. The result also holds if the field and detector are initially in

an excited state. We treat the problem as one of return to equilibrium,
exploiting in particular that the Minkowski vacuum is a KMS state with
respect to Lorentz boosts. We then use the recently developed spectral
techniques to prove the stated result.

1 Introduction
The following observation, now referred to as the Unruh effect, was made by W.
Unruh in 1976 [U]. When a detector, coupled to a relativistic quantum field in
its vacuum state, is uniformly accelerated through Minkowski spacetime, with
proper acceleration a, it registers a thermal black body radiation at temperature
T = ~a

2πckB
. This is the so-called Unruh temperature. In more anthropomorphic

terms [UW], “for a free quantum field in its vacuum state in Minkowski space-
time M an observer with uniform acceleration a will feel that he is bathed by a
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thermal distribution of quanta of the field at temperature T .” This result has
attracted a fair amount of attention and, originally at least, it generated con-
siderable surprise. For a review of various aspects of the subject, nice physical
discussions of the phenomenon, and further references, we refer to [Ta], [Wa]
and [FuU]. Although the Unruh effect, in the form we treat it in what fol-
lows, has acquired generalized acceptance, some scepticism is occasionally still
expressed: these alternative viewpoints are critically analyzed in [FuU], where
more references can be found.

The reason for the surprise the Unruh effect may generate is that, if you
think of the vacuum as “empty space”, then you will find it puzzling that a
detector, accelerated or not, which may itself initially be in its ground state,
will “see particles”, since, after all, in the vacuum, there aren’t any. In order not
to be surprised, one has to remember that, of course, the vacuum is not “empty
space”, but the ground state of the field, and one should expect the detector to
react to the presence of the field when it is accelerated through space.

For example, if you were to drag a detector along a non-relativistic chain of
oscillators in its ground state, you would certainly expect the coupling between
the detector and the oscillators to excite both. The energy for this process is, in
final analysis, furnished by the agent that drags the detector along the oscillator
chain.

What is nevertheless still surprising in connection with the Unruh effect is
the claim that the detector “perceives” a thermal distribution of radiation at
some particular temperature that only depends on the acceleration. To see
what is precisely meant by these statements, it is helpful to get rid of the
anthropomorphic terminology used above and in much of the literature as well
as of all reference to particles or quanta, which turn out to be irrelevant to
the discussion. This is what we will do below. It is worth pointing out in this
connection that already in [U], “detection of a particle” is defined by “excitation
of the detector”, and does therefore not presuppose the actual definition of what
a particle precisely is, which is a tricky thing to do, as is well known [Fu]. In fact,
the computations in the physics literature of the excitation probability of the
detector can be seen to be perturbative computations of the asymptotic state of
the detector (see [UW] for example). We therefore adopt the following simple
formulation of the Unruh effect. Increasingly precise and rigorous formulations
follow below. Consider the coupled detector-field system. Suppose that initially
it is in a product state with the field in the vacuum state. Now let the coupled
system evolve. At some later (detector proper) time, the state of the system
will no longer be a product state. Now trace out the field variables, to obtain
the reduced state of the detector (which will be a mixed state, even if the initial
state was pure). The Unruh effect states that, asymptotically in the observer’s
proper time, the latter converges to a (mixed) state, which, to lowest order in
the coupling, is the Gibbs state of the uncoupled detector at the aforementioned
temperature T . Note that this is not by any means obvious: after all, a priori,
it is not clear why the detector state should, asymptotically in time, converge at
all, and even if it does, it is not obvious it should tend to a positive temperature
state at a particular positive temperature: a priori, it could have been any other
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mixed state.
It is our goal in this paper to give a complete and rigorous proof of the above

statement. We will actually obtain this result from a much stronger statement
that we now explain. The way we have formulated the Unruh effect makes it
clear already that we think of it as a problem in the theory of open quantum
systems in which a small system, here the detector, is coupled to a reservoir,
here the field. Let us formulate our result somewhat more precisely. For a
completely rigorous statement, we refer to Section 2. The model we consider is
the one proposed in [UW], which is itself a simplification of the model consid-
ered in [U]. The highly idealized detector is modeled by a two-level system and
the field is taken to be a massive or massless Klein-Gordon field. The transla-
tional degrees of freedom of the detector are not among the dynamical variables
of the theory and the detector follows a prescribed classical trajectory. The
two-level system therefore models internal degrees of freedom of the detector.
As a result, the observable algebra of the detector is generated by “fermionic”
creation/annihilation operators A, A†. The free Heisenberg evolution of the
detector is Ȧ(σ) = −iEA(σ), where σ is the detector’s proper time. In other
words, the free detector Hamiltonian is

HD = EA†A.

We note that our results extend without problem to an N -level system, at the
cost of irrelevant notational complications and a more involved formulation of
the Fermi Golden Rule condition (see (18)).

The coupling between the field and the detector is realized via a monopole,
and is ultraviolet regularized; it is sometimes referred to as a de Witt monopole
detector (see [Ta]). Suppose initially the detector-field system is in a product
state ω0 with the detector in a state described by some density matrix ρ and
the field in the Minkowski vacuum state |0〉. Let B be a detector observable
and F be a field observable and let αλ

σ(BF ) the Heisenberg evolution of BF
under the coupled dynamics, with coupling constant λ. Then we prove that for
sufficiently small λ,

ωλ
∞(BF ) := lim

σ→∞
ω0(αλ

σ(BF ))

exists for each choice of B and F and and that it equals the thermal equilibrium
state of the coupled system at the Unruh temperature (see Theorem 2.2 and
3.5). As a result, to lowest order in the perturbation parameter λ, one finds
that this asymptotic state satisfies

ωλ
∞(BF ) =

1
Zβ,D

Tr e−βHDB〈0|F |0〉+O(λ). (1)

Here β = (kBT )−1 with T the Unruh temperature and Zβ,D = Tre−βHD .
Our proof of this result is based on techniques developed in the last decade to

prove “return to equilibrium” in open quantum systems [JP1, JP2, BaFS, M1,
DJ, DJP]. We combine these with the Bisognano-Wichman theorem [BiWi],
which states that the vacuum is a KMS state for the Lorentz boosts on the
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Rindler wedge. The relevance of this last result to the Unruh effect (and a
generalization to more general spacetimes) was explained a long time ago by
Sewell in [Se]. Let us point out that the work of Sewell, together with known
stability results of KMS states (see e.g. [Da, KFGV]) imply a result somewhat
similar to but considerably weaker than (1), namely

lim
σ→∞,λ→0,λσ2=1

ω0(αλ
σ(B)) =

1
Zβ,D

Tr e−βHDB. (2)

This is the so-called van Hove weak coupling limit. In our result, the limit
σ → ∞ is shown to exist for all sufficiently small λ, and to coincide with the
right hand side of (1).

