
MEMORIAL UNIVERSITY OF NEWFOUNDLAND
DEPARTMENT OF MATHEMATICS AND STATISTICS

AMAT 2120 MIDTERM TEST October 26, 2005

NAME ID

Contents:

[25%] 1. (a-e) Multiple choice

[30%] 2. Write a program

[30%] 3-4. Trace code

[15%] 5. Find errors

1. Check all correct answers.

a. Suppose Test1 and Test2 are two subdirectories of the same parent directory.
There is file myprog.c in the directory Test1. Your current working directory is
Test2 and you want to save a copy of the existing file under the name prog2.c.
Which command will do it?

� cd ../Test1/myprog.c prog2.c

� cp ../Test1/myprog.c prog2.c

� ls Test1/*.c Test2/prog2.c

� mv ../Test1/myprog.c ./prog2.c

� pwd ./prog2.c ../Test1/myprog.c

b. If variables int n and double x are declared in the program, then the assignment
x=n is

� safe and sound

� will pass compilation but may lead to a mathematical error due to roundoff
effect

� will cause no problems for the program, but isn’t best in terms of style;
better use the explicit cast: x=(double)n;

c. What is, technically, the word main at the beginning of every C program?

� Simply a C keyword meaning that the program begins here.

� A reserved name of function recognized by the operating system, which
initiates execution of this function.

� A preprocessor directive; preprocessor expands this word into a standard
library file.

� A conventional commonly adopted name of a C program; however, the pro-
grammer is free to use a different name.

d. Which sentence best describes the following tiny program?

int main()

{

while(5){ return(0);}

}

� The program will stop instantly without printing anything.

� The loop condition is always true and the program will never stop.

� The program will return value 0 five times.

� return(0) is misplaced; however the program will pass compilation.

� The compiler will report a syntax error.

e. A variable i is of type int. The value of the expression i+(!i) is . . .

� 0 or 1 depending on the value of i

� always 1 (one)

� always i

� i or 1 depending on the value of i

2. Write a C program to find the sum

sin(x) + sin(2x) + . . . + sin(Nx)

for the given positive integer N and given real x.

Evaluation criteria for the program will be as follows (in decremental order):

1. Relevance and correctness of mathematics

2. C syntax and programming style

3. User friendliness

4. Scope and universality (treatment of special cases; possibility to represent angle x
in degrees and radians, etc.)

Provide explanations about your code as you deem necessary, either in a form of C
comments or as a brief handwritten “Technical report /User’s manual”.

[Use this page for Question 2] [S = sin(x) + sin(2x) + . . . + sin(Nx)]

3. Trace execution and determine the output of the following fragment of code. (All
variables are int).

1 j=1;

2 for (i=1; i<5; i++)

3 {

4 if (i<3)

5 {

6 k=20+(i%2);

7 }

8 else

9 {

10 if (j==0)

11 k=0;

12 else

13 printf(" -- ");

14 j=!j;

15 }

16 printf("%d",k);

17 }

18 printf("%d\n",i);

4. By taking sample nonnegative value(s) of x and tracing the code guess the purpose
of the following function:

10 void f(int x)

11 {

12 while (x)

13 {

14 printf("%d", x%10);

15 x=x/10;

16 }

17 }

5. The program presented below was intended to compute the cube root r of a
given positive real x to the accuracy 10−6 by the so called bisection method. In this
method, we narrow down bounds for the root step by step until the difference between
the upper bound b and the lower bound a becomes less than 10−6. At each step we
calculate the midpoint

m =
a + b

2

and compare m3 with x. If m3 < x, then 3
√

x lies between m and b, — so we make m
the new lower bound. Similarly, if m3 > x, we make m the new upper bound.

The code was written in violation of good practices — all at once — and was
not properly debugged. Mark syntax errors, possible mathematical errors, and style
deficiencies — as many as you can find.

1 /* Author: Winnie The Pooh (911)123-4567*/

2 #include stdio.h

3 #define _eps 1.0E-6;

4

5 int main()

6 {

7 double x, r; /* input and output values */

8

9

10 printf("This program computes cube root of x\n");

11 scanf("%d", x);

12

13 /* Initialize lower and upper bounds for root */

14 a==0; /* Cube root of a positive is positive */

15 b==x; /* Cube root of x is always less than x */

16

17 /* Repeat until the bounds are close */ enough */

18 for (b-a< _epsilon)

19 {

20 m=(b-a)/2.0;

21 if (r*r*r > x){

22 a=m

23 esle

24 b=m;

25 } /* end of for-loop */

26 r= b+a/2; /* take midpoint of the narrow interval */

27

28 /* Printing result */

29 print("r=%d, Error: r^3-x=%d\n", r*r*r-x);

30 }

