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Abstract

Quantum systems coupled to environments exhibit intricate dynamics. The mas-
ter equation gives a Markov approximation of the dynamics, allowing for analytic
and numerical treatments. It is ubiquitous in theoretical and applied quantum sci-
ences. The accuracy of the master equation approximation was so far proven for
small values of the system-environment interaction coupling strength λ, under the
additional constraint that time t must not exceed an upper bound, λ2t ≤ constant.
Here, we show that the Markov approximation is valid for fixed small coupling
strength and for all times. We also construct a new approximate Markovian dy-
namics – a completely positive, trace preserving semigroup – which is asymptotically
in time exact, to all orders in the coupling.

1 Introduction

The evolution in quantum theory is governed by the Schrödinger equation. When a
system is coupled its environment, the Schrödinger equation applies to the whole system-
environment complex. The effective evolution of degrees of freedom of the system, i.e.,
the open system dynamics, does not follow a Schrödinger equation, though. Finding this
effective equations is difficult. Under suitable conditions, in particular for weak system-
environment coupling and if the environment has correlations which decay sufficiently
quickly in time, one expects this evolution to be approximately Markovian. The corre-
sponding equation is the ubiquious Markovian master equation. In this paper, we show
how to obtain bounds for the accuracy of this approximation in a rigorous way. We do
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this using the so-called dynamical resonance theory. Our method works under certain
hypotheses specified below and, to our knowledge, it is the only one able to derive such
rigorous bounds.

Advantages of our approach are:

• We give rigorous bounds for the accuracy of the Markovian approximation, valid for
all times. In particular, we show that the usual master equation generated by the
Davies generator, is accurate to O(λ2), independently of time t for all t ≥ 0, where
λ is the system environment coupling constant. So far, this accuracy was shown to
hold only under the additional constraint λ2t ≤ constant.

• We construct another, new Markovian approximation which is asymptotically exact.
That is, for which the final state is the correct reduced equilibrium state of the
system, to all orders in the perturbation parameter λ. This is an improvement over
the approximation based on the Davies generator, since the latter predicts a final
state which deviates from the true one by O(λ2).

• Our method works for initial system-environment states which are entangled. The
techniques developed in most of the literature, only works under the assumption
of disentangled system-environment initial states. Our method also describes the
evolution of observables of the environment, but we do not elaborate on this aspect
in the current paper.

Difficulties we encounter in our approach are:

• The error bounds for the accuracy of the Markovian approximations we derive in-
volve constants. Those constants do not depend on the system-environment coupling
strength λ nor on time t. However, they depend on other parameters, such as the
dimension of the system and the smoothness and infrared and ultraviolet behaviour
of the coupling function. We have not obtained the explicit dependences on these
parameters (even though in principle, it is possible to do).

• The environment, also called reservoir, consists of free quantum particles. In the
present work, we consider bosons. It is possible to take a reservoir of free fermions,
but a reservoir of interacting particles is not treatable, up to now.

In order to be able to focus on the main ideas of the dynamical resonance theory,
we make the technically most advantageous assumptions in this paper. This means the
class of systems we treat here is somewhat restricted by stronger regularity assumptions.
However, we will extend the theory in several directions, including the following:

• The assumptions we make in this manuscript imply that reservoir correlations decay
exponentially quickly in time. This is not necessary for the dynamical resonance the-
ory to work. By using Mourre theory (as opposed to complex spectral deformation),
we will treat the situation where correlations are merely polynomially decaying.
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• We plan to discuss in detail the system evolution for initially entangled system-
environment states. In the current manuscript, we set up the resonance theory for
the general, possibly entangled case (Section 3.4), but we discuss finer detail on the
dynamics, namely our Results 1-3 (Sections 2.7-2.9) only for factorized initial states.

2 Main results

2.1 The model

We consider open quantum system Hamiltonians

H = HS +HR + λG⊗ ϕ(g) (2.1)

where HS is an N ×N hermitian matrix with eigenvalues Ej and eigenvectors φj,

HS =
N∑
j=1

Ej|φj〉〈φj| (2.2)

and HR is the environment, or reservoir Hamiltonian

HR =
∑
k

ωka
∗
kak, (2.3)

describing modes of a collection of harmonic oscillators, labelled by k. Their frequencies
are ωk > 0 (we set ~ = 1) and the creation and annihilation operators a∗k, ak, satisfy the
canonical commutation relations [ak, a

∗
` ] = δk,` (Kronecker symbol). The interaction term

contains a coupling constant λ ∈ R, an interaction operator G (hermitian N×N matrix),
and it is linear in the field operator

ϕ(g) =
1√
2

∑
k

gka
∗
k + h.c., (2.4)

where h.c. denotes the hermitian conjugate. The collection of the numbers gk ∈ C con-
stitutes the form factor g. The size of gk determines how strongly the mode k is coupled
to the system.

To describe irreversible effects – such as thermalization and decoherence in the small
system – it is necessary to pass to a limit where the oscillator frequencies ωk take on
continuous values (and hence so must k). In principle, the parameter k belongs to an
arbitrary continuous set. For instance, having in mind a reservoir modeling a (scalar)
quantized field in physical space R3 (infinite volume limit), the oscillatory frequencies
are indexed by k ∈ R3, and ωk, gk, a

∗
k and ak become functions ω(k), g(k), a∗(k), a(k)
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with [a(k), a∗(`)] = δ(k− `) (Dirac function). In the continuous mode limit, the reservoir
Hamiltonian (2.3) and field operator (2.4) are

HR =

∫
R3

ω(k)a∗(k)a(k)d3k,

ϕ(g) =
1√
2

∫
R3

(
g(k)a∗(k) + h.c.

)
d3k. (2.5)

The Hilbert space on which the operators (2.5) act is the Bosonic Fock space over the
single particle wave function space L2(R3, d3k) (momentum representation),

F = ⊕n≥0 L
2
sym(R3n, d3nk), (2.6)

where the subscript sym refers to symmetric functions (Bosons) and the summand with
n = 0 is interpreted to be C.

It is customary in the physics literature to carry out calculations for discrete modes
((2.3), (2.4)) and take the continuous limit in quantities of interest at the end. However,
it might be advantageous to start off directly with the continuous model, because then
one can attack the dynamical problem by spectral analysis of the Hamiltonian, using that
continuous spectrum is associated with scattering effects and irreversibility. This is the
approach we take here. A (minor) trade off is that in the continuous mode models, defining
the equilibrium state is slightly more complicated: while the operator e−βHR has a finite
trace for (2.3) this is not the case when HR has continuous spectrum, (2.5). The notion of
reservoir equilibrium density matrix ρR,β ∝ e−βHR has therefore to be replaced by that of
a state (normalized linear functional) ωR,β on reservoir observables. The latter is obtained
by taking the thermodynamic limit of the discrete mode model and is determined entirely
by its two point function (k, l ∈ R3)

ωR,β

(
a∗(k)a(l)

)
=

δ(k − l)
eβω(k) − 1

. (2.7)

Averages of general reservoir observables are found using Wick’s theorem (quasi free, or
Gaussian state). We explain this in Section 3. The analysis presented here can be carried
out for more general states, where the right side of (2.7) is replaced by µ(k)δ(k − l) for
general functions µ(k) > 0, see e.g. Section 4.3 of [30]. Having in mind spectral methods,
as mentioned above, it will be useful to take a purification of reservoir state, i.e., to
describe ωR,β by a vector state in a (new) Hilbert space.

In this paper, it is understood that the continuous mode limit is performed and all
statements are given for continuous models. In other words, we consider Hamiltonians
(2.1) with HR and ϕ(g) given in (2.5).

2.2 Initial states

We consider initial states belonging to the folium of the reference state ωref = ωS ⊗ ωR,β,
where ωS(·) = 1

N
tr(·) is the trace state on the system and ωR,β is the reservoir equilibrium
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state in the thermodynamic limit, characterized by (2.7).1 These states are also called
normal states with respect to ωref [12, 22]. The folium contains the states which are
spatially asymptotically close to equilibrium. To explain what this means, denote by τx,
x ∈ R3, the translation automorphism group acting on reservoir observables, so that if
AR,loc is a reservoir observable (for instance a polynomial of creation and annihilation op-
erators) supported in a bounded region R ⊂ R3, then τx(AR,loc) is its translate, supported
on R + x. Now let ω = ωS ⊗ ωR be a disentangled state in the folium of ωref . Then we
have lim|x|→∞ ω(1lS⊗ τx(AR,loc)) = ωR,β(AR,loc).

2 (For convex combinations of such states
the argument is similar.) This is the meaning of the asymptotical equilibrium property.

The reason for our choice of initial states is easily understood: our methods rely
on representing the initial state on a Hilbert space and relate the dynamics to spectral
properties of the generator of dynamics. All states represented in the same Hilbert space
can then be dealt with on the same footing. Notice that within this folium, the initial
system-reservoir states are allowed to be entangled. We explain this point below in Section
3, and (3.57) is our fundamental result for the dynamics, equally valid for entangled and
product initial states. The dynamics for non-factorized initial states in the van Hove
(weak coupling regime) was analyzed in [43, 46] (see also the references therein) and
we will address the detailed analysis of our results on the dynamics of entangled states
elsewhere.

The main goal of Sections 2.7-2.9 is to make a link with the usual setup and results
in open system theory, where the system dynamics is given by a propagator Vt. The
latter is well defined for disentangled initial states of the form ρS ⊗ ρR,β, where ρR,β is
the equilibrium state (in the thermodynamic limit) and ρS is an arbitrary system state.
(Strictly speaking, ρR,β here is the density matrix representing ωR,β in the purification
Hilbert space – this point is explained in detail in Section 3.) The system dynamics is
described by the reduced system density matrix

ρS(t) = trR e−itH(ρS ⊗ ρR,β) eitH , (2.8)

where trR is the partial trace over the reservoir degrees of freedom. The relation (2.8)
defines a linear map on system density matrices, called the dynamical map Vt, by

ρS 7→ VtρS ≡ ρS(t), (2.9)

and where ≡ denotes a definition. Equivalently, one can introduce the Heisenberg dy-
namics t 7→ αtA of system observables A (hermitian matrices acting on the system), by

1By definition (see for instance [22]), a state ω belongs to the folium of a state ωref if ω is represented
by a density matrix in the Hilbert space of ωref . More precisely, let (H, π,Ω) be the Gelfand-Naimark-
Segal (GNS) representation of ωref , i.e., ωref(A) = 〈Ω, π(A)Ω〉 for all observables A and where the inner
product is that of H. Then the folium is the collection of all states ω such that ω(A) = trH

(
%π(A)

)
,

where % is any density matrix on H.
2ωR is a convex combination of states of the form 〈π(X)ΩR,β , π(·)π(X)ΩR,β〉, where X is a local (or

quasilocal) unitary operator and ΩR,β is the GNS vector representing ωR,β . Due to (quasi-) locality we
have lim|x|→∞[τx(AR,loc), X] = 0 (commutator) which implies the statement.
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setting
trS (VtρS)A = trS ρS(αtA). (2.10)

It is well known (and a source of great difficulty in theory and applications) that the map
t 7→ Vt is not a group in t, namely Vt+s 6= Vt◦Vs. Of course, for λ = 0, VtρS = e−itHSρS eitHS

does have the group property, but when the system interacts with the reservoir (λ 6= 0),
correlations between the two are built up and the group property is destroyed. Still, being
the reduction of a unitary dynamics of a bigger physical system (namely, the system plus
the reservoir), the reduced dynamics Vt has a special structure. Indeed, for each t fixed,
Vt is a completely positive, trace preserving map, for short, Vt is CPT 3. Using (2.10) it is
not difficult to understand that, for any t fixed, Vt is CPT if and only if αt is completely
positive and identity preserving (αt1l = 1l).

2.3 Importance of the group property

If the group property Vt+s = Vt ◦ Vs is satisfied, then there is a generator L, a linear
operator acting on density matrices, such that Vt = etL. The open system dynamics is
entirely determined by the spectral data (eigenvalues and eigenvectors) of L. Assume for
the moment that one can show a spectral representation

etL =
∑
j

eitεjPj, (2.11)

where iεj are the eigenvalues of L and Pj the corresponding eigenprojections.4 All dy-
namical information is then contained in the εj and Pj. Namely, the εj with Im εj > 0
drive irreversible decay (t > 0), with decay rates Im εj and the associated Pj determine
the decay directions in state space. Stationary states are in the range of the projections
Pj with j such that εj = 0.