The paper is organized as follows. In Section 2, we describe the model in
detail and state our main result. We will also comment on the precise role
played by the choice of the form factor determining the ultraviolet cutoff in
the interaction term. Section 3 is devoted to its proof. The latter uses Araki’s
perturbation theory for KMS states and its recent extensions, together with the
spectral approach to the problem of return to equilibrium developed in the cited
references. Since this material is rather technical, we have made an effort to
state the result in Section 2 with as little reference to it as possible.

2 The model and the result
We need to give a precise description of the model and in particular of its
dynamics. This requires some preliminaries.

2.1 The free field
Let us start by describing in detail the field to which the detector will be cou-
pled. The field operators are represented on the symmetric Fock space F over
L2(Rd,dx). Here d ≥ 1 is the dimension of space and x = (x0, x) is a point
in Minkowski space–time R × Rd (with metric signature (+,−, . . . ,−)). So
F := ⊕n∈NF (n), where F (n) is the n-fold symmetric tensor product of the one-
particle space L2(Rd,dx).

Let S(Rd+1; R) and S(Rd+1; C) denote the real and the complex valued
Schwartz functions on Rd+1, respectively. For f ∈ S(Rd+1; C), one defines
the field operators in the usual way:

Ω = (−∆ +m2)1/2, S±f =
∫

R
dt

1√
Ω

e±iΩtft, Q[f ] =
1√
2
(a†(S+f) + a(S−f)).

Here ∆ is the Laplacian, m ≥ 0 the mass, and a, a† are the usual creation and
annihilation operators on F (we follow the convention that f 7→ a†(f) is linear
while f 7→ a(f) is antilinear), and the bar denotes complex conjugation. When
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m = 0, we will suppose d > 1. Writing formally

Q[f ] =
∫

Rd+1
dxf(x)Q(x), x = (x0, x),

this leads to the familiar

Q(x) =
∫

Rd

dk√
2ω(k)

[
eik x−iω(k)x0

a(k) + e−ik x+iω(k)x0
a∗(k)

]
, (3)

where ω(k) =
√
k2 +m2. The field satsifies the Klein-Gordon equation �Q(x)+

m2Q(x) = 0, where � = ∂2
x0 −∆. We use units in which ~ = 1 = c.

As can be learned in any book on special relativity (such as [Ri]), in an
adapted choice of inertial coordinate frame, a uniformly accelerated worldline
of proper acceleration a > 0, parametrized by its proper time σ, has the form

x0(σ) =
1
a

sinh aσ, x1(σ) =
1
a

cosh aσ, x2(σ) = 0 = x3(σ).

Associated to this worldline is the right wedge (or Rindler wedge) WR := {x ∈
R4| x1 > |x0|}. It is the intersection of the causal future and past of the world-
line, or the collection of spacetime points to which the observer on the worldline
can send signals and from which he can also receive signals. Note for later
reference that the left wedge WL := −WR is the causal complement of WR.

There exists a global coordinate system on WR that is particularly well
adapted to the description of the problem at hand. It is given by the so-called
Rindler coordinates (τ, u, x⊥) ∈ R× R∗+ × Rd−1, defined by

x0 = u sinh τ, x1 = u cosh τ, x⊥ = (x2, . . . xd). (4)

Here τ is a global time coordinate on the right wedge. Note that, given a ∈
R+, (α2, . . . αd) ∈ Rd−1, the curve u = 1/a, x⊥ = (α2, . . . , αd) is the worldline
of a uniformly accelerated observer with proper acceleration a and proper time
σ = a−1τ . In addition, two points in the right wedge with the same value for
the τ -coordinate are considered as simultaneous in the instantaneous rest frame
of any such observer (see [Ri]). Among the Lorentz boosts, only the boosts in
the x1-direction leave the right wedge invariant. In inertial coordinates they are
given by the linear transformations

Bτ ′ =


cosh τ ′ sinh τ ′ 0 . . . 0
sinh τ ′ cosh τ ′ 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 .

In the Rindler coordinates, this becomes Bτ ′(τ, u, x⊥) = (τ + τ ′, u, x⊥). In this
sense, the boosts in the x1-direction act as time translations on the Rindler
wedge.
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Since the field satisfies the Klein-Gordon equation, one has, in Rindler co-
ordinates on WR:(

u−2∂2
τ − u−1∂uu∂u + (−∆⊥ +m2)

)
Q(τ, u, x⊥) = 0. (5)

Moreover, the covariance of the free field under the Poincaré group yields, for
all τ ∈ R,

Q[f ◦B−τ ] = eiLFτQ[f ]e−iLFτ , (6)

with
LF = dΓ(K), K = Ω1/2X1Ω1/2, (7)

where X1 is the operator of multiplication by x1. In particular, for x =
(τ, u, x⊥) ∈WR,

Q(τ, u, x⊥) = eiLFτQ(0, u, x⊥)e−iLFτ .

