
AMAT 2120 — Fall 2005

Assignment 3 — Due Monday Oct.24, 2005

1 Write a C program that prints all divisors of a given positive integer N . (Note:
1 and N are always divisors of N . If N is a prime, there are no other divisors.)
Make your program accept the number N interactively. Make it report an error and
quit if N ≤ 0. Otherwise, running a loop through all numbers from 1 to N , check if
every single number divides N . (Hint: operator %.)

(If you come up with a more economical algorithm to find all divisors of N , you may
implement it instead of the suggested one.)

Please don’t forget also to submit your program electronically.

2 Take a couple of sample values of the argument x in the following function and
trace the code. Guess the purpose of the function.

10 int f(int x)

11 {

12 int sum=0;

13 while (x>0)

14 {

15 sum+=(x%10);

16 x/=10;

17 }

18 return(sum);

19 }

3 The program presented below was supposed to compute the size (number of
decimals) of n! for the given integer n ≥ 0. (Recall that n! = 1 · 2 · . . . · n and
0! = 1! = 1.) The approach here is based on the following mathematical facts:

a. The number of decimal figures in a natural number n is the integral part of log
10

n

plus 1. For example, the singlets 1, . . . , 9 satisfy the two-side estimate 0 ≤ log
10

n <

1. Then, for double-digit integers n = 10 . . . 99 we have 1 ≤ log
10

n < 2, etc.

b. The values log
10

n! = log
10

1 + log
10

2 + . . . log
10

n obey the recurrence

log
10

n! = log
10

(n − 1)! + log
10

n, n > 1,

with initial value log
10

0! = log
10

1 = 0.

1

While the approach is smart and allows input values n, for which n! is well beyond
the range of C type int, the code was written in a rush and contains a lot of
programming errors. (Something like this usually happens if one writes a program
all at once, rather than incrementally). Find as many as you can. The programming
style is also sloppy. Advise the programmer.

1 My first C program ‘‘Hello World!’’ */

2 includes <stdio.h>;

3

4 main()

5 {

6 integer len; /* size of n!, to be found

7 integer n /* given value */

8 int i; /* iteration index */

9

10 print("Given an n>=0, this program computes the size of n!");

11 scanf("n=%lf", n);

12 if n<=0 {

13 printf(n<0, factorial undefined); return(0)

14 }

15 else

16 double logNFac; /* accumulator for log10 (j!), j=0,...,n.

17 note: log10 (0!)=0.*/

18

19 /* In loop: log10 (n!) = sum log10(j), j=1,..,n. */

20 for {j==1.0; j<n; n++};

21 (

22 logNFac+=log(j) /* using function log10 from <math.h> */

23);

24

25 /* Now that log10(n!) is computed, find its integral part */

26 len=(int) logNFac; /* cast to int */

27

28 /* if the value was rounded up, subtract one */

29 if (Len > lognfac) then

30 --len;

31 /* To obtain the size of n!, add 1 to the computed integral part */

32 size=+1;

33 /* Print result, like this: Size of 4!=2 */

34 printf("Size of %lf ! is %lf /n, n, len");

35 reburn.

36 }

2