2.4 Importance of complete positivity

Suppose you have a bipartite system AB in an entangled initial state ρAB. Suppose
that the subsystem B evolves independently, according to its own unitary dynamics Ut
(generated by a Hamiltonian HB) and that the dynamics of subsystem A is given by Vt

3A map V acting on B(H), the bounded operators on a Hilbert space H, is called CPT if (i) for all
ρ ∈ B(H) having finite trace, trV ρ = trρ (trace preserving) and (ii) V ⊗ 1l is positivity preserving on
the space of operators B(H)⊗ B(CK), for all K ≥ 1 (complete positivity). Positivity preserving in turn
means that if X is a bounded non-negative operator acting on H ⊗ CK (having non-negative spectrum
only), then (V ⊗ 1l)X is a bounded non-negative operator acting on H⊗CK . If V is completely positive
then it is positivity preserving, but the converse is not true. For instance, consider two qubits and take
V to the partial transpose operator. This is a positivity preserving map but it is not CP. Indeed the
positive partial transpose (PPT) criterion to check for entanglement in quantum information theory is
based on the fact that the partial transpose is not CP.

4This diagonalization property is assumed here. It is satisfied if all eigenvalues are simple, for example.
Our method works equally well in case L has Jordan blocks but we do not address this point here.
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(emerging for instance by interaction with a reservoir). The state of AB at time t is then
ρAB(t) = (Vt ⊗ Ut)ρAB(0). This state is guaranteed to be a density matrix only because
Vt is completely positive. (If Vt was not completely positive, then one could find an initial
density matrix ρAB(0) for which ρAB(t) would have some negative eigenvalues!) On the
mathematical side, complete positivity of a map V is equivalent with V having a Kraus
representation, which is again equivalent with V being the reduction of a unitary map
acting on a bigger system (adding an ancilla reservoir system). We refer to [8, 2, 11, 13]
for more detail about this.

2.5 Markovian approximation in the van Hove weak coupling
regime

Intuitively, if the reservoir dynamics is very fast, maybe if local disturbances of the
reservoir state are quickly propagated far away (short lived reservoir memory), and if the
system-reservoir interaction is not too large, then the back reaction from the reservoir
onto the system might be minor. In this situation, one expects the group property to
hold for t 7→ Vt. Quantifying this idea is an important problem, leading to the Markovian
approximation. The challenge is to show the validity of a Markovian approximation

Vt = etL +R(t, λ) (2.12)

and to find a parameter regime in which the remainder term R(t, λ) is small. When
the remainder is squarely neglected, Vt = etL is the integrated version of the differential
equation d

dt
Vt = LVt, or as per (2.9), d

dt
ρS(t) = LρS(t), which is called the Markovian

master equation for the system density matrix ρS(t). It is a difficult problem to find
quantitative and controlled (not heuristic) bounds on the remainder R(t, λ) in (2.12).
There is one rigorous approach, called the van Hove-, or weak coupling limit. It states
that for all a > 0,

lim
λ→0

sup
0≤λ2t<a

∥∥Vt − et(LS+λ2K)
∥∥ = 0. (2.13)

Here, LS and K are commuting operators acting on system density matrices and for
each t fixed, et(LS+λ2K) is CPT.5 The operator LS = −i[HS, ·] generates the free system
dynamics (no interaction) and K is a (lowest order) correction term, encoding coupling
effects. The λ2t scaling was used in [44] and later analyzed with mathematical rigour in
[14, 15]. The literature on the weak coupling regime and Markovian master equations is
huge and growing. It has important applications not only to physics and mathematics,
but also to chemistry, biology and the quantum information sciences [40, 23, 37, 9]. It
is worthwhile to note that many different (heuristic) approximations and candidates for
generators have been proposed over time, often violating the CPT requirement, with the
Davies generator LS + λ2K above emerging as the correct one [17, 42].

5Which norm ‖ · ‖ we take in (2.13) is not too important here, as we assume that the system Hilbert
space has finite dimension and so all norms are equivalent.
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The relation (2.13) is the same as (2.12) with L = LS + λ2K and (2.13) says

lim
λ→0

sup
0≤λ2t<a

∥∥R(t, λ)
∥∥ = 0. (2.14)

The shortcoming of (2.13), (2.14) is that only times up to t ≈ a/λ2 are resolved by the
Markovian approximation. Beyond that time scale, et(LS+λ2K) is not guaranteed to be
accurate (the remainder may not be small). Of course, a is arbitrary, so in principle
one can consider large times – but the bigger one takes a, the smaller λ has to be in
order to make the remainder smaller than a given accuracy. (In other words, the speed of
convergence in (2.14) depends on a). Another way of saying this is that, when considering
t → ∞ one has to take at the same time λ → 0 in such a way that λ2t stays bounded
(< a), in order to be sure that the Markovian approximation is valid. This is called the
van Hove weak coupling regime.

One of our main results is to remove the condition that λ2t needs to be bounded. We
show the accuracy of the Markovian approximation for all times t ≥ 0.

2.6 Regularity assumption on the form factor and decay of reser-
voir correlations

The symmetrized correlation function is defined as

Cβ(t) = ReωR,β

(
ϕ(g) eitHRϕ(g) e−itHR

)
= ReωR,β

(
ϕ(g)ϕ( eiωtg)

)
, (2.15)

where g is the form factor in the interaction (2.1) and ωR,β is the reservoir thermal
equilibrium state (2.7). The free reservoir dynamics is characterized by the Bogoliubov
transformation g(k) 7→ eiω(k)tg(k) (see also (2.5)). The resonance theory we develop
requires a regularity condition on the function g. To state it, define the complex valued
function

gβ(u,Σ) =

√
u

1− e−βu
|u|1/2

{
g(u,Σ) u ≥ 0
− eiαḡ(−u,Σ) u < 0

, (2.16)

where g(r,Σ) is the form factor g expressed in spherical coordinates, r ≥ 0 and Σ ∈ S2.
In (2.16), u ∈ R, so gβ is a function of R × S2, while the original g is a function of
R+ × S2 = R3. The phase α ∈ R can be chosen arbitrarily.

We assume the following condition.

(A) For θ ∈ R, set (Tθgβ)(u,Σ) = gβ(u−θ,Σ). There exists a θ0 > 0 such that θ 7→ Tθgβ
has an analytic extension (as a function from R to L2(R × S2)) to 0 < Imθ < θ0

which is continuous at Imθ → 0+.

Note that the θ in condition (A) is not an angle, rather it is a parameter of translation.
A condition which is less technical and which implies (A) is the following.
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(H) Suppose that for some θ0 > 0, the function u 7→ gβ(u,Σ) extends to an analytic
function for complex values of u belonging to the strip Sθ0 = {z ∈ C : −θ0 <
Imz < θ0}, for all Σ ∈ S2, such that

c0 = sup
−θ0<v<θ0

∫
R
du

∫
S2

dΣ
∣∣gβ(u+ iv,Σ)

∣∣2 <∞. (2.17)

Functions gβ having this property belong to the Hardy class on the strip Sθ0 . Con-
dition (H) implies condition (A).

Discussion of assumptions (A) and (H)

(1) The function g has to behave appropriately in the infrared regime so that the parts of
(2.16) fit nicely together at u = 0, to allow for an analytic continuation. The square
root in (2.16) must be analytic as well, which implies the condition θ0 < 2π/β.
This means that we have to consider strictly positive temperature T = 1/β > 0.
Furthermore, our method requires an upper bound λ2 ≤ cθ0 (some fixed c), see e.g.
Figure 1 below, so we need the condition λ2 ≤ cT to hold. A family of form factors
g satisfying condition (A) is given by

g(r,Σ) = rp e−r
2

g1(Σ), with p = −1/2 + n, n = 0, 1, 2, . . .,

and where g1 is an arbitrary function of the angle Σ ∈ S2 satisfying g1(Σ) =
eiα′ ḡ1(Σ) for an arbitrary phase α′ ∈ R. As an example, suppose g(r,Σ) = r−1/2 e−r

2
.

Then we chose α = π in (2.16) and get gβ(u,Σ) = e−u
2√ u

1− e−βu
which satisfies

(H), hence (A). If g(r,Σ) = r1/2 e−r
2
, then we choose α = 0 in (2.16) and obtain

gβ(u,Σ) = u e−u
2√ u

1− e−βu
, which again satisfies (H) and (A).

(2) Assumption (A) guarantees that the simplest version of spectral deformation tech-
niques is applicable (namely, spectral translation). The reservoir correlation func-
tion (2.15) can be written as

Cβ(t) =

∫
R
du eiut

∫
S2

dΣ |gβ(u,Σ)|2

(this is a direct calculation, see also [35], Appendix A) and (A) implies exponential
decay of the correlation function. Indeed, let θ′ < θ0, then

Cβ(t) = e−θ
′t

∫
R
du ei(u−iθ′)t

∫
S2

dΣ |gβ(u,Σ)|2.

By a change of the variable u, the integral is over the function |gβ(u + iθ′,Σ)|2,
which is finite and therefore, Cβ(t) ≤ const. e−θ

′t. In this paper, we thus assume
that the reservoir correlation decay exponentially. An extension of the theory to
polynomially decaying correlations is possible and is planned, see point (4) below.
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(3) The property of return to equilibrium for open systems, that is, that initial states
converge to the coupled system-reservoir equilibrium in the limit of large times (see
also (3.1)), was shown under milder regularity conditions on g by using a combi-
nation of spectral dilation and translation and a rather involved renormalization
group analysis in [6]. However, those techniques have never been used to address
the much more detailed information on the reduced system dynamics as we do here
in Sections 2.7-2.9.

(4) Another approach is to replace spectral deformation theory by an infinitesimal ver-
sion of it, called Mourre theory. Here one can significantly weaken the regularity
requirements on g, replacing analyticity by just real differentiability. This implies
that Cβ(t) decays polynomially in time only. This technically more demanding route
was taken in [27] to find the reduced dynamics of the system modulo an error ∝ 1/t
for large times. The fact that weaker regularity of g leads to polynomial decay of
errors (while analyticity implies exponential decay in our results here, Sections 2.7 -
2.9) might not be surprising. Tthe disadvantage of [27] is that the remainder is not
shown to be small in λ. An extension of the techniques of [27] to show this small-
ness is planned. It would yield results presented here for a much larger class of form
factors g, so a less stringent regularity condition can be traded off for polynomially
decaying remainder terms.

(5) The fact that (H) implies (A) can be seen as follows. First note that weak analyticity
is equivalent with strong analyticity [38] (Theorem VI.4). This means we only have
to show that for each f ∈ L2 = L2(R× S2, du× dΣ), the complex valued function
θ 7→ 〈f, gβ(· − θ)〉 =

∫
R du

∫
S2 dΣ f(u,Σ)gβ(u− θ,Σ) extends to complex values of θ

with 0 < Imθ < θ0 which is continuous at the real line. First take f with compact
support in the variable u. Then you may interchange d/dθ with the integrals,

d
dθ
〈f, gβ(· − θ)〉 =

∫
R
du

∫
S2

dΣ f(u,Σ) d
dθ
gβ(u− θ,Σ)

and it is now clear that θ 7→ 〈f, gβ(· − θ)〉 is analytic in Sθ0 due to condition (H).
To show analyticity for an arbitrary f , take a sequence of functions fn ∈ L2 with
compact support in u satisfying ‖fn − f‖L2 → 0. Each Fn(θ) = 〈fn, gβ(· − θ)〉
is analytic by the previous argument. Moreover, since |Fn(θ) − 〈f, gβ(· − θ)〉| ≤
c0‖fn−f‖L2 , where c0 is given in (2.17), we have that Fn(θ) converges to 〈f, gβ(·−θ)〉
uniformly in θ ∈ Sθ0 . Hence the limit function is also analytic.

2.7 Result 1: Resonance expansion of the dynamics

The resonance theory is a mathematically rigorous approach for the analysis of the evo-
lution of the system-reservoir complex. It does not only describe the dynamics of the
system state or observables, but also that of the reservoir. Here we explain the results

10



on the system Schrödinger dynamics. To state our results in terms of the dynamical map
Vt, we assume that the initial system-reservoir state is disentangled, of the form (2.8) for
t = 0. (The result for general initial states is given in (3.57).)