In other words, LF generates the free Heisenberg dynamics of the field operators
associated to the right wedge. Let us furthermore introduce, for later purposes,
the conjugate field

P [f ] :=
d
dτ
Q[f ◦B−τ ] |τ=0 = i [LF, Q[f ]] . (8)

It then follows from the basic properties of the free field that the equal time
commutation relations of the field and the conjugate field are, at τ = 0,

[Q(0, u, x⊥), P (0, u′, x′⊥)] = iuδu(u′) δx⊥(x′⊥). (9)

The following useful identity follows from (5) and (8):

i [LF, P (0, u, x⊥)] = −
(
−u∂uu∂u + u2(−∆⊥ +m2)

)
Q(0, u, x⊥). (10)

For an algebraic formulation of the dynamics, indispensable in what follows,
we need to identify the observable algebra of the theory. The observable algebra
of the field is AF := {W (f)|f ∈ S(Rd+1,R)}′′, with W (f) = e−iQ[f ] the usual
Weyl operators. One should think of the observable algebra as containing all
bounded functions of the (smeared) field operators Q[f ] or, more pictorially, all
observables that can be constructed from the Q(x), x ∈ Rd+1. Associated to
the right and left wedges are local algebras of observables AF;R,L := {W (f)|f ∈
S(WR,L,R)}′′. Again, those should be thought of as containing all observables
that can be constructed with the field operators Q(x), for x belonging to the
wedge considered. As pointed out above, one can define on AF an automorphism
group α0

τ by
α0

F,τ (A) = eiLFτA e−iLFτ , A ∈ AF. (11)

We note that α0
F,τ leaves AF;R invariant.
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2.2 The free detector
As pointed out in the introduction, we think of the detector as a two-level
system. Its observable algebra is simply the algebra of two by two matrices
B(C2). It will be convenient to use a representation of this algebra in which both
the ground state and the Gibbs state at inverse temperature β are represented by
vectors. This representation, well known in the mathematical physics literature
on quantum statistical mechanics, is of course different from the usual one in
the standard physics literature in which the latter is represented by a density
matrix.

It is defined as follows. One represents the observable algebra B(C2) as

AD := B(C2) ⊗ 1l2 on HD = C2 ⊗ C2, with in particular A† :=
[

0 1
0 0

]
⊗ 1l2.

The algebra AD is generated by the identity operator, A†, A and A†A and one
has AA† +A†A = 1l.

In this representation, the free Heisenberg evolution of the detector with
respect to its proper time σ is generated by the self-adjoint operator LD :=
HD ⊗ 1l2 − 1l2 ⊗HD, with

HD =
[
E 0
0 0

]
, (12)

for some E > 0, where E represents the excitation energy of the detector; LD

is referred to as the free Liouvillean of the detector. To see this it is enough to
remark that

A†(σ) := α0
D,σ(A) := eiLDσA†e−iLDσ

satisfies the correct Heisenberg equation of motion

Ȧ†(σ) = iEA†(σ) (13)

of an unperturbed two-level system. Note that the energy levels of the detector
are thought of in this model as pertaining to internal degrees of freedom ([U,
UW, Ta]). One should think of the two-level system as being dragged through
spacetime by an external agent that ensures it has constant acceleration a. So
the translational degrees of freedom of the detector are not dynamical variables
in this kind of model. In the representation above, the ground state of the
detector can be represented by the vector | −−〉 and the Gibbs state at inverse
temperature β by the vector

|β,D〉 := (1 + e−βE)−1/2(| − −〉+ e−βE/2|+ +〉) ∈ HD.

Indeed, one easily checks that, for any B ∈ B(C2),

〈β,D|B ⊗ 1l2|β,D〉 =
1

Zβ,D
Tr e−βHDB, Zβ,D = Tr e−βHD .

It is the fact that both the ground state and positive temperature states of the
detector can be represented by vectors that makes this representation particu-
larly suitable for the problem at hand.
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2.3 The uncoupled field-detector system
It is now easy to describe the observable algebra of the joint detector-field sys-
tem, as well as its uncoupled dynamics. On the Hilbert space H := HD ⊗F we
consider the observable algebra A := AD ⊗ AF,R and the self-adjoint operator
L0 = LD ⊗ 1lF + 1lHD ⊗ aLF. The latter determines an automorphism group

α0
σ = α0

D,σ ⊗ α0
F,aσ

of A in the usual way: α0
σ(B) = eiL0σBe−iL0σ, B ∈ A. Setting B(σ) := α0

σ(B)
this yields a solution of the Heisenberg equations of motion of the uncoupled
detector-field system on the Rindler wedge WR, which are given by (5) and (13),
with τ = aσ.

We will be mostly interested in the state of the system where, initially, the
detector is in its ground state, and the field in its Minkowski vacuum. This
state is represented by the vector |g〉 := | −−〉⊗ |0〉 ∈ H. We will write, for any
B ∈ A:

〈B〉g := 〈g|B|g〉 (14)

2.4 The coupled field-detector system
For the coupled system we will use the same representation of the observable
algebra, but change the dynamics. We will give a precise and mathematically
rigorous definition of the dynamics below but to link it with the physics literature
on the subject, we start with a formal computation. Let C(σ) = [A(σ), A†(σ)].
According to [UW], the Heisenberg equations of motion of the observables of
the coupled system are

(2 +m2)Q(x) = −λρ(x∗)(A+A†)(
τ(x)
a

) (15)

Ȧ(σ) = −iEA(σ) + iλC(σ)
∫

dudx⊥au ρ(x∗)Q(aσ, u, x⊥),

The function ρ tunes the coupling between the detector and the field. It is
evaluated at

x∗ := x− x(τ(x)/a),

the spacelike vector linking x in the right wedge to the instantaneous position
x(σ) of the detector, at proper time σ = τ(x)/a, where τ(x) is the Rindler time
coordinate defined in (4).

Let (τ, u, x⊥) be the Rindler coordinates of the point x then the ones of x(σ)
are (τ, 1/a, 0⊥) and hence we may identify x∗, whose coordinates are (0, u −
1/a, x⊥), with an element of (−1/a,+∞)×Rd−1. We take the coupling function
ρ to be in C∞0 ((−1/a,+∞)×Rd−1), normalized as

∫
ρ(x)dxd = 1. Typically we

imagine ρ to be peaked at the origin, so that the field is coupled strongest at the
position of the detector. Only for such couplings does it make sense to interpret
σ as the proper time of the detector. Indeed, if the detector is coupled to the
field over a large spatial region, different parts of the detector undergo a different
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acceleration and have a different proper time. The mathematical result we
obtain then still holds, but does no longer have the same physical interpretation.
A coupling strictly localized at the position of the detector is formally given by
ρ(x) = δ(x), a situation which does not fit the rigorous mathematical setup
presented in this work. We will comment further on the role played by the
choice of coupling in Section 2.6.