We show that if |λ| ≤ λ0 (for some λ0 > 0), then for all times t ≥ 0,∥∥Vt −Wt − ρS,β,λ 〈tr|
∥∥ ≤ Cλ2 e−γ(λ)t. (2.18)

The constant C < ∞ is independent of λ, t and γ(λ) ≥ 0 does not depend on t. In
(2.18), 〈tr| is the linear functional ρ 7→ tr(ρ) = 1. Moreover, ρS,β,λ is the effective system
equilibrium state, obtained by taking the full, coupled system-reservoir equilibrium state
(relative to H, (2.1)) and tracing out the reservoir degrees of freedom. Wt is a linear map
on system states (density matrices), describing how, and if, the system approaches the
equilibrium ρS,β,λ. It has an expansion of the type (2.11),

Wt =
∑
j

eitεj(λ)Pj, (2.19)

where the Pj are λ-independent projection operators (acting on system density matrices).
They satisfy

PjPk = δj,kPj and
∑
j

Pj = W0 = 1l− ρS,β,0 〈tr|, (2.20)

where ρS,β,0 = e−βHS/tr( e−βHS) is the (uncoupled) system equilibrium state. The εj(λ) ∈
C are analytic in λ at the origin,

εj(λ) = ε
(0)
j + λ2ε

(2)
j +O(λ4) (2.21)

and ε
(0)
j are differences of eigenvalues of HS (Bohr energies). It is clear from (2.19) and

the properties of the Pj that
Wt+s = Wt ◦Ws. (2.22)

Symmetries or degeneracies in the spectrum of HS can cause some of the εj(λ) to vanish
(or to be real). In this case, the associated Pj project onto additional stationary states,
other than ρS,β,λ. However, generically, in the absence of symmetries and degeneracies,
one has Imεj(λ) > 0 for all j (for small, nonzero λ). Then all terms in (2.19) decay in
time, the jth one at the rate Imεj(λ). Denoting by 2`j the order of the zero of Imεj(λ)
at the origin, i.e., Imεj ∝ λ2`j to leading order in λ, we see that Wt is a sum of terms
decaying at (possibly different) rates λ2`j . The slowest decay rate is

γ(λ) = min
j

Imεj(λ) ≥ 0 (2.23)

and coincides with that of the remainder in (2.18). Note, however, the additional factor
λ2 on the right side of (2.18). The result (2.18) can be expressed as

Vtρ = ρS,β,λ +Wtρ+O
(
λ2 e−γ(λ)t

)
(2.24)

for any density matrix ρ, with an error term which is (quadratically) small in λ for all
times, and which also decays to zero exponentially quickly in time.
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2.8 Result 2: Approximation of the dynamics by a CPT semi-
group for all times

In applications it is often observed that the imaginary parts of all the εj(λ) are strictly
positive already to second order in λ (see (2.21)), i.e., that

γFGR ≡ min
j

Im ε
(2)
j > 0. (2.25)

If (2.25) is satisfied we say that the Fermi Golden Rule Condition holds [3, 6, 24, 33, 34].
In this situation, Wt contains the single characteristic time scale λ−2. We assume (2.25)
now. Retaining only the leading terms of Wt and ρS,β,λ on the left side of (2.18), namely

εj(λ) ≈ ε
(0)
j + λ2ε

(2)
j , ρS,β,λ ≈ ρS,β,0 =

e−βHS

tr e−βHS
, (2.26)

we can show the following result. There is a λ0 > 0 such that if |λ| ≤ λ0, then for all
t ≥ 0, ∥∥Vt − et(LS+λ2K)

∥∥ ≤ Cλ2. (2.27)

Here, LS = −i[HS, ·] (commutator) and K are commuting operators acting on system den-

sity matrices, and K is constructed entirely in terms of ε
(2)
j and Pj. Moreover, et(LS+λ2K)

is a CPT semigroup satisfying

et(LS+λ2K)ρS,β,0 = ρS,β,0. (2.28)

It is the same semigroup as the one in the weak coupling (van Hove) result (2.13). In
passing from (2.19) to (2.27) we have gained the CPT and semigroup properties of the
approximation, but we have traded it for a worse error estimate. Namely, the approxima-
tion (2.27) is still O(λ2) for all t ≥ 0, but it does not decay to zero for large times, as it did
in (2.18). The inequality (2.27) proves that the Markovian approximation, implemented
by a CPT semigroup, is valid for all times t ≥ 0. It can be phrased as

sup
t≥0

∥∥Vt − et(LS+λ2K)
∥∥ ≤ Cλ2. (2.29)

This is a significant improvement of the weak coupling result (2.13).
The generator K can be obtained by perturbation theory or by the relation

lim
λ→0

V τ
λ2
◦ e−

τ
λ2
LS = eτK , τ ≥ 0, (2.30)

which identifies it as the Davies generator (the same K as in (2.13)), [14, 15, 2, 11, 13, 18].
It can be calculated explicitly, see the Appendix A.
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2.9 Result 3: Approximation of the dynamics by an asymptot-
ically exact CPT semigroup

The origin of the loss of time decay in the remainder, when passing from (2.18) to (2.27)
as described in the previous section, comes from replacing ρS,β,λ by ρS,β,0 (see (2.26)).
We recall that ρS,β,λ is the restriction to the system of the full, coupled system-reservoir
equilibrium state. This replacement unavoidably introduces an error of O(λ2) for large
times, as the true final (t → ∞) system state is ρS,β,λ, while the one predicted by the
approximation is ρS,β,0, differing from the true one by O(λ2). Above, this replacement
was necessary in order to incorporate the final state into the approximate dynamical
group, as an element in the kernel of the generator LS + λ2K, see (2.28). To avoid the
approximation of ρS,β,λ, we might try to modify the generator into a new one, M(λ),
by adding supplementary terms of all orders in λ, as to make the full ρS,β,λ an invariant
state. This is the result we explain now, and in this result we restore the time decay of
the remainder (obtaining thus an asymptotically exact approximation).

We introduce a renormalization, H̃S(λ), of the system Hamiltonian, satisfying

e−βH̃S(λ)

tr e−βH̃S(λ)
= ρS,β,λ. (2.31)

By carrying out the resonance theory leading to the results of Subsection 2.7, but now
with this renormalized reference state (2.31), the CPT semigroup approximating the true

dynamics Vt turns out to be et(L̃S+λ2K̃), with λ dependent operators L̃S and K̃. The crucial
point is that et(L̃S+λ2K̃)ρS,β,λ = ρS,β,λ, which replaces the property (2.28) in the previous
argument and allows us to obtain a remainder which decays to zero for large times. We
show the following.

Suppose that the Fermi Golden Rule Condition γFGR > 0 is satisfied (c.f. (2.25)).
Then there is a λ0 > 0 such that for |λ| < λ0, and all times t ≥ 0,∥∥Vt − etM(λ)

∥∥ ≤ C
(
|λ|+ λ2t

)
e−λ

2γFGR t (1+O(λ2)). (2.32)

Here, etM(λ) is a CPT semigroup with a generator M(λ) analytic in λ, containing all
orders of λ. Its Taylor series can be calculated by perturbation theory. The result (2.32)
shows that we can construct a CPT semigroup which approximates the true dynamics
and which is asymptotically exact, meaning that limt→∞(Vt− etM(λ)) = 0. Note, however,
that for t ∼ 1/λ2, the right hand side of (2.32) is not small. Still, for times t > 1/(λ2γFGR)
the remainder becomes negligible.

We obtain a better result for the dynamics of observables which commute with HS

(or, for the populations of the system density matrix). Namely, we show that there is a
λ0 > 0 such that for |λ| < λ0,∥∥Vt ◦ V S

−t − etλ
2Md(λ) − (1lS − V S

−t)ρS,β,λ 〈tr|
∥∥ ≤ C(λ+ λ4t) e−λ

2t(γFGR+O(λ2)). (2.33)

Here, V S
−t is the free system dynamics, V S

−t ρ = eitHSρ e−itHS for any system density matrix

ρ. Moreover, etλ
2Md(λ) is a CPT semigroup with a generator Md(λ) analytic in λ (d for
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diagonal), which is explicitly constructible by perturbation theory and satisfies Md(0) =
K, the Davies generator (see (2.30)). The generators M(λ) and Md(λ) are related by

M(λ) = −i[H̃S(λ), · ] + λ2Md(λ) (2.34)

and the two operators on the right side commute.
We now show how (2.33) implies a better result than (2.32) for the evolution of the

populations of the state Vtρ, i.e., the diagonal of the density matrix Vtρ in the energy
basis of HS (Pauli equations, see also [3]). The last term on the left side in (2.33) vanishes
when applied to system observables X which commute with HS. Namely, let ρ be a system
initial state and let X be such an observable. Then

trS

(
(1lS − V S

−t)ρS,β,λ 〈tr| ρ
)
X = trS ρS,β,λ(X − e−itHSX eitHS) = 0. (2.35)

For an operator A, set
[A]k,` = 〈φk, Aφ`〉, (2.36)

where φk is the eigenvector of HS associated to the eigenvalue Ek, see (2.2). The popula-
tion of the energy Ek at time t is then

[Vtρ]k,k = 〈φk, (Vtρ)φk〉. (2.37)

Combining (2.33) and (2.35) shows that

[Vtρ]k,k = [ etλ
2Md(λ)ρ]k,k +O

((
|λ|+ λ4t

)
e−λ

2t(γFGR+O(λ2))
)
, (2.38)

so we have a CPT semigroup which approximates the populations to accuracy O(λ) for
all times, and on top of this, is asymptotically exact.

Remark on the parameter dependence of constants in the error estimates
and λ0. The constants C in our main results (2.18), (2.27), (2.32) and (2.38) will depend
on the system dimension N and properties of the interaction operator G and the form
factor g. To find the dependence is in principle possible in our approach. This analysis
must be carried out on a remainder that depends on all powers of λ and we have not
done this so far. We believe it would be interesting to start with a benchmark problem,
say compare the approximation of the dynamics by the resonance theory to the explicit
solution for the spin-boson model (or N spins coupled to bosons) with energy conserving
interaction. One could then use numerical methods to compare the resonance approxi-
mation to the correct dynamics and exhibit the dependence of the difference on N and
on properties of the coupling function g (e.g. the ultraviolet and infrared characteristics
of g). Similarly, one might test the validity of the resonance approximation for varying
sizes of the coupling parameter λ and find the dependence of λ0 on model parameters.
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3 Mechanism of the resonance theory

3.1 History

The method we develop has its origins in works using a C∗-dynamical system approach,
pioneered in [24, 6]. In those works, it was shown that all initial system-reservoir states
ω, taken from the same class as we consider, converge to the coupled system-reservoir
equilibrium state ωSR,β,λ in the limit of large times. More precisely, for system-reservoir
observables A,

lim
t→∞

ω
(

eitHA e−itH
)

= ωSR,β,λ(A). (3.1)

In this setup, the approach to equilibrium is linked to the spectrum of the (complex
deformed) Liouville operator. The spectrum of this operator consists of complex numbers
and eigenvalues are called resonances. Convergence to equilibrium is implied by the fact
that the Liouville operator has a simple eigenvalue at zero, the eigenvector being the
equilibrium state. A spectral gap in the spectrum at the origin (when zero is an isolated
resonance) makes the convergence in (3.1) exponentially fast in time. This mechanism is
revealed below in Section 3.4.

We point out that the system-reservoir dynamics overall is Hamiltonian, governed by
the unitary group eitH . So how is the relation (3.1) possible? The point is that one
considers only (quasi-)local observables A in (3.1). To explain this, one can view the
reservoir as a spatially infinitely extended reservoir of quantum particles (quantum field)
in R3. Local observables A are those made of system observables and field operators (or
creation and annihilation operators) supported only at spatial points x ∈ R3 belonging
to bounded sets. Quasi-local observables are limits of such observables. It becomes
then intuitively clear that while the global dynamics is unitary, on local observable it is
irreversible. This is just as in usual quantum theory: A single, free particle in R3 with
Hamiltonian − ~2

2m
∆x having continuous spectrum will leave any bounded region as t→∞,

so the average of any quasi-local observable will vanish in this limit. This happens even
though the dynamics is unitary.

In [33, 34] it was realized that the nonzero resonances govern the evolution of the
system coherences and consequently a rigorous analysis of the dynamics of decoherence
and entanglement in various physical settings became possible, see e.g. [31, 32]. The
CPT properties and asymptotic exactness of the approximating Markovian dynamics
have not been addressed until very recently. In [26] we give a short (two page) outline
of a proof of the Results 1 and 2 presented in the current work. The paper [26] focuses
on the construction of an asymptotically exact Markovian approximation, which is part
of Result 3 of the present publication. However, there is a gap in the proof of the main
result in [26]. This is explained in an erratum to [26], where it is also announced that
we can still show the result in its full strength for the dynamics of the populations of the
system (but not the coherences). We give the corresponding precise statement and proof
of it here in (2.38).

An approximate system dynamics valid for all times was constructed [25], using a
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semigroup with a generator depending on all powers of λ, but which is not asymptotically
exact, and which is not shown to be CPT. In contrast, we show here that the approxima-
tion by the CPT semigroup given by the free dynamics plus the Davies generator, which
is merely quadratic in λ, works for all times already. By adding higher orders in λ to the
generator, we achieve an asymptotically exact CPT semigroup.

In this work, we only consider time independent Hamiltonians, but the resonance
theory has also been applied to time dependent ones, see [36, 1, 7].

Of course, non Markovian effects play an important role in quantum physics and are
heavily studied (see for instance the reviews [41, 10]). A refined weak coupling limit
which captures non-Markovian effects has been developed in [39]. It will be interesting to
examine how our resonance theory will contribute to this line of study.