Using (9) and (10), it is easy to show through a formal computation that the
equations (15) are satisfied by the operators Q(λ)(τ, u, x⊥) and A(λ)(σ) defined
as follows:

Q(λ)(τ, u, x⊥) := eieLλ
τ
a Q(0, u, x⊥) e−ieLλ

τ
a , A(λ)(σ) := eieLλσ A e−ieLλσ,

where

L̃λ := L0 + λI, I := (A+A†)
∫

dudx⊥au ρ(x∗|τ=0)Q(0, u, x⊥) (16)

and x∗|τ=0 is given in Rindler coordinates by (0, u− 1/a, x⊥). In other words,
the Liouvillean L̃λ generates the correct Heisenberg dynamics of the observables
in the representation at hand.

Remark. The analysis we carry out in this paper works for general interac-
tions of the form I = G ·Q(g) +G∗ ·Q(g), and for sums of such terms, where G
are matrices acting on the detector space, and g ∈ L2(R3,dx) are “form factors”.

The following result is proved in Section 5.

Proposition 2.1 The operator L̃λ in (16) is for all λ essentially self-adjoint
on D(L0) ∩ D(I) and the maps αλ

σ(B) := eieLλσBe−ieLλσ with σ ∈ R and B ∈
A define a weakly continuous one-parameter group of automorphisms of the
observable algebra A.

2.5 The result
We are now in a position to give a precise statement of our result. Define

g(κ, k⊥) =
̂(

x1ρ(x∗|τ=0)
)(

(|k⊥|2 +m2)1/2 sinh κ, k⊥
)
, (17)

where ̂ denotes the Fourier transform.

Theorem 2.2 Let d ≥ 1 if m > 0 and d ≥ 2 if m = 0, and suppose the
following “Fermi Golden Rule Condition” holds,∫

R
dκ e−i E

a κ g(κ, k⊥) 6= 0 for some k⊥ ∈ Rd−1. (18)

Then there is a constant λ0 > 0 s.t. if 0 < |λ| < λ0 then

lim
σ→∞

〈αλ
σ(B)〉g =

1
Zβ,D

Tr e−βHDB +O(λ2), (19)
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for all B ∈ B(C2), and where β = 2π
a .

More generally, if % is any density matrix on H then

lim
σ→∞

Tr %αλ
σ(BF ) =

( 1
Zβ,D

Tr e−βHDB
)
〈0|F |0〉+O(λ), (20)

for any detector observable B ∈ B(C2) and any field observable F ∈ AF.

Result (19) shows that if at σ = 0 the detector-field system is in a state which
is a local perturbation of its ground state, then the reduced density matrix of
the detector converges asymptotically in time to the detector’s Gibbs state at
inverse temperature β = 2π

a . This is a (slightly) stronger statement than the
formulations usually found in the literature, since it allows both the field and
the detector to be initially in an excited state.

Remarks. 1) Theorem 2.2 follows from a more complete result, stated
as Theorem 3.5 below, where the l.h.s. of (20) is shown to be equal to the
equilibrium state |λ〉 ∈ H of the coupled system, see also (28) below. An
expansion of 〈λ| · |λ〉 for small λ yields the uncoupled equilibrium state plus an
error of higher order in λ (the absence of a first order error term in (19 is due to
the fact that the expectation of the interaction I in the uncoupled equilibrium
state vanishes).

2) The approach to the limit state in (19) is exponentially fast,∣∣Tr %αλ
σ(B)− 〈λ|B|λ〉

∣∣ < C‖B‖e−λ2ησ,

where C is a constant (depending on the interaction, but not on the initial
density matrix % nor on B) and η = (1 + e−2πE/a)ξ +O(λ2), with

ξ ≡ ξ(E) =
1
2a

∫
Rd−1

dk⊥

∣∣∣∣∫
R

dκ e−i E
a κg(κ, k⊥)

∣∣∣∣2 ≥ 0. (21)

The quantity τrelax = 1/λ2η is called the relaxation time of the process. The
purpose of condition (18) is to ensure that ξ > 0, i.e., that τrelax <∞. We will
show in the following subsection that this is typically the case.

We finally remark that, whereas the leading term of the right hand side of
(19) does not depend on the choice of form factor ρ in the interaction term, the
relaxation time τrelax does, via (17) and (21). Nevertheless, we show in the next
subsection that τrelax is independent of the form factor for interactions sharply
localized at the position of the detector.

2.6 The Fermi Golden Rule Condition
The goal of this section is to show that (18) is satisfied for “generic” interactions.

Proposition 2.3 Take the coupling function ρ in (15), (16) to be of the form
ρ(x) = ρ1(x1)ρ⊥(x⊥), (“square detector”) with ρ1 ≥ 0. Then condition (18) is
satisfied for all E except for E ∈ E, where E is a discrete (possibly empty) subset
of R. In particular, ξ(E) > 0 for all E 6∈ E.
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Values of E satisfying ξ(E) = 0 (which form necessarily a subset of E in the
proposition) correspond to energy gaps of the detector Hamiltonian for which
thermalization of the detector occurs (if at all) with a larger relaxation time at
least of the order λ−4 (as opposed to λ−2 for E s.t. ξ(E) > 0), see [M2].

For a particular choice of the coupling function ρ one may resort to a numer-
ical study of the condition (18). On the analytic side we can calculate ξ, (21),
in the limit of a strictly localized interaction. More precisely, we choose ρ1, ρ⊥
as in Proposition 2.3, and consider the family ρε(x) = ε−dρ1(x1/ε)ρ⊥(x⊥/ε) →
δ(x1 − 1/a)δ(x⊥) which represents an interaction localized exactly at the posi-
tion of the detector in the limit ε→ 0. Each ε defines thus a ξε(E) by (21), and
we obtain, for d = 3 and m > 0,

lim
ε→0

ξε(E)

=
a

2

∫
R2

dk⊥
ω4
⊥

∣∣∣∣∣
∫

R
dκ

2 sinh2 κ − E
ω⊥

cosh κ − 1

( E
ω⊥

+ cosh κ)4
e−i

[
E
a κ+

ω⊥
a sinh κ

]∣∣∣∣∣
2

,

where ω⊥ =
√
|k⊥|2 +m2. This limit does not depend on the form of ρ and the

leading term of τrelax (as ε→ 0) is thus independent of the detector form factor.