3.2 Purification of the initial state

Given any (initial) system density matrix ρS acting on CN , we take a purification, i.e., a
normalized vector ΨS ∈ CN ⊗ CN satisfying

trSρSX = 〈ΨS, (X ⊗ 1lS)ΨS〉 (3.2)

for all system operators X ∈ B(CN).6 We also take a purification of the reservoir thermal
equilibrium state (2.7), whose associated Hilbert space is again obtained by doubling the
original one, namely the Fock space F , (2.6). On F ⊗F , define the thermal annihilation
operators

aβ(k) =
√

1 + µ(k)
(
a(k)⊗ 1l

)
+
√
µ(k)

(
1l⊗ a∗(k)

)
,

µ(k) =
1

eβω(k) − 1
, (3.3)

and set (aβ(k))∗ ≡ a∗β(k). This representation is due to [5]. One verifies that [aβ(k), a∗β(l)] =
δ(k − l), and that the purification of ωR,β is given by

ωR,β(P) = 〈ΩR,PβΩR〉 , (3.4)

where
ΩR = Ω⊗ Ω ∈ F ⊗ F , (3.5)

Ω is the vacuum vector in F , P is an arbitrary polynomial in creation and annihilation
operators and Pβ is that same polynomial with each a∗(k), a(l) replaced by a∗β(k), aβ(l).

6To do this explicitly, first diagonalize ρS =
∑
j pj |χj〉〈χj |. Then the vector ΨS =

∑
j

√
pjχj ⊗ Cχj

does the job in (3.2), where C is any antiunitary map. Our convention is to take C to be the operator
taking the complex conjugate of vector coordinates in the eigenbasis of HS. This purification is also
known under the name of Gelfand-Naimark-Segal representation in the theory of operator algebras, and
for finite dimensions in linear algebra it is called vectorization.
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For the purposes of this paper, we shall call such Pβ reservoir observables 7. We denote
the smoothed out operators by (f ∈ L2(R3, d3k))

a∗β(f) =

∫
R3

f(k)a∗β(k), ϕβ(f) =
1√
2

(
a∗β(f) + aβ(f)

)
(3.6)

To show that (3.4) is a purification of the reservoir equilibrium state, one just has to
check that

ωR,β

(
a∗(k)a(l)

)
=
〈
ΩR, a

∗
β(k)aβ(l)ΩR

〉
(3.7)

equals the right side of (2.7), which is easy to do. The disentangled system reservoir state
is thus represented in the purification Hilbert space by the reference vector

Ψref = ΨS ⊗ ΩR ∈ Href ≡ CN ⊗ CN ⊗F ⊗F . (3.8)

The initial states we consider are exactly those which are represented by a vector (or a
density matrix) on the space Href . This class contains entangled system-reservoir states.
As an example, take an initial state obtained by entanglement via interaction, of the form
(expressed before the continuous mode limit) ρSR,0 = e−iτ(G⊗P)(ρS ⊗ ρR,β)eiτ(G⊗P). Here,
τ is a preparation time during which the disentangled ρS ⊗ ρR,β builds up entanglement
due the system reservoir interaction G⊗P , where G and P are self-adjoint operators (e.g.
P a polynomial in field operators ϕ(g), (2.5)). The purification vector of the entangled
state ρSR,0 is ΨSR,0 = e−iτ(G⊗1lS⊗Pβ)Ψref ∈ Href and belongs to the class of initial states we
allow.

The glued Fock space representation. It is sometimes useful to represent F ⊗F ,
where F is given in (2.6), as a Fock space over a different single-particle space. We explain
this here and refer to [34], Appendix A, for further detail and also to [24]. The symmetric
Fock space F(H) over a Hilbert space H is defined by

F(H) = ⊕n≥0

(
⊗nsym H

)
,

where the summand with n = 0 is interpreted to be C and⊗nsymH is the set of all symmetric
(permutation invariant) vectors in H⊗ · · · ⊗H. The exponential property of Fock spaces
reads

F(H1)⊗F(H2) = F(H1 ⊕ H2), (3.9)

where the equality signifies that there is an isometric isomorphism between the left and
right sides. It can be easily verified using the identification

a∗(f1) · · · a∗(fm)Ω⊗ a∗(g1) · · · a∗(gn)Ω

= a∗(f1 ⊕ 0) · · · a∗(fm ⊕ 0)a∗(0⊕ g1) · · · a∗(0⊕ gn)Ω, (3.10)

7In a more mathematical approach, the reservoir algebra is the Weyl algebra, represented on F ⊗ F ,
generated by thermal Weyl operators Wβ(f) = eiϕβ(f).
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where f1, . . . fm ∈ H1 and g1, . . . fn ∈ H2 and the vectors Ω are the vacua corresponding
to the Fock spaces in question.

With (3.9) and, as per definition (2.6), F = F(L2(R, d3k)), we have

F ⊗ F = F
(
L2(R, d3k)⊕ L2(R, d3k)

)
. (3.11)

Next, we have an identification (isometric isomorphism) L2(R, d3k)⊕L2(R, d3k) = L2(R×
S2, du× dΣ), given explicitly by

f ⊕ g = h, h(u,Σ) = u

{
f(u,Σ) u ≥ 0
− eiαg(−u,Σ) u < 0

(3.12)

where α ∈ R is arbitrary (but fixed). On the right side of (3.12), the functions f, g are
represented in polar coordinates R3 3 k ↔ (u,Σ) ∈ R+ × S2. Using the isomorphisms
(3.12) and (3.11) we arrive at

F ⊗ F = F
(
L2(R× S2, du× dΣ)

)
. (3.13)

We call the Fock space on the right side the glued Fock space, since two radial variables
in R+ have been glued together at the origin to give a new variable u ∈ R. Accordingly,
the reference Hilbert space (3.8) is identified with

Href = CN ⊗ CN ⊗F
(
L2(R× S2, du× dΣ)

)
. (3.14)

In the glued Fock space, the field operator ϕβ(g), (3.6), takes the form ϕ(gβ), where
gβ ∈ L2(R×S2, du×dΣ) is defined in (2.16). More precisely, ϕ(gβ) = 1√

2
(a∗(gβ) +a(gβ)),

where the operators on the right side are the creation and annihilation operators acting
on the glued Fock space (3.13). So, for example, a∗(gβ)a∗(hβ)Ω = 1

2
(gβ ⊗ hβ + hβ ⊗ gβ)

is a symmetric two particle state with single particle wave functions gβ and hβ (each a
member of the enlarged single-particle Hilbert space L2(R× S2, du× dΣ)).

3.3 Equilibrium states

The uncoupled equilibrium state obtained as the continuous mode limit of∝ e−βHS⊗e−βHR

has the purification
ΩSR,β,0 = ΩS,β ⊗ ΩR, (3.15)

where ΩR is given in (3.5) and (see (2.2))

ΩS,β = Z
−1/2
S,β

∑
j

e−βEj/2φj ⊗ φj ∈ CN ⊗ CN , (3.16)

with ZS,β = tre−βHS . Of course ΩSR,β,0 ∈ Href . The interacting equilibrium state ΩSR,β,λ,
defined as the continuous mode limit of the density matrix ∝ e−βH (the interacting H,
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(2.1)) is given by8

ΩSR,β,λ =
e−

β
2

(L0+λG⊗1lS⊗ϕβ(g))ΩSR,β,0

‖ e−
β
2

(L0+λG⊗1lS⊗ϕβ(g))ΩSR,β,0‖
∈ Href . (3.20)

Here, L0 is the uncoupled Liouvillian, explicitly given in (3.23) below. The equilibrium
state ΩSR,β,λ, for any λ ∈ R, has the important property of cyclicity and separability,
a property shared by all equilibrium (KMS) states, and which is known in generality
from the theory of operator algebras [12] (Volume 2, Corollary 5.3.9). Cyclicity of ΩSR,β,λ

means that any vector Ψ ∈ Href can be approximated arbitrarily well by a vector of the
form BΩSR,β,λ, for some operator B which is a linear combination of terms G⊗ 1lS ⊗Pβ,
where G and Pβ are system and reservoir observables.9 Separability of ΩSR,β,λ means that
an arbitrary Ψ ∈ Href can also be approximated arbitrarily well by a a vector of the form
B′ΩSR,β,λ, for some operator B′ which is a linear combination of terms 1lS⊗G⊗P ′β, where
G is a system observable and P ′β is an operator acting on F ⊗ F which commutes with
any reservoir observable Pβ.

The cyclicity and separating properties are easily shown for finite dimensional systems.
Namely, cyclicity comes from the fact that (in finite dimensions) any equilibirum density
matrix e−βHS has full range (is invertible). The separating property (which is the same
as cyclicity relative to the commutant) comes about by a natural isomorphism between
observables and operators commuting with observables (X ⊗ 1lS ↔ 1lS ⊗ X). Explicitly,
from (3.16) we see that for any k, l,

φk ⊗ φl =
(
G1 ⊗ 1lS

)
ΩS,β =

(
1lS ⊗G2)ΩS,β, (3.21)

for G1 = Z
1/2
S,β e

βEl/2|φk〉〈φl| and G2 = Z
1/2
S,β e

βEk/2|φl〉〈φk|. Hence in (3.21) we can recon-

struct any basis element φk⊗φl. By linear combination, given any Ψ ∈ CN ⊗CN , we can

8Formula (3.20) is known from the perturbation theory of KMS states, see for instance [12, 4, 16, 6].
For finite dimensional systems in particular, this is easy to understand. Let ω0 and ω be the unperturbed
and perturbed equilibrium states given by density matrices ∝ e−βH and ∝ e−β(H+V ). Then

ω(A) =
tr( e−β(H+V )A)

tr e−β(H+V )
=

tr( e−βH e
β
2H e−

β
2 (H+V )Ae−

β
2 (H+V ) e

β
2H)

tr e−β(H+V )

=
tr e−βH

tr e−β(H+V )
ω0

(
e

β
2H e−

β
2 (H+V )Ae−

β
2 (H+V ) e

β
2H
)
. (3.17)

Now ω0(B) = 〈Ω0, (B ⊗ 1l)Ω0〉, with Ω0 satisfying LΩ0 = 0, where L = H ⊗ 1l− 1l⊗H. We have(
e−

β
2 (H+V )Ae−

β
2 (H+V )

)
⊗ 1l = (1l⊗ e−

β
2H)

(
e−

β
2 (L+V⊗1l)(A⊗ 1l) e−

β
2 (L+V⊗1l))(1l⊗ e−

β
2H). (3.18)

This is so since e−
β
2 (L+V⊗1l) = e−

β
2 (H+V ) ⊗ e

β
2H . It follows from (3.18) that

ω0

(
e

β
2H e−

β
2 (H+V )A e−

β
2 (H+V ) e

β
2H
)
∝ 〈Ω0, e

β
2L e−

β
2 (L+V⊗1l)(A⊗ 1l) e−

β
2 (L+V⊗1l) e

β
2LΩ0〉. (3.19)

Since e
β
2LΩ0 = Ω0, (3.19) is of the form 〈Ω, (A ⊗ 1l)Ω〉 with Ω ∝ e−

β
2 (L+V⊗1l)Ω0. Combining this with

(3.17) gives ω(A) = 〈Ω, (A⊗ 1l)Ω〉. This is the formula (3.20).
9For any ε > 0 there is a B s.t. ‖Ψ−BΩSR,β,λ‖ < ε.
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find G′1 and G′2 s.t. Ψ = (G′1 ⊗ 1lS)ΩS,β = (1l ⊗ G′2)ΩS,β. These properties carry over to
equilibrium states of infinite dimensional (continuous mode) systems, with the only differ-
ence that exact equality might not be possible, but an arbitrarily accurate approximation
of Ψ can be achieved [12].

Dynamics of the purified state: the Liouvillian. The uncoupled dynamics is gen-
erated by the Hamiltonian H0 = HS + HR, (2.2), (2.3). Its Heisenberg form eitH0

(
G ⊗

a∗(k)
)

e−itH0 = eitHSGe−itHS⊗ eiω(k)ta∗(k) is implemented in the purification Hilbert space
as follows. Let Ψ0 ∈ Href be the vector representing the state ω0. Then

ω0

(
eitH0

(
G⊗ a∗(k)

)
e−itH0

)
=

〈
Ψ0,

(
eitHSG e−itHS ⊗ 1lS ⊗ eiω(k)ta∗β(k)

)
Ψ0

〉
=

〈
Ψ0, eitL0(G⊗ 1lS ⊗ a∗β(k)) e−itL0Ψ0

〉
, (3.22)

where L0 is called the uncoupled Liouvillian, given by

L0 = LR + LS

LS = HS ⊗ 1lS − 1lS ⊗HS

LR = HR ⊗ 1lR − 1lR ⊗HR. (3.23)

Relation (3.22) is readily verified. Note that LRΩR = 0 (see (3.5)). Adding the term
−1lS ⊗ HS to the system Liouvillian LS as defined in (3.23) is optional.10 It serves to
ensure the agreeable property LSΩS,β = 0 (see (3.16)). Thus we have

L0ΩSR,β,0 = 0. (3.24)

The full, interacting dynamics generated by H, (2.1), is implemented as

ω0

(
eitH(X ⊗ P) e−itH

)
=
〈
Ψ0, eitLλ(X ⊗ 1lS ⊗ Pβ) e−itLλΨ0

〉
. (3.25)

Here, Lλ is the coupled Liouvillian, given by

Lλ = L0 + λI

I = G⊗ 1lS ⊗ ϕβ(g)− J
(
G⊗ 1lS ⊗ ϕβ(g)

)
J. (3.26)

The operator Lλ is self-adjoint, for any value of λ ∈ R. This is proven for instance by
using Glimm-Jaffe-Nelson triples techniques, c.f. [20].