Proof of Proposition 2.3. We denote the integral in (18) by iρ̂⊥(k⊥)J(E,ω⊥),
where ω⊥ =

√
|k⊥|2 +m2, see also (17). For ω⊥ 6= 0 we can make the change

of variable y = ω⊥ sinh κ to obtain the representation

J(E,ω⊥) =
∫

R
dy

e−i E
a argsinh(y/ω⊥)√
ω2
⊥ + y2

f(y), f(y) := e−iy/a
(−i
a
ρ̂1(y) + ρ̂1

′(y)
)
.

(22)
We view ω2

⊥ = µ in the integral as a parameter, µ > 0. We first show that given
any µ0 > 0, the integral in (22), for E = 0, does not vanish identically in any
neighbourhood of µ0.

Let us consider µ0 = 1; a simple modification of the following argument
yields the general case. Assume ad absurdum that J(0, µ) = 0 for all µ in a
neighbourhood of 1. Then, by taking derivaties of J(0, µ) with respect to µ, at
µ0 = 1, we see that ∫

R
dy (1 + y2)−n (1 + y2)−1/2f(y) = 0, (23)

for all n = 0, 1, . . . Now, it is not difficult to verify that the linear span of all
functions (1 + y2)−n, n = 1, 2, . . . is dense in the space of even functions in
L2(R, dy). (One may prove this with little effort via the Fourier transform,
for example.) It thus follows from (23) that the even part of f must vanish,
f(y) + f(−y) = 0 for all y ≥ 0. In particular, f(0) = 0, which means that

a−1 = −iρ̂1
′(0) (24)

(we assume without loss of generality that ρ1 is normalized as
∫

R dx ρ1(x) = 1).
On the other hand, we have −iρ̂1

′(0) = −
∫

R dxxρ1(x) < a−1, since in the
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integral, x > −a−1 due to the fact that ρ1 is supported in (−1/a,∞). Therefore
condition (24) is not verified.

This shows that given any µ0 > 0 we can find a µ1 > 0 (arbitrarily close to
µ0) with the property that J(0, µ1) 6= 0.

Pick a nonzeroK0 ∈ Rd−1 satisfying ρ̂⊥(K0) 6= 0 and set µ0 :=
√
|K0|2 +m2.

Then, by the above argument and by the continuity of ρ̂⊥ there is a µ1 =:√
|K1|2 +m2 (which is close to µ0 and defines aK1 close toK0) s.t. J(0, µ1) 6= 0

and ρ̂⊥(K1) 6= 0. Hence we have shown that there exists a nonzero K1 satisfying
iρ̂⊥(K1)J(0, ω1) 6= 0, where ω1 =

√
|K1|2 +m2. Condition (18) is thus satisfied

for E = 0.
Finally we pass to the other values of E by an analyticity argument. Indeed,

one easily sees (best by using the form of J in which one integrates over κ
rather than y, c.f. (17), (18)) that the map E 7→ J(E,ω1) is analytic and by
the previous argument it does not vanish at E = 0. Thus the zeroes of this map
are contained in a discrete set E(ω1) ⊂ C. Any E avoiding this set thus satisfies
(18). �

3 Proof of Theorem 2.2

3.1 Strategy
As mentioned in the introduction, the first ingredient of the proof is the obser-
vation that the Minkowski vacuum is (a realization of) the GNS representation
of a KMS state on the right wedge algebra for the Lorentz boosts at the inverse
temperature β = 2π. This is the content of Theorem 3.1 below. To give a
precise statement, we need the so-called modular conjugation operator, defined
as follows:

JF = Γ(jF), where ∀ ψ ∈ L2(Rd,dx), jFψ(x) = ψ(−x1, x⊥); (25)

here Γ(j) stands for the second quantization of j.

Theorem 3.1 ([BiWi]) The Fock vacuum in F induces on AF,R a state which
is KMS at inverse temperature β = 2π for α0

F,τ . In particular, one has

A′F,R = AF,L, JFAF,RJF = AF,L, AF,R|0,F〉 = F = AF,L|0,F〉,

and for all f ∈ S(WR,C): LF|0,F〉 = 0 and e−πLFQ[f ]|0,F〉 = JFQ[f ]|0,F〉.

This result was proven in considerable generality in [BiWi], for relativistic fields
satisfying the Wightman axioms. The result above for the free scalar field can
be obtained from essentially direct computations, and we shall not detail it.

Similarly, the states |β,D〉 introduced in Section 2.2 are GNS representatives
of the KMS states at inverse temperature β for the free detector dynamics αD,σ

on the detector observable algebra B(C2). This well known observation is for

12



convenience summarized in the following lemma. The appropriate conjugate
operator is given by

JD = E(C ⊗ C),

where C is the antilinear operator of complex conjugation on C2 and E is the
exchange operator on C2 ⊗ C2, Eϕ⊗ χ = χ⊗ ϕ.

Lemma 3.2 For any β > 0, the vector |β,D〉 induces on B(C2) a state that is
KMS at inverse temperature β for α0

D,σ. In particular, one has

A′D = 1l2 ⊗ B(C2), A′D = JDADJD, AD|β,D〉 = H = A′D|β,D〉,

and
e−βLD/2(B ⊗ 1l2)|β,D〉 = JD(B∗ ⊗ 1l2)|β,D〉.

Defining, on H = HD ⊗F , J := JD ⊗ JF, it follows that the vector

|0〉 := |β = 2π/a〉 ⊗ |0,F〉 (26)

is a GNS representative of the KMS state at inverse temperature β = 2π
a for

the free dynamics α0
σ on A = AD ⊗ AF,R. This suggests to treat the problem

at hand as one of return to equilibrium.
The rest of the argument then proceeds in three steps:
(a) One proves the existence of a GNS representative |λ〉 ∈ H, defined below,

of the KMS state for the perturbed dynamics at the same temperature (Section
3.2);

(b) One reduces the proof of Theorem 3.5 and hence of Theorem 2.2 to
showing that the generator of the perturbed dynamics has a simple eigenvalue
at 0 and otherwise absolutely continuous spectrum only;

(c) One finally uses spectral deformation theory to prove these two state-
ments.

The strategy in (a)-(b)-(c) has been applied successfully to radiative prob-
lems in atomic physics, the spin-boson model, and similar systems in [JP1, JP2,
BaFS, M1, DJP], where we refer for further references. A concise introduction
to the field can be found in [Pi]. The implementation of this strategy in the
present context is reasonably straightforward. We will detail those points that
are specific to the current situation.

3.2 Perturbation theory

We define on H = HD ⊗ F , in addition to L̃λ (see 16), the so-called standard
Liouvillean

Lλ = L̃λ − λJIJ. (27)

We outline the proof of the following result in Section 5.

Lemma 3.3 Lλ is essentially self-adjoint on D(L0) ∩D(I) ∩D(JIJ) and, for
all B ∈ A,

αλ
σ(B) = eiLλσBe−iLλσ.

13



A useful feature of the standard Liouvillean (in fact, the motivation for its
definition!) is that the unitary it generates leaves the equilibrium state of the
coupled system invariant, see (29) below.

Proposition 3.4 The vector |0〉 representing the uncoupled equilibrium state,
(26), is in the domain of the unbounded operator e−

π
a

eLλ , and the vector

|λ〉 :=
e−

π
a

eLλ |0〉
‖e−π

a
eLλ |0〉‖

∈ H (28)

defines a ( 2π
a , α

λ
σ)-KMS state on A = AD ⊗AF,R and it satisfies

Lλ|λ〉 = 0. (29)

Proof. To show that |0〉 ∈ Dom(e−
π
a

eLλ) we check that the Dyson series∑
n≥0

(−λ)n

∫ π/a

0

dt1 · · ·
∫ tn−1

0

dtn α0
itn

(I) · · ·α0
it1(I)|0〉 (30)

converges. We write the interaction operator conveniently as I = GQ[g], where
G = A+A† and g(x) = aδ(x0)x1ρ(x∗(x)) has support in WR, c.f. (16). In (30)
we have set, for real s,

α0
is(I) = e−sLDGesLD e−sLFQ[g]esLF .

To see that e−sLFQ[g]esLF is well defined for 0 ≤ s ≤ π/a one shows that since
g is supported in the right wedge, the map t 7→ eitLFQ[g]e−itLF = Q[g ◦ B−t]
has an analytic continuation into the strip 0 < Im t < π/a, and it is continuous
at the boundary of the strip (t ∈ R, t ∈ iπ

a R). This argument is actually part of
the proof of the Bisognano–Wichmann theorem, [BiWi]. It follows in particular
that the integrals in (30) are well defined and that furthermore

sup
0≤Im s≤π/a

∥∥∥α0
is(I)(N + 1)−1/2

∥∥∥ = C <∞,

where N is the number operator on Fock space. Since |0〉 is the vacuum on the
field part, and each interaction term α0

is(I) can increase the particle number by
at most one we have the bound ‖α0

itn
(I) · · ·α0

it1
(I)|0〉‖ ≤ Cn

√
n!. It follows that

the series (30) converges (for all values of λ) and hence |0〉 ∈ Dom(e−
π
a

eLλ).
The facts that |λ〉 defines a ( 2π

a , α
λ
σ)-KMS state and that Lλ|0〉 = 0 follow

from Araki’s perturbation theory of KMS states, and from perturbation theory
of standard Liouville operators, see [DJP]. �

We are now in a position to state the full result, of which Theorem 2.2 is an
immediate consequence:

Theorem 3.5 Assume that the Fermi Golden Rule Condition (18) is satisfied.
There exists λ0 so that for all 0 < |λ| < λ0, for all density matrices % on H and
for all B ∈ A

ωλ
∞(B) := lim

σ→∞
Tr % αλ

σ(B) = 〈λ|B|λ〉.
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Proof. We show in Section 3.3 that the result follows if the spectrum of Lλ

is purely absolutely continuous with the exception of a single simple eigenvalue
at zero. These spectral characteristics are shown in Theorem 4.2. �

3.3 Reduction to a spectral problem
We reduce the proof of Theorem 3.5 to a spectral problem via the following
simple lemma, which is a variant of the Riemann-Lebesgue lemma:

Lemma 3.6 Let H be a Hilbert space, φ ∈ H, A a subalgebra of B(H) whose
commutant we denote by A′, and let L be a self-adjoint operator on H. Suppose
that A′φ is dense in H, that eiLτAe−iLτ ⊂ A, ∀τ , that Lφ = 0, and that on the
orthogonal complement of φ, L has purely absolutely continuous spectrum.

Then we have
lim

τ→∞
Tr % eiLτBe−iLτ = 〈φ,Bφ〉, (31)

for all A ∈ A and for all density matrices 0 ≤ % ∈ L1(H), Tr% = 1.

Proof. We may diagonalize % =
∑∞

n=1 pn|ψn〉〈ψn|, where ψn ∈ H and the
probabilities 0 ≤ pn ≤ 1 sum up to one. So it suffices to show (31) for a
rank-one density matrix % = |ψ〉〈ψ|. Given any ε > 0 there is a B′ ∈ A′ s.t.
‖ψ − B′φ‖ < ε. Thus by replacing ψ by B′φ, commuting B′ and eiLτAe−iLτ ,
and by using the invariance of φ under e−iLτ we obtain

Tr % eiLτBe−iLτ = 〈ψ, eiLτBe−iLτψ〉 = 〈ψ,B′eiLτBφ〉+O(ε), (32)

where the remainder is estimated uniformly in τ . Since the spectrum of L is
absolutely continuous except for a simple eigenvalue at zero with eigenvector
φ, the propagator eiLτ converges in the weak sense to the rank-one projection
|φ〉〈φ|, as τ → ∞. Using this in (32), together with the facts that 〈ψ,B′φ〉 =
1 +O(ε), and that ε can be chosen arbitrarily small yields relation (31). �

We apply Lemma 3.6 with L = Lλ and φ = |λ〉. The density of A′|λ〉
follows from the KMS property of |λ〉, the invariance of A under eiLλτ · e−iLλτ

follows from Lemma 3.3 and the relation Lλ|λ〉 = 0 is shown in Proposition 3.4.
It remains to prove that on the orthogonal complement of |λ〉, Lλ has purely
absolutely continuous spectrum.