We will not use explicitly the form of Lλ in this paper, but let us explain the term
J
(
G⊗ 1lS ⊗ ϕβ(g)

)
J in (3.26). This is an operator which commutes with all observables

(i.e., with all operators which are linear combinations of the form X ⊗ 1lS ⊗ Pβ). The

10We mean that HS ⊗ 1lS and HS ⊗ 1lS + 1lS ⊗K implement the same dynamics, no matter what the
operator K is. This is due to the doubling of the Hilbert space: indeed, eitHS⊗1lS(G ⊗ 1lS) e−iHS⊗1lS =
eit(HS⊗1lS+1lS⊗K)(G⊗ 1lS) e−i(HS⊗1lS+1lS⊗K), because eit(HS⊗1lS+1lS⊗K) = eitHS ⊗ eitK . The observables are
always of the form G⊗ 1lS acting trivially on the second factor. This is why we can modify the generator
by adding a term acting on the second tensor factor without changing the dynamics.
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map J is an anti-unitary involution, the modular conjugation of Tomita Takesaki theory,
defined by the property

J e−βL0/2
(
G⊗ 1lS ⊗ Pβ

)
ΩSR,β,0 =

(
G⊗ 1lS ⊗ Pβ

)∗
ΩSR,β,0, (3.27)

valid for all G and Pβ.11 The action of J can be written down explicitly. Namely,
J = JS⊗ JR, with JS, JR defined by the following relations (plus antilinear extension and
continuity)

JS

(
χ1 ⊗ χ2

)
= Cχ2 ⊗ Cχ1

JR

(
ψ1(k1, . . . , km)⊗ ψ2(`1, . . . , `n)

)
= ψ2(`1, . . . , `n)⊗ ψ1(k1, . . . , km), (3.28)

where χ1, χ2 ∈ CN and C is the antiunitary taking complex conjugates of coordinates in
the eigenbasis of HS. In (3.28), the ψ1,2 ∈ F are finite particle wave functions and ψ1,2

their complex conjugates. For more detail we refer e.g. to [34, 6]. It follows from (3.28)
and (3.23) that

JL0J = −L0. (3.29)

We will not use the fine properties of J in this paper. A important property of J that
we will use is this: given any system observable A and any reservoir observable Pβ, the
operator J(A⊗ 1lS ⊗ Pβ)J commutes with all system-reservoir observables B ⊗ 1lS ⊗Qβ.
Adding the commuting term J

(
G⊗ 1lS ⊗ ϕβ(g)

)
J in the interaction is optional (meaning

that the equality (3.25) still holds if I is defined without adding this term). The reason for
this non-uniqueness of the Liouvillian comes from the fact that adding to the generator an
operator which commutes with all observables will not alter the dynamics of observables.
The choice (3.26) ensures that the coupled equilibrium state (3.20) satisfies

LλΩSR,β,λ = 0. (3.30)

To prove (3.30), denote the operator λI in (3.26) by V −JV J , defining V = G⊗1lS⊗ϕβ(g).
Taking into account (3.20), which reads ΩSR,β,λ ∝ e−β(L0+V )/2ΩSR,β,0, we have

LλΩSR,β,λ ∝ (L0 + V − JV J) e−β(L0+V )/2ΩSR,β,0

= e−β(L0+V )/2(L0 + V )ΩSR,β,0 − JV J e−β(L0+V )/2ΩSR,β,0 . (3.31)

Due to (3.24), we have e−β(L0+V )/2ΩSR,β,0 = e−β(L0+V )/2 eβL0/2ΩSR,β,0 and one can expand
the product of the last two exponentials into an (imaginary time) Dyson series with
general term (−1)n

∫
0≤tn≤···≤t1≤β/2 V (tn) · · ·V (t1)dt1 · · · dtn, where V (t) = e−tL0V etL0 . As

mentioned above, JV J commutes with V (t) and hence

JV J e−β(L0+V )/2ΩSR,β,0 = e−β(L0+V )/2eβL0/2JV JΩSR,β,0 = e−β(L0+V )/2V ΩSR,β,0. (3.32)

The last equality is true since JΩSR,β,0 = ΩSR,β,0 (see (3.27)) and eβL0/2J = J e−βL0/2

(see (3.29)) and since J e−βL0/2V ΩSR,β,0 = V ΩSR,β,0, by (3.27) again and since V is self-
adjoint. Using (3.32) in (3.31) (and L0ΩSR,β,0 = 0) shows that the right hand side of
(3.31) vanishes. Hence (3.30) is proven.

11J e−βL0/2 is the polar decomposition of the antilinear operator S defined by SAΩSR,β,0 = A∗ΩSR,β,0

for all observables A, see for instance [12] (Volume 1, Definition 2.5.10).
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3.4 Representation of the dynamics

The Heisenberg evolution of a system observable X is

αtλ(X ⊗ 1lR) = eitH(X ⊗ 1lR)e−itH , (3.33)

where H is the interacting system-reservoir Hamiltonian (2.1). Let ω0 be an (initial)
system-reservoir state, with purification Ψ0 ∈ Href . The vector Ψ0 can be approximated
arbitrarily well by B′ΩSR,β,λ for a suitable B′ commuting with all observables. This follows
from the separability property of the state ΩSR,β,λ, as explained before (3.21). Since the
full dynamics is unitary, this approximation is uniform in time. We will hence assume
without loss of generality that

Ψ0 = B′ΩSR,β,λ. (3.34)

Note that if the initial state is of the form ρS ⊗ ωR,β then the corresponding vector is
Ψ0 = ΩS ⊗ ΩR for some ΩS ∈ HS ⊗HS and where ΩR is given in (3.5). Then there is an
operator B′S ∈ B(HS) such that ΩS = (1lS ⊗ B′S)ΩS,β, see the discussion involving (3.21).
Furthermore, by (3.20), ΩSR,β,λ = ΩS,β ⊗ ΩR +O(λ), so we have (3.34) with

B′ = 1lS ⊗B′S ⊗ 1lR +O(λ), some B′S ∈ B(HS). (3.35)

Here, B(HS) denotes the set of all bounded operators on HS. What follows works for all
initial states (3.34). We have

ω0

(
αtλ(X ⊗ 1lR)

)
=

〈
Ψ0, e

itLλ(X ⊗ 1lS ⊗ 1lR)e−itLλΨ0

〉
=

〈
Ψ0, B

′eitLλ(X ⊗ 1lS ⊗ 1lR)e−itLλΩSR,β,λ

〉
=

〈
Ψ0, B

′eitLλ(X ⊗ 1lS ⊗ 1lR)ΩSR,β,λ

〉
. (3.36)

In the second equality we moved B′ to the left, as it commutes with the observable
eitLλ(X ⊗ 1lS ⊗ 1lR) e−itLλ . In the third we use the invariance (3.30). Next comes the
core analytical tool, the resonance expansion of eitLλ . It is important to realize that this
expansion is only correct in the weak sense; one cannot perform it independently on both
factors e±itLλ in (3.36).12 This is why we have to exploit the algebraic structure (existence
of B′) and eliminate one of the propagators e−itLλ by making it act on the invariant state
ΩSR,β,λ in (3.36).

The right side of (3.36) is of the form
〈
ψ, eitLλφ

〉
for two vectors ψ, φ. We use the

usual resolvent representation of the propagator,〈
ψ, eitLλφ

〉
=
−1

2πi

∫
R−i

eitz
〈
ψ, (Lλ − z)−1φ

〉
dz. (3.37)

The integral is over the horizontal contour z = x− i, x ∈ R. Since Lλ is self-adjoint, (Lλ−
z)−1 is a well defined, bounded operator. We explain the further analysis of (3.37) in the

12This is readily seen: weakly, eitLλ → |ΩSR,β,λ〉〈ΩSR,β,λ| for t→∞ and using this for both propagators
in (3.36) would yield the result 〈ΩSR,β,λ, (X ⊗ 1lS ⊗ 1lR)ΩSR,β,λ〉 |〈ΩSR,β,λ,Ψ0〉|2 for t → ∞. But this is
not the correct final state.

22



technically easiest situation (which requires the most regularity, though), namely, when
the spectral deformation technique applies. The strategy is to construct a meromorphic
continuation in z of the function 〈ψ, (Lλ − z)−1φ〉, extending the domain of z from the
lower half plane C− across the real axis into (parts of) the upper complex half plane.
Whether this is possible depends of course on the operator Lλ (and the vectors ψ, φ).

Denote by Uθ the action of Tθ defined in condition (A), lifted from the single-particle
space to Fock space. Then Uθ, θ ∈ R, is a unitary group on Href (3.8) (or equivalently,
by isometric isomorphy, (3.14)) satisfying〈

ψ, (Lλ − z)−1φ
〉

=
〈
Uθψ,Uθ(Lλ − z)−1φ

〉
=
〈
ψθ̄, (Lλ,θ − z)−1φθ

〉
(3.38)

and (assuming condition (A) above), the right side of (3.38) has an extension to complex
values of θ (here, θ̄ is the complex conjugate of θ and it shows up in (3.38) since the scalar
product is antilinear in its left argument). The first equality in (3.38) is due to unitarity
of Uθ and we define ψθ = Uθψ, φθ = Uθφ and Lλ,θ = UθLλU

∗
θ . The deformed Liouvillian

Lλ,θ is of the form Lλ,θ = L0,θ + λIθ, acting on Href (3.14), where

UθL0(Uθ)
∗ = L0 + θN, (3.39)

and N is the number operator on the glued Fock space (3.13), that is, N = dΓ(1l).
Equality (3.39) follows from the explicit identifications given above following (3.9).

The relation (3.38) stays valid for complex values of θ due to the identity theorem of
complex analysis (varying the real part of θ does not change the inner products, due to
unitarity). When θ becomes complex, Lλ,θ is not a self-adjoint operator any longer (it is
not even a normal operator) and hence generically, its spectrum leaves the real axis as
Imθ 6= 0. Take now θ with Imθ = θ0 > 0 fixed.

Fig.1: The eigenvalues e of L0,θ bifurcate into eigenvalues ε
(s)
e (λ) of Lλ,θ for nonzero λ.

By analytic perturbation theory and the fact that L0,θ = L0 +θN , where N is the number
operator, having spectrum N ∪ {0}, one shows the following result [24, 6, 34]:
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In a strip {z ∈ C : 0 ≤ Imz < θ0/2}, the spectrum of the operator Lλ,θ = L0,θ +
λIθ (c.f. (3.26)) consists of eigenvalues which are independent of θ (for λ not too large
compared to θ). All other spectrum of Lλ,θ is located within {z ∈ C : Imz > 3θ0/4}.