4 Spectral analysis of Lλ

The spectrum of the operator LD consists of two simple eigenvalues ±E (eigen-
vectors |±,∓〉) and a doubly degenerate eigenvalue at 0 (eigenvectors |±,±〉).
LF has absolutely continuous spectrum covering the entire real axis, and a single
embedded eigenvalue at the origin. This eigenvalue is simple and has eigenvector
|0,F〉. It follows that L0 has absolutely continuous spectrum covering the axis
and three embedded eigenvalues at 0,±E, the one at 0 being doubly degenerate.

Our goal is to show that the nonzero eigenvalues are unstable under the
perturbation λ(I − JIJ), and that the degeneracy of the eigenvalue zero is
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lifted. We do this via spectral deformation theory, showing that the unstable
(parts of the) eigenvalues turn into resonances located in the lower complex
plane.

4.1 Spectral deformation
For the spectral analysis it is useful to consider the unitarily transformed Hilbert
space L2(Rd,dκ dd−1k⊥) of one-particle wave functions of the field, determined
by L2(Rd,ddx) 3 f 7→Wf with

(Wf)(κ, k⊥) :=
√
ω⊥ cosh κ f̂(ω⊥ sinh κ, k⊥), (33)

where ω⊥ :=
√
|k⊥|2 +m2 and where f̂ is the Fourier transform of f . The

advantage of this representation of the Hilbert space is that the operator K,
defined in (7), takes the particularly simple form K = i∂κ. The transformation
W lifts to Fock space in the usual way. We do not introduce new names for
spaces and operators in the transformed system. The Liouville operator (16) is

Lλ = LD + LF + λV,

L0 = LD + aLF, LD = HD ⊗ 1l2 − 1l2 ⊗HD, LF = dΓ(i∂κ), (34)

V = I − JIJ, I = G⊗ 1l2 ⊗
a√
2

{
a†(g) + a(g)

}
(35)

acting on the Hilbert space H = C2⊗C2⊗F , where F is the bosonic Fock space
over L2(Rd,dκ dd−1k⊥). In (35) G is the 2×2 matrix with 0 on the diagonal and
1 on the off-diagonals, and g(κ, k⊥) =

(
WΩ−1/2x1ρ(x∗|τ=0)

)
(κ, k⊥) is given in

(17). The action of jF , (25), is given by
(
jFf

)
(κ, k⊥) = f(−κ, k⊥).

We describe now the complex deformation. Let θ ∈ R. The map

ψθ(κ1, . . . ,κn) :=
(
Uθψ

)
(κ1, . . . ,κn) := eiθ(κ1+···κn)ψ(κ1, . . . ,κn)

defines a unitary group on F (we are not displaying the variables k⊥ in the
argument of ψ since Uθ does not act on them). An easy calculation shows that

Lλ(θ) := UθLλU
∗
θ = L0(θ)+λV (θ), L0(θ) = L0−aθN, V (θ) = I(θ)−JI(θ)J,

(36)
where N = dΓ(1l) is the number operator on F and

I(θ) = G⊗ 1l2 ⊗
a√
2

{
a†(eiθκg) + a(eiθκg)

}
, (37)

where we have put the complex conjugate θ in the argument of the annihilation
operator in (37) in view of the complexification of θ.

Lemma 4.1 Let

θ0(m, d) :=
{

∞ if m 6= 0 and d ≥ 1
d−1
2 if m = 0 and d ≥ 2

(38)
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where m ≥ 0 is the mass of the field and d is the spatial dimension. We have
eiθκWΩ−1/2h ∈ L2(Rd, dκdk⊥) for all θ ∈ C satisfying |θ| < θ0 and for all
h ∈ S(Rd,C). Moreover, for |θ| < θ0, Lλ(θ) is a closed operator on the dense
domain D = Dom(L0) ∩Dom(N).

Proof. L0(θ) is a normal operator, so it is closed. Assume we know that
eiθκWΩ−1/2S(Rd,C) ⊂ L2(Rd, dκdk⊥), and recall that x1ρ(x∗|τ=0) ∈ S(Rd,C).
Then, for Imθ 6= 0 the perturbation V (θ) is infinitesimally small w.r.t. L0(θ),
so Lλ(θ) is closed by stability of closedness. For Imθ = 0 the operator Lλ(θ) is
even selfadjoint.

Let h ∈ S(Rd,C). According to (33) we have

(WΩ−1/2h)(κ, k⊥) = ĥ(ω⊥ sinh κ, k⊥).

Since ĥ ∈ S we have that for any integer n there is a constant Cn s.t.∣∣∣ĥ(ω⊥ sinh κ, k⊥)
∣∣∣ < Cn

1 + [m2 sinh2 κ + |k⊥|2 cosh2 κ]n
.

For m = 0 we thus obtain (using an obvious change of variables) the estimate∫
R

dκ e2θ′|κ|
∫

Rd−1
dk⊥

∣∣∣ĥ(ω⊥ sinh κ, k⊥)
∣∣∣2 < C̃n

∫
R

dκ
e2θ′|κ|

[cosh κ]d−1
(39)

which is finite provided θ′ = |Imθ| < (d− 1)/2. If m 6= 0 then the l.h.s. of (39)
is bounded from above by∫

R
dκ

∫
Rd−1

dk⊥ e2θ′|κ| C2
n

[1/2 +m2 sinh2 κ]n[1/2 + |k⊥|2]n

which is finite if θ′ = |Imθ| < n, and n can be chosen arbitrarily large. �

4.2 Spectra of Lλ(θ) and of Lλ

The goal of this section is to prove the following result.

Theorem 4.2 Suppose the Fermi Golden Rule Condition (18) holds. There
is a λ0 > 0 s.t. if 0 < |λ| < λ0 then the spectrum of Lλ consists of a simple
eigenvalue at zero and is purely absolutely continuous on the real axis otherwise.

Remark that the spectrum of L0(θ) = L0 − aθN consists of the isolated
eigenvalues ±E (simple) and 0 (doubly degenerate), and of the lines of con-
tinuous spectrum {R− i an Imθ}n=1,2,.... We now analyze the behaviour of the
eigenvalues of L0(θ) under the perturbation λV (θ). The strategy is to show that
the eigenvalues ±E are unstable under the perturbation, and that the degener-
acy of the eigenvalue zero is lifted. Note that the kernel of Lλ is non-empty by
construction, see (29).