The situation is depicted in Fig.1. For λ = 0, the eigenvalues coincide (including
multiplicity) with those of LS. More precisely, the (rank me) spectral projection associated
to the eigenvalue e of L0,θ is given by

Pe = P (LS = e)⊗ PR, (3.40)

where P (LS = e) is the eigenprojection of LS associated to the eigenvalue e and PR =
|ΩR〉〈ΩR|. Since e is an isolated eigenvalue of L0,θ, analytic perturbation theory implies

that for small λ, e splits into ≤ me eigenvalues ε
(s)
e (λ), s = 1, 2, . . . (the added up multi-

plicity equaling me), which are analytic at λ = 0 and have the expansion

ε(s)e (λ) = e+ λ2a(s)
e +O(λ4). (3.41)

The corrections a
(s)
e can be calculated by perturbation theory 13. They are the eigenvalues

of the level shift operator

Λe = −PeIP⊥e (L0 − e+ i0)−1IPe. (3.42)

This is a fact from second order analytic perturbation theory, sometimes also phrased as
the Feshbach map, see for instance [29, 6, 27]. Using (3.38) in (3.37) yields〈

ψ, eitLφ
〉

=
−1

2πi

∑
e∈spec(LS)

me∑
s=1

∮
Γ
(s)
e

eitz
〈
ψθ̄, (Lλ,θ − z)−1φθ

〉
dz +O

(
e−

3
4
θ0t
)
. (3.43)

To arrive at (3.43), we have deformed the contour of integration z = x−i into z = x+ 3
4
iθ0,

thereby (by the residue theorem) creating the contour integrals
∮

Γ
(s)
e

, where Γ
(s)
e is a circle

centered at ε
(s)
e (λ), not containing any other eigenvalue of Lλ,θ. The remainder decays

at rate −3
4
θ0 due to the factor eitz. Indeed, this remainder is a contour integral over

z = x+ 3
4
iθ0 and for such z, we have | eitz| = e−

3
4
θ0t. Consider the situation where all of

the ε
(s)
e are distinct (for λ 6= 0). The integrand in (3.43) has a simple pole at z = ε

(s)
e in

the interior of Γ
(s)
e and so we have

−1

2πi

∮
Γ
(s)
e

eitz(Lλ,θ − z)−1dz = eitε
(s)
e (λ)

(−1

2πi

) ∮
Γ
(s)
e

(Lλ,θ − z)−1dz ≡ eitε
(s)
e (λ)Π(s)

e , (3.44)

where Π
(s)
e = Π

(s)
e (λ, θ) is the (Riesz) spectral projection associated to the eigenvalue

ε
(s)
e (λ) of Lλ,θ. Combining (3.36), (3.43) and (3.44) yields

ω0

(
αtλ(X ⊗ 1lR)

)
=

∑
e∈spec(LS)

me∑
s=1

eitε
(s)
e
〈
[(B′)∗Ψ0]θ̄,Π

(s)
e

(
X ⊗ 1lS ⊗ 1lR

)
[ΩSR,β,λ]θ

〉
+O
(
λ e−

3
4
θ0t
)
. (3.45)

13In principle, there are O(λ) correction terms given by PeIθPe, but this operator vanishes for the
interactions we consider.
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Note that the remainder, which is given by∫
R

ei(x+3iθ0/4)〈[(B′)∗Ψ0]θ̄, (Lλ,θ − x− 3iθ0/4)−1
(
X ⊗ 1lS ⊗ 1lR

)
[ΩSR,β,λ]θ〉dx, (3.46)

vanishes to zeroth order in λ. This is so since to this order, [ΩSR,β,λ]θ is given by ΩS,β⊗ΩR

and the Lλ,θ in the resolvent is simply LS, to this order and when applied to the vector
in question. The contour integral (3.46) is thus not enclosing any singularities of the
integrand to order λ0 and so it vanishes. If the initial state is of the form ρS ⊗ ωS,β, then
the remainder in (3.45) is actually O(λ2), due to (3.35) (see Proposition 4.2 of [33]).

Our next step is to eliminate the θ dependence of the main term in (3.45). Consider
first e = 0. Due to (3.30) and since [ΩSR,β,λ]θ = UθΩSR,β,λ is analytic in θ, we have

Lλ,θ[ΩSR,β,λ]θ = 0. It follows that Lλ,θ has an eigenvalue ε
(1)
0 = 0 for all λ, θ. We use s = 1

to label it. The associated eigenprojection is

Π
(1)
0 = |[ΩSR,β,λ]θ〉〈[ΩSR,β,λ]θ̄|. (3.47)

In the sum (3.45), the term e = 0, s = 1 equals

〈[(B′)∗Ψ0]θ, [ΩSR,β,λ]θ〉
〈
[ΩSR,β,λ]θ̄,

(
X ⊗ 1lS ⊗ 1lR

)
[ΩSR,β,λ]θ

〉
= 〈Ψ0, B

′ΩSR,β,λ〉
〈
ΩSR,β,λ,

(
X ⊗ 1lS ⊗ 1lR

)
ΩSR,β,λ

〉
= trS

(
ρS,β,λX

)
. (3.48)

The first equality in (3.48) holds by the identity principle of complex analysis. The final
equality follows from (recall (3.34)) 〈Ψ0, B

′ΩSR,β,λ〉 = 〈Ψ0,Ψ0〉 = 1 and from the definition
of ρS,β,λ as the reduction to the system of the full, interacting system-reservoir equilibrium
state. Above, we are able to arrive at the result (3.48), which is non-perturbative in λ,
since we know to begin with that LλΩSR,β,λ = 0.

For the other terms in the sum (3.45), associated with nonzero resonance energies, we
use regular analytic perturbation theory in λ (as we do not know an a priori expression
for them). Consider the situation where each Λe is diagonalizable, i.e.,

Λe =
me∑
s=1

a(s)
e Q(s)

e , (3.49)

where a
(s)
e and Q

(s)
e are the eigenvalues and rank-one eigenprojections, neither depending

on θ. We have

Q(s)
e < P (LS = e) and

me∑
s=1

Q(s)
e = P (LS = e). (3.50)

The relation LλΩSR,β,λ = 0 implies that Λ0ΩS,β = 0. This follows from the isospectrality
property of the Feshbach map, see e.g. Theorem B.1 in [27]. Assuming that all the
eigenvalues of Λ0 are simple then yields

Q
(1)
0 = |ΩS,β〉〈ΩS,β|. (3.51)
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Analytic perturbation theory gives the following expansion for Π
(s)
e , the spectral projection

of Lλ,θ associated to ε
(s)
e

Π(s)
e (θ, λ) = Q(s)

e ⊗ |ΩR〉〈ΩR|+O(λ). (3.52)

Consider a term in (3.45) with (e, s) fixed (not equal to (0, 1)). We have〈
[(B′)∗Ψ0]θ̄,Π

(s)
e

(
X ⊗ 1lS ⊗ 1lR

)
[ΩSR,β,λ]θ

〉
=

〈
Ψ0, B

′(Q(s)
e ⊗ |ΩR〉〈ΩR|

)(
X ⊗ 1lS ⊗ 1lR

)
ΩSR,β,λ

〉
+O(λ)

=
〈
Ψ0, B

′(Q(s)
e ⊗ 1lR

)(
X ⊗ 1lS ⊗ 1lR

)
(ΩS,β ⊗ ΩR)

〉
+O(λ). (3.53)

In the first equality of (3.53) we have used the approximation (3.52) and that UθΩR = ΩR.
In the second equality we made use of (1lS ⊗ 1lS ⊗ |ΩR〉〈ΩR|)ΩSR,β,λ = ΩS,β ⊗ ΩR + O(λ2)
(see (3.15) and (3.20)). If the initial condition is of the form ρS ⊗ ωR,β, then (3.35) holds
and it is not hard to see that since 〈ΩR|I|ΩR〉 = 0, the remainder in (3.53) is actually

O(λ2). Due to the cyclicity of ΩS,β, there are uniquely defined operators Q(s)
e acting on

system observables, satisfying(
Q(s)
e (X)⊗ 1lS

)
ΩS,β = Q(s)

e (X ⊗ 1lS)ΩS,β, ∀X. (3.54)

The Q(s)
e are a family of disjoint projection operators (as the Q

(s)
e are). The main term

on the right side of (3.53) is then〈
Ψ0, B

′(Q(s)
e ⊗ 1lR

)(
X ⊗ 1lS ⊗ 1lR

)
(ΩS,β ⊗ ΩR)

〉
=

〈
Ψ0,

(
Q(s)
e (X)⊗ 1lS ⊗ 1lR

)
B′(ΩS,β ⊗ ΩR)

〉
= ω0

(
Q(s)
e (X)⊗ 1lR

)
+O(λ) (3.55)

To arrive at (3.55), we have used that B′ commutes with all observables, so we can move

it to the right of Q(s)
e (X)⊗ 1lS ⊗ 1lR and we also take into account that

B′(ΩS,β ⊗ ΩR) = B′ΩSR,β,λ +O(λ) = Ψ0 +O(λ). (3.56)

The O(λ) term in (3.56) comes about by replacing the uncoupled equilibrium ΩS,β ⊗ ΩR

by the coupled one, ΩSR,β,λ. The initial state Ψ0 emerges in (3.56) due to (3.34). Again,
for initial states ρS⊗ωR,β, the remainder in (3.55), (3.56) is actually O(λ2), due to (3.35).

Combining (3.55) with (3.53), (3.48) and (3.45) shows the expansion

ω0

(
αtλ(X ⊗ 1lR)

)
= trS

(
ρS,β,λX

)
+

∑
(e,s)6=(0,1)

eitε
(s)
e ω0

(
Q(s)
e (X)⊗ 1lR

)
+ O(λ e−γ(λ)t) +O

(
λ e−

3
4
θ0t
)
. (3.57)

Here, γ(λ) was defined in (2.23) to be the slowest decay rate. The corresponding error
term in (3.57) stems from making in (3.45) approximations to within O(λ) in the scalar
product, which is time independent. Since γ(0) = 0 and λ 7→ γ(λ) is continuous, we
have γ(λ) < 3

4
θ0 for small enough λ and so the second error term in (3.57) is smaller

than the first one. Equation (3.57) is the basic result of the resonance theory for system
observables. Again, as explained during the derivation, for initial states ρS ⊗ ωR,β the λ
in both remainders in (3.57) are actually λ2.
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3.5 Proof of (2.18)

Suppose that the initial state is disentangled, ω0 = ωS⊗ωR,β, where ωS is given by a general
system density matrix ρ and ωR,β is the reservoir equilibrium (or a local perturbation
thereof). The remainders in (3.57) are then O(λ2). The dynamical map ρ 7→ Vtρ is
defined by

trS

(
(Vtρ)X

)
= ω0

(
αtλ(X ⊗ 1lR)

)
, ∀X. (3.58)

The result (3.57) then implies

Vtρ = ρS,β,λ +Wtρ+O(λ2 e−γ(λ)t), (3.59)

where Wt is the map on density matrices defined by duality. It is given by (2.19) in which

the sum is over j = (e, s) 6= (0, 1). In particular, the P(s)
e are determined uniquely by

tr(P(s)
e ρ)X = trρ(Q(s)

e X), ∀ρ,X. (3.60)

Recall the definition (3.54), in which the Q
(s)
e are spectral projections of the level shift

operators (3.49). They form a family of disjoint projections, Q
(s)
e Q

(s′)
e′ = δe,e′δs,s′Q

(s)
e and

satisfy (see (3.50))
∑

(e,s)6=(0,1)Q
(s)
e = 1lS ⊗ 1lS − |ΩS,β〉〈ΩS,β|. Accordingly, it follows from

(3.54) that

Q(s)
e Q

(s′)
e′ = δe,e′δs,s′Q(s)

e (3.61)

and ∀X ∈ B(HS), ∑
(e,s)6=(0,1)

Q(s)
e X = X − tr(ρS,β,0X)1lS. (3.62)

The duality (3.60) then translates into the corresponding properties (2.20) of the family

P(s)
e .

4 Derivation of the main results

4.1 Proof of (2.27)

Define the operator M(λ), acting on system observables, by its spectral decomposition

M(λ) =
∑

(e,s)6=(0,1)

ε(s)e (λ) Q(s)
e , (4.1)

where the sum is over all e, s except (e, s) = (0, 1). Note that if ε
(s)
e (λ) 6= 0 for (e, s) 6= (0, 1)

(this is typically the case and holds in particular if the Fermi Golden Rule (2.25) is
satisfied), then we have 14

kerM(λ) = ranQ(1)
0 = {CρS,β,0}⊥ ≡ {X : tr(ρS,β,0X) = 0}. (4.2)

14Note that Q
(1)
0 (X ⊗ 1lS)ΩS,β = (trρS,β,0X)ΩS,β , so by (3.54) Q(1)

0 (X) = tr(ρS,β,0X)1lS.
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Using the definition (4.1), the power series expansion of the exponential and (3.62), we
obtain

eitM(λ) =
∑

(e,s)6=(0,1)

eitε
(s)
e (λ)Q(s)

e + 1l−
∑

(e,s)6=(0,1)

Q(s)
e

=
∑

(e,s)6=(0,1)

eitε
(s)
e (λ)Q(s)

e + tr
(
ρS,β,0 ·

)
. (4.3)

Combining (4.3) with (3.57) (with error ∝ λ2 due to the form of the initial condition)
gives

ω0

(
αtλ(X ⊗ 1lR)

)
= trS

(
(ρS,β,λ − ρS,β,0)X

)
+ ω0

(
eitM(λ)(X)⊗ 1lR

)
+O(λ2 e−γ(λ)t). (4.4)

The first term on the right side is O(λ2), hence

ω0

(
αtλ(X ⊗ 1lR)

)
= ω0

(
eitM(λ)(X)⊗ 1lR

)
+O(λ2), (4.5)

where the remainder is uniform in t. Equation (4.5) gives an approximation of the Heisen-
berg system dynamics by the semigroup eitM(λ), up to a precision O(λ2), for all times.
Notice that the state ωS,β ⊗ ωR,β, where ωS,β is given by the system equilibrium state
ρS,β,0, is invariant under this dynamics (see (4.2)). We now show that if we truncate
the generator M(λ) by taking into account only the part up to O(λ2) in the eigenvalues

ε
(s)
e (λ) in (4.1), then we obtain a CPT semigroup. Using that 15

eitε
(s)
e (λ) = eit(e+λ2a

(s)
e ) +O

(
λ4t e−λ

2t(γFGR+O(λ2))
)
, (4.6)

we obtain(
eitM(λ)(X)⊗ 1lS

)
ΩS,β =

∑
e,s

eitε
(s)
e Q(s)

e (X ⊗ 1lS)ΩS,β

= eit(LS+λ2Λ)(X ⊗ 1lS)ΩS,β + O
(
λ4t e−λ

2t(γFGR+O(λ2))
)
, (4.7)

where the total level shift operator is defined to be

Λ =
⊕

e∈spec(LS)

Λe, (4.8)

with Λe given in (3.49). We now define the group δtλ, acting on system observables, by(
δtλ(X)⊗ 1lS

)
ΩS,β = eit(LS+λ2Λ)(X ⊗ 1lS)ΩS,β. (4.9)

Combining (4.5) and (4.7) we get, for γFGR > 0,

ω0

(
αtλ(X ⊗ 1lR)

)
= ω0

(
δtλ(X)⊗ 1lR

)
+O(λ2). (4.10)

15We have eitε(λ) = eit(e+λ
2a+O(λ4)) = eit(e+λ

2a) + eit(e+λ
2a)[ eitO(λ4) − 1] and | eitO(λ4) − 1| =

|iO(λ4)
∫ t
0
eisO(λ4)ds| ≤ Cλ4tetλ4c, for some C, c > 0 independent of λ, t.
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By duality, we have trS(ρ δtλ(X)) = trS((etGρ)X) for all system density matrices ρ and
all system observables X. We have eitLS(X ⊗ 1lS)ΩS,β = ( eitHSX e−itHS ⊗ 1lS)ΩS,β, which
follows simply from e−itLSΩS,β = ΩS,β. This gives a contribution −i[HS, ·] to the generator
G. For nonzero λ, we then get Gρ = −i[HS, ρ] + λ2Kρ, with K satisfying (2.30), see also
Appendix A.

Since (LS+λ2Λ)ΩS,β = 0 we have δtλ(1lS) = 1lS. It remains to prove that δtλ is completely
positive.

4.1.1 Proof that δtλ is CP

It follows from (4.10) that

lim
λ→0

ω0

(
α
t/λ2

λ ◦ α−t/λ
2

0 (X ⊗ 1lR)
)

= ω0

(
σt(X)⊗ 1lR

)
, (4.11)

where σt is defined by (
σt(X)⊗ 1lS

)
ΩS,β = eitΛ(X ⊗ 1lS)ΩS,β. (4.12)

Since limits of CP maps are CP, we know from (4.11) that σt is CP. Next, δtλ is the
composition of two CP maps,

δtλ =
(

eitHS · e−itHS
)
◦ σλ2t,

and hence it is CP itself. This shows (2.27).

4.2 Proof of (2.32)

4.2.1 The renormalized quantities

The reduced system equilibrium density matrix ρS,β,λ is defined by the relation

tr
(
ρS,β,λX

)
= ωSR,β,λ(X ⊗ 1lR), ∀X (4.13)

where ωSR,β,λ is the coupled system-reservoir equilibrium state whose purification is (3.20).

We introduce the renormalized system Hamiltonian H̃S(λ) by the relation (2.31). This

defines H̃S(λ) only up to an additive term ∝ 1lS. Of course, we would like the prop-

erty H̃S(0) = HS, which will determine this additive term. Without loss of generality,
we suppose that min specHS = 0 (the smallest eigenvalue of HS is normalized to be at

the origin). Let Ẽ0(λ) be the smallest eigenvalue of H̃S(λ). We have from (2.31) that

tr( e−βH̃S(λ)) ‖ρS,β,λ‖ = e−βẼ0(λ), where ‖ρS,β,λ‖ is the operator norm of the density matrix.

Then we impose the normalization Ẽ0(λ) = 0, which amounts to tr( e−βH̃S(λ)) = 1/‖ρS,β,λ‖
and so we define

H̃S(λ) = − 1

β
ln

ρS,β,λ

‖ρS,β,λ‖
. (4.14)
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By simple perturbation theory we have ρS,β,λ = ρS,β,0 + O(λ2).16 It follows from (4.14)
that

H̃S(λ) = HS +O(λ2), (4.15)

where HS is the original, uncoupled system Hamiltonian (2.2). The spectral representation
of the renormalized Hamiltonian is

H̃S(λ) =
N∑
j=1

Ẽj|φ̃j〉〈φ̃j|, (4.16)

where Ẽj and φ̃j depend on λ and satisfy

|Ej − Ẽj(λ)| = O(λ2), ‖φj − φ̃j(λ)‖ = O(λ2). (4.17)

In analogy with (3.23) we introduce the Liouvillians

L̃0 = L̃S + LR

L̃S = H̃S ⊗ 1lS − 1lS ⊗ CH̃S C
LR = HR ⊗ 1lR − 1lR ⊗HR (4.18)

where C is the operator taking complex conjugation of coordinates in the basis of eigen-
vectors {φj} of HS. A purification of ρS,β,λ is given by the vector (Z̃ is a normalization
constant)

Ω̃S,β,λ = Z̃−1/2

N∑
j=1

e−βẼj/2φ̃j ⊗ Cφ̃j. (4.19)

Namely, for any system observable X, we have

trS(ρS,β,λX) = 〈Ω̃S,β,λ, (X ⊗ 1lS)Ω̃S,β,λ〉. (4.20)

We also define
Ω̃0 = Ω̃S,β,λ ⊗ ΩR, (4.21)

where ΩR is the vacuum (3.5). It is clear from the definitions (4.18), (4.19) and (4.21)
that

L̃SΩ̃S,β,λ = 0 and L̃0Ω̃0 = 0. (4.22)

Given an eigenvalue ẽ of L̃0 (the eigenvalues of L̃0 and of L̃S are the same17), we denote

by P̃ẽ the associated spectral projection and we define the level shift operators (compare

16The correction linear in λ vanishes, since in our models, the interaction is linear in the field (c.f.
(2.1)) and 〈ΩR, ϕβ(g)ΩR〉 = 0.

17The spectrum of LS covers the whole real line and is absolutely continuous except for a simple
eigenvalue at the origin (with eigenvector ΩR). So the eigenvectors of L̃0 are exactly ΨS⊗ΩR, where ΨS

are eigenvectors of L̃S. And these eigenvectors correspond to the same eigenvalues of the two operators.
Of course, the whole spectra do not coincide: L̃0 has additionally continuous spectrum covering R.
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with (3.42), (4.8))

Λ̃ẽ = −P̃ẽIP̃⊥ẽ (L̃0 − ẽ+ i0)−1IP̃ẽ, Λ̃ =
⊕

ẽ∈spec(L̃S)

Λẽ. (4.23)

A perturbation theory argument based on (4.15) shows that Λ̃ẽ −Λe = O(λ2). Assuming

that the Λe have the expansion (3.49) (where all a
(s)
e are distinct, for simplicity), the

operator Λ̃ẽ has a similar expansion,

Λ̃ẽ =
me∑
s=1

ã
(s)
ẽ Q̃

(s)
ẽ , (4.24)

where ã
(s)
ẽ and Q̃

(s)
ẽ are the eigenvalues and rank-one eigenprojections, satisfying

a(s)
e = ã

(s)
ẽ +O(λ2), Q̃

(s)
ẽ = Q(s)

e +O(λ2). (4.25)

One also shows that (compare with (3.51), and see [26], Proposition 3.2)

Λ̃0Ω̃0 = 0, i.e., ã
(1)
0 = 0, Q̃

(1)
0 = |Ω̃0〉〈Ω̃0|. (4.26)

4.2.2 The resonance expansion

The vector Ω̃0 is cyclic and separating and furthermore, one can find an operator D′,
which commutes with all system-reservoir observables 18, and which satisfies

Ω̃0 = D′ΩSR,β,λ, D′ = 1l +O(λ). (4.27)

(The existence of a bounded D′ belonging to the commutant of the operator algebra, and
which satisfies (4.27) to arbitrary precision, is guaranteed by the separating property of
ΩSR,β,λ. However, (4.27) is an equality, not an approximation. The equality can be ob-
tained due to the special form of the vectors involved, see [26].) We take initial conditions
of the form

Ψ0 = B′Ω̃0 = B′D′ΩSR,β,λ, (4.28)

where B′ belongs to the commutant (as before) and where the second equality follows
from (4.27). Varying over B′, the vectors Ψ0 form a dense set. We repeat the argument
in (3.36),

ω0

(
αtλ(X ⊗ 1lR)

)
=
〈
Ψ0, eitLλ(X ⊗ 1lS ⊗ 1lR) e−itLλΨ0

〉
=

〈
Ψ0, B

′D′ eitLλ(X ⊗ 1lS ⊗ 1lR)ΩSR,β,λ

〉
. (4.29)

18Some care has to be taken here as D′ is not a bounded operator, but the technicalities of this difficulty
are not too severe to overcome, see Lemma 3.4 of [26].
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Then we perform again the spectral deformation, (3.38) and deform the contour of inte-
gration, to arrive at (compare with (3.45))

ω0

(
αtλ(X ⊗ 1lR)

)
=

∑
e∈spec(LS)

me∑
s=1

eitε
(s)
e
〈
[(D′B′)∗Ψ0]θ̄,Π

(s)
e

(
X ⊗ 1lS ⊗ 1lR

)
[ΩSR,β,λ]θ

〉
+O

(
λ e−

3
4
θ0t
)
. (4.30)

The term e = 0, s = 1 is (see (3.47))

〈[(D′B′)∗Ψ0]θ̄, [ΩSR,β,λ]θ〉
〈
[ΩSR,β,λ]θ̄,

(
X ⊗ 1lS ⊗ 1lR

)
[ΩSR,β,λ]θ

〉
= trS

(
ρS,β,λX

)
=

〈
Ω̃0,
(
X ⊗ 1lS ⊗ 1lR

)
Ω̃0

〉
=

〈
(B′)∗Ψ0, |Ω̃0〉〈Ω̃0|

(
X ⊗ 1lS ⊗ 1lR

)
Ω̃0

〉
. (4.31)

We use here that 〈[(D′B′)∗Ψ0]θ̄, [ΩSR,β,λ]θ〉 = 1 and 〈(B′)∗Ψ0, Ω̃0〉 = 1. In the other terms,
(e, s) 6= (0, 1), in the sum in (4.30), we replace D′ by 1l (see (4.27)), use the approximation

(3.52) and retain only the part e+λ2a
(s)
e in the resonance energies (see (4.6)). Then (4.30)

and (4.31) give (see also (4.6))

ω0

(
αtλ(X ⊗ 1lR)

)
=

〈
(B′)∗Ψ0, |Ω̃0〉〈Ω̃0|

(
X ⊗ 1lS ⊗ 1lR

)
Ω̃0

〉
+

∑
(e,s) 6=(0,1)

eit(e+λ2a
(s)
e )
〈
(B′)∗Ψ0, Q

(s)
e

(
X ⊗ 1lS ⊗ 1lR

)
ΩSR,β,λ

〉
+O
(

(λ+ λ4t) e−λ
2t(γFGR+O(λ2))

)
+O
(
λ e−

3
4
θ0t
)
. (4.32)

Next, since e+λ2a
(s)
e = ẽ+λ2ã

(s)
ẽ +O(λ2) and Q

(s)
e = Q̃

(s)
ẽ +O(λ2) (see (4.25)), we replace

in (4.32) e+λ2a
(s)
e and Q

(s)
e by ẽ+λ2ã

(s)
ẽ and Q̃

(s)
ẽ , incurring an error O((λ+λ2t) e−λ

2tγFGR)
(proceed similarly as in (4.6)). But now,∑

(ẽ,s)6=(0,1)

eit(ẽ+λ2ã
(s)
ẽ

)Q̃
(s)
ẽ = eit(L̃S+λ2Λ̃)P (Λ̃ 6= 0) (4.33)

and P (Λ̃ = 0) = |Ω̃0〉〈Ω̃0|, where P (Λ̃ 6= 0) and P (Λ̃ = 0) are spectral (Riesz) projections.
(See also (4.23) and (4.26).) Therefore, the two main terms on the right side of (4.32)

yield the operator eit(L̃S+λ2Λ̃), namely,

ω0

(
αtλ(X ⊗ 1lR)

)
=

〈
(B′)∗Ψ0, eit(L̃S+λ2Λ̃)

(
X ⊗ 1lS ⊗ 1lR

)
Ω̃0

〉
+O
(

(λ+ λ2t) e−λ
2t(γFGR+O(λ2))

)
. (4.34)

32



By cyclicity of Ω̃S,β,λ, the relation

eit(L̃S+λ2Λ̃)
(
X ⊗ 1lS

)
Ω̃S,β,λ =

(
τ tλ(X)⊗ 1lS

)
Ω̃S,β,λ (4.35)

defines uniquely a group (in t), τ tλ, acting on system observables. Using (4.35) and com-

muting B′ through the observable and using B′Ω̃0 = Ψ0, we obtain for the first term on
the right side of (4.34) simply the expression 〈Ψ0, (τ

t
λ(X)⊗1lS⊗1lR)Ψ0〉 = ω0(τ tλ(X)⊗1lR).