Proof of Theorem 4.2. The central part of the proof is the control of
the resonances bifurcating out of the eigenvalues ±E and 0, see Lemma 4.3.
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A standard analyticity argument then implies Theorem 4.2. The latter can
be summarized as follows: one checks that for all complex z with Imz > 0,
θ 7→ 〈ψθ, (Lλ(θ) − z)−1φθ〉 is analytic in 0 < |θ| < θ0, Imθ > 0, and continu-
ous as Imθ ↓ 0, for a dense set of deformation analytic vectors ψ, φ (take e.g.
finite-particle vectors of Fock space built from test functions f(κ) with com-
pact support). As is well known, the real eigenvalues of Lλ(θ) coincide with
those of Lλ, and away from eigenvalues the spectrum of Lλ is purely absolutely
continuous.

We now present in more detail the resonance theory.

Lemma 4.3 Let θ′ = Imθ > 0. There is a λ1 (independent of θ) s.t. if
|λ| < λ1 min(1, θ′) then in the half-plane {Imz ≥ −θ′/2} the spectrum of Lλ(θ)
consists of four eigenvalues ε±(λ) and ε0(λ) and 0 only (which do not depend
on θ).

Moreover, we have εj(λ) = ej − λ2ε
(2)
j + o(λ2), where j = +,−, 0, and

ε
(2)
0 = i Im ε

(2)
± = i (1 + e−2π E

a )ξ, (40)

whith ξ given in (21).

We remark that the Fermi Golden Rule Condition (18) asserts that ξ > 0.
Proof of Lemma 4.3. By an argument of stability of the spectrum it is not

difficult to show that the spectrum in the indicated half plane consists of four
eigenvalues only.

The position (at second order in λ) is governed by so-called level shift oper-
ators, see e.g. [M2] and references therein. We explain this with the help of the
Feshbach map [BaFS].

Let e be an eigenvalue of L0(θ) and denote the corresponding (orthogonal)
eigenprojection by Qe = PePvac, where Pe is the spectral projection of LD onto
e and Pvac projects onto the vacuum in F . Set Qe := 1l − Qe and denote by
X

e
= QeXQe �RanQ the restriction of an operator X to RanQ. A standard

estimate using Neumann series shows the following fact.

Lemma 4.4 There is a constant λ2 (independent of θ) s.t. if |λ| < λ2 min(E, θ′)
then, for each eigenvalue e of L0, the open ball of radius θ′/2 around e, B(e, θ′/2),
belongs to the resolvent set of L

e

λ(θ).

It follows from Lemma 4.4 that the Feshbach map

Fe,z(Lλ(θ)) := Qe

(
e− λ2V (θ)Qe(L

e

λ(θ)− z)−1QeV (θ)
)
Qe (41)

is well defined for all z ∈ B(e, θ′/2). This map has the following remarkable
isospectrality property [BaFS]: for all z ∈ B(e, θ′/2),

z ∈ spec(Lλ(θ)) ⇐⇒ z ∈ spec
(
Fe,z(Lλ(θ))

)
. (42)

Thus it suffices to examine the spectrum of the operator Fe,z(Lλ(θ)) which acts
on the finite dimensional space RanQe. We expand the resolvent in (41) around
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λ = 0 and consider spectral parameters z = e+O(λ) to obtain

Fe,z(Lλ(θ)) = Qe

(
e− λ2V (θ)Qe(L0(θ)− e)−1QeV (θ)

)
Qe + o(λ2),

where limλ→0 o(λ2)/λ2 = 0. We now use analyticity in θ to conclude that

Fe,z(Lλ(θ)) = Qe

(
e− λ2V Qe(L0 − e− i0+)−1QeV

)
Qe + o(λ2), (43)

where i0+ stands for the limit of iε as ε ↓ 0. The operators

Λe := QeV Qe(L0 − e− i0+)−1QeV Qe

are called level shift operators. For e = ±E they reduce in the present case
simply to numbers (dim RanQe = 1), while Λ0 corresponds here to a 2 × 2
matrix. Using the expression (35) for V one can calculate explicitly the level
shift operators (see also [BaFS, M1, M2] for more details on explicit calculations
in related models).

Lemma 4.5 In the basis {|−,−〉, |+,+〉} of RanQ0 we have

Λ0 = iξe−π E
a

[
e−π E

a −1
−1 eπ E

a

]
, and ImΛ±E = (1 + e−2π E

a )ξ ,

where ξ is given in (21)

Remark. The Gibbs state of the detector at inverse temperature β = 2π/a
(represented by a vector ∝ [1, e−πE/a]) spans the kernel of Λ0.

This lemma together with (43) and the isospectrality (42) shows the expan-
sions (40) and (21). This proves Lemma 4.3, and by the same token, concludes
the proof of Theorem 4.2. �

5 Proofs of Proposition 2.1 and of Lemma 3.3

Proof of Proposition 2.1. The coupled Liouville opertor (16) has the form L̃λ =
L0 + λI, where I = G̃Q[g̃] with G̃ = A + A† and g̃(x) = aδ(x0)x1ρ(x∗(x)) has
support in WR. Essential selfadjointness of L̃λ can easily be shown using the
Glimm–Jaffe–Nelson commutator theorem, see e.g. [FM], Section 3.

The Araki-Dyson series expansion gives (weakly on a dense set)

eiteLλMe−iteLλ =
∞∑

n=0

λn

∫ t

0

dt1
∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn
[
G̃(t1)Q[g̃ ◦B−at1 ],

[
· · ·

· · ·
[
G̃(tn)Q[g̃ ◦B−atn

], eitL0Me−itL0

]
· · ·

]]
, (44)

where we set G̃(t) = eitLDGe−itLD . For M ∈ A any element M ′ ∈ A′ com-
mutes termwise with the series (44), hence M ′eiteLλMe−iteLλ = eiteLλMe−iteLλM ′.
Therefore we have eiteLλAe−iteLλ ∈ A. �
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Proof of Lemma 3.3. Essential selfadjointness is shown using the Glimm–
Jaffe–Nelson commutator theorem, see e.g. [FM] Section 3.1. The fact that L̃λ

and Lλ define the same dynamics on A is easily derived by using that Lλ − L̃λ

belongs to the commutant of A (and e.g. applying the Trotter product formula),
see also [FM]. �
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