So (4.34) yields

ω0

(
αtλ(X ⊗ 1lR)

)
= ω0

(
τ tλ(X)⊗ 1lR

)
+O

(
(λ+ λ2t) e−λ

2t(γFGR+O(λ2))
)
. (4.36)

For initial states ω0 = ωS ⊗ ωR,β, where ωS is given by a density matrix ρ and ωR,β is the
reservoir equilibrium (or a local perturbation thereof), we get

ω0

(
αtλ(X ⊗ 1lR)

)
= trS

(
ρτ tλ(X)

)
+O

(
(λ+ λ2t) e−λ

2t(γFGR+O(λ2))
)
. (4.37)

By duality, we define uniquely M(λ), an operator acting on system density matrices, by

trS

(
ρτ tλ(X)

)
= tr

(
( etM(λ)ρ)X

)
, (4.38)

and (2.32) follows from (4.37), (4.38).

That τ tλ(1lS) = 1lS is clear from the definition (4.35), as (L̃S +λ2Λ̃)Ω̃S,β,λ = 0. We show
below in Section 4.2.3 that for λ, t fixed, τ tλ is a CP map.

Evolution of observables X commuting with HS. We treat the general term in the
sum of (4.32) as follows,

eiteQ(s)
e (X ⊗ 1lS ⊗ 1lR)ΩSR,β,λ = Q(s)

e eitLS(X ⊗ 1lS ⊗ 1lR)ΩSR,β,λ

= Q(s)
e eitLS(X ⊗ 1lS ⊗ 1lR)ΩSR,β,0 +O(λ)

= Q(s)
e (Xt ⊗ 1lS ⊗ 1lR)ΩSR,β,0 +O(λ)

= Q(s)
e (Xt ⊗ 1lS ⊗ 1lR)ΩSR,β,λ +O(λ). (4.39)

Here, we have set
Xt ≡ eitHSX e−itHS . (4.40)

The first equality in (4.39) is due to (3.50). The third one comes from e−itLSΩSR,β,0 =
ΩSR,β,0 and the remaining ones follow from ΩSR,β,λ − ΩSR,β,0 = O(λ). We now use (4.39)
in the sum over (e, s) 6= (0, 1) in (4.32) and arrive at

ω0

(
αtλ(X ⊗ 1lR)

)
=

〈
(B′)∗Ψ0, |Ω̃0〉〈Ω̃0|

(
X ⊗ 1lS ⊗ 1lR

)
Ω̃0

〉
+

∑
(e,s)6=(0,1)

eitλ2a
(s)
e
〈
(B′)∗Ψ0, Q

(s)
e

(
Xt ⊗ 1lS ⊗ 1lR

)
ΩSR,β,λ

〉
+O
(

(λ+ λ4t) e−λ
2t(γFGR+O(λ2))

)
+O

(
λ e−

3
4
θ0t
)
. (4.41)
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Replacing in the last sum eitλ2a
(s)
e by eitλ2ã

(s)
ẽ we incur an error of O(λ4t e−λ

2t(γFGR+O(λ2))).
Now we define the group τ td,λ, acting on system observables, by

eitλ2Λ̃
(
X ⊗ 1lS

)
Ω̃S,β,λ =

(
τ td,λ(X)⊗ 1lS

)
Ω̃S,β,λ. (4.42)

Combining (4.42) with (4.41) then yields (recall also (4.31))

ω0

(
αtλ(X ⊗ 1lR)

)
= trS

(
ρS,β,λ

(
X −Xt

))
+ ω0

(
τ td,λ(Xt)⊗ 1lR

)
+O
(

(λ+ λ4t) e−λ
2t(γFGR+O(λ2))

)
. (4.43)

Assuming that the initial state ω0 of product form we can express (4.43) in the dual space
as relation (2.33). For the invariant observables X s.t. [X,HS] = 0, we have Xt = X for
all t, so

ω0

(
αtλ(X ⊗ 1lR)

)
= ω0

(
τ td,λ(X)⊗ 1lR

)
+O

(
(λ+ λ4t) e−λ

2t(γFGR+O(λ2))
)
. (4.44)

It is clear from (4.42) and (4.26) that τ td,λ(1lS) = 1lS. We show below in Section 4.2.3
that τ td,λ is completely positive. Again by duality, and for an initial condition ω0 =
trS(ρ ·)⊗ ωR,β, equation (4.44) becomes

trS(Vtρ)X = trS( etλ
2Md(λ)ρ)X +O

(
(λ+ λ4t) e−λ

2t(γFGR+O(λ2))
)
, (4.45)

valid ∀X s.t. [X,HS] = 0. Taking X = |ϕk〉〈ϕk| we obtain equation (2.38).

4.2.3 Proof that τ tλ and τ td,λ are CP

The idea is to view τ tλ as a weak coupling dynamics and proceed as in Subsection 4.1.1.
To do this, introduce the Liouvillian

L̃µ = L̃0 + µλI, (4.46)

where L̃0 is given in (4.18) and the interaction I is (3.26). Here we consider µ ∈ R as the

interaction constant, and λ is viewed as part of the interaction operator. (Recall that L̃0

also depends on λ.) The eigenvalues of the unperturbed L̃µ|µ=0 are the same as those of

L̃0 and the levels shift operators associated to (4.46) are given by (4.23) with I replaced by

λI (they give the quadratic corrections in µ to the spectrum). In other words, λ2Λ̃, with

Λ̃ given in (4.23), is the (complete) level shift operator of L̃µ. We define the dynamics γ̃tµ
by

ω0

(
γ̃tµ(X ⊗ P)

)
=
〈

Ψ0, eitL̃µ(X ⊗ 1lS ⊗ Pβ) e−itL̃µΨ0

〉
. (4.47)
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In (4.47), X and P are system and reservoir observables, with Pβ being the representation

in the purification space, see also (3.4). The equilibrium (KMS) state associated to L̃µ is
given by (compare with (3.20))

Ω̃SR,β,µ =
e−

β
2

(L̃0+µλG⊗1lS⊗ϕβ(g))ΩSR,β,0

‖ e−
β
2

(L̃0+µλG⊗1lS⊗ϕβ(g))ΩSR,β,0‖
(4.48)

(and depends on λ as well). This is a cyclic and separating vector and the initial condition

can be written as Ψ0 = B′D′Ω̃SR,β,µ (c.f. (4.28)). We then obtain (c.f. (4.29))

ω0

(
γ̃tλ(X ⊗ 1lR)

)
=
〈

Ψ0, B
′D′ eitL̃µ(X ⊗ 1lS ⊗ 1lR)Ω̃SR,β,µ

〉
(4.49)

(with B′, D′ depending on both λ and µ). Proceeding to perform the spectral deformation
and resonance expansion in the same manner as we did in Sections 3.4 –4.1, we obtain
(analogous to (4.5)),

ω0

(
γ̃t/µ

2

µ (X ⊗ 1lR)
)

=
〈

(B′)∗Ψ0, eit(L̃0+µ2λ2Λ̃)
(
X ⊗ 1lS ⊗ 1lR

)
Ω̃0

〉
+O(µ2), (4.50)

with a remainder term uniform in t. It follows that

lim
µ→0

ω0

(
γ̃t/µ

2

µ ◦ γ̃−t/µ
2

0 (X ⊗ 1lR)
)

=
〈

(B′)∗Ψ0, eitλ2Λ̃
(
X ⊗ 1lS ⊗ 1lR

)
Ω̃0

〉
= ω0

(
(τ td,λ(X)⊗ 1lR)

)
. (4.51)

Consequently, τ td,λ is CP. Since τ tλ = τ td,λ ◦ ( eitH̃S · e−itH̃S) it follows that τ tλ is CP as well.

5 Conclusion

We establish rigorous bounds on Markovian approximations to the dynamics of a finite
dimensional quantum system linearly coupled to an environment of free quantum particles
(a quantum field). We show that the Markovian master equation is valid for all times,
approximating the true dynamics to O(λ2), λ being the system-environment coupling
constant. Further, we construct a new Markovian semigroup which is asymptotically
exact, meaning that it approximates the true dynamics and converges to the correct final
state to all orders in λ, as time tends to infinity. Our method is based on the quantum
dynamical resonance theory which we explain in some detail. In particular, we derive the
theory for a wide class of initial system-reservoir states, including entangled states. Our
approach is purely analytical and our constructions are based on concrete perturbation
theory in λ, valid for all times.
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A Explicit form of the generator K

We define the generator G acting on system density matrices by

trS

(
ρ δtλ(X)

)
= trS

(
(etGρ)X

)
, (A.1)

valid for all system observables and density matrices X and ρ. Here, δtλ is given in (4.9).
We show that

Gρ = −i [HS, ρ] + λ2Kρ, (A.2)

where [·, ·] is the commutator and, denoting by {·, ·} the anti-commutator,

Kρ = ĥ(0)
N∑

k,`=1

(
PkGPkρP`GP` − 1

2

{
P`GP` PkGPk, ρ

})
+
∑

k,` : k 6=`

ĥ(Ek − E`)
(
P`GPkρPkGP` − 1

2

{
PkGP`GPk, ρ

})
− i [HLS, ρ] (A.3)

and

HLS =
1

π

N∑
k,`=1

(
P.V.

∫
R

ĥ(u)

Ek − E` − u
du
)
PkGP`GPk. (A.4)

Here, ĥ(u) is the Fourier transform of the correlation function,

ĥ(u) =

∫
R
e−itu ωR,β

(
ϕ(g)ϕ(gt)

)
dt, u ∈ R (A.5)

where g(k) is the form factor and gt(k) = eiω(k)tg(k). We have the expression (u ∈ R,
ω ≥ 0)

ĥ(u) = Jnoise(|u|)
∣∣∣∣ eβu

eβu − 1

∣∣∣∣ , Jnoise(ω) =
π

2
ω2

∫
S2

|g(ω,Σ)|2dΣ

(spherical coordinates). Jnoise is called the reservoir spectral density and ĥ(0) is under-

stood as the limit u → 0 of ĥ(u), (A.5). The first two terms in (A.3) constitute the
dissipator and the commutator is with the Lamb shift Hamiltonian HLS, representing
a correction to the system energies. K is the usual Davies generator [2, 11, 13]. It is
manifestly CPT due to the results [21, 28].
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In order to show (A.2)-(A.4) we first calculate G∗, defined by etG∗X = δtλ(X), i.e.,(
(G∗X)⊗ 1lS

)
ΩS,β = i(LS + λ2Λ)(X ⊗ 1lS)ΩS,β. (A.6)

The definitions of LS and Λ are (3.23) and (4.8), (3.42) and the system Gibbs state ΩS,β

is defined in (3.16). For any system operators X, Y and Z we have

(Y ⊗ 1lS) JS(Z ⊗ 1lS)JS (X ⊗ 1lS)ΩS,β =
(
(Y Xe−βHS/2Z∗eβHS/2)⊗ 1lS

)
ΩS,β, (A.7)

where JS is the system modular conjugation (3.28). To verify (A.7) we first note that by
(3.29) we have JSLSJS = −LS and so JS = JS eβLS/2 e−βLS/2 = e−βLS/2JS e−βLS/2. This
together with and (3.27) gives

JS(X ⊗ 1lS)ΩS,β = e−βLS/2(X∗ ⊗ 1lS)ΩS,β = ( e−βHS/2X∗ eβHS/2 ⊗ 1lS)ΩS,β. (A.8)

In the last step, we have used that LS = HS ⊗ 1lS − 1lS ⊗ HS and LSΩS,β = 0. We now
apply (A.8) again to find out the action of JS(Z ⊗ 1lS) on the left side of (A.7) and we
easily arrive at the equality (A.7).

It is then clear that iLS(X ⊗ 1lS)ΩS,β = (i[HS, X]⊗ 1lR)ΩS,β. This gives a contribution
−i[HS, · ] to G. To calculate the contribution coming from iλ2Λ, we consider the situation
where all nonzero eigenvalue differences e = Ek − E` are simple (the general case is
done in the same way). Then the projections in (3.42) are rank one for e 6= 0, Pe =
Pk ⊗ P` ⊗ |ΩR〉〈ΩR|, where Pk = |φk〉〈φk| (see (2.2)). The projection onto the eigenvalue
e = 0 of LS has dimension N , Pe=0 =

∑N
j=1 Pj ⊗Pj ⊗ |ΩR〉〈ΩR|. By expanding Λe, (3.42),

using the form (3.26) of the interaction I we arrive at the expressions (A.3), (A.4).
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