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The Pythagorean theorem says that the sum of the squares of the sides of a right triangle
equals the square of the hypotenuse. In symbols,

a2 + b2 = c2.

Since we are interested in Number Theory, that is, the theory of whole numbers, we ask if
there are any Pythagorean triangles whose sides are whole numbers. There are many such
triangles, the most famous being 3, 4, and 5, and the next being 6, 8, and 10, the ones
carpenters use to “square-a-house”, since they know that the converse of the Pythagorean
theorem is true. Here are a few more examples:

32 + 42 = 52, 72 + 242 = 252, 82 + 152 = 172, 652 + 722 = 972, 772 + 362 = 852.

The study of Pythagorean triples began about a thousand years before the time of
Pythagoras(585-447B.C.) since there are Babylonian tablets dating about 1500B.C. con-
taining lists of such triples including (3, 4, 5) and (4961, 6480, 8161). (Daniel, Shadrach,
Meshach, and Abednego were carried off to Babylon in 605 B.C. and probably knew some of
these triples since they were taught the letters and language of the Babylonians. They were
four young people who could have made the CMO team!)

Are there infinitely many Pythagorean triples? The answer is “YES” for a trivial reason
since, for example, for any integer d,

(3d)2 + (4d)2 = (5d)2.

These new triples are not interesting, so we concentrate only on triples with no common
factors. Such triples are called primitive Pythagorean triples.

Are there infinitely many of these? The first step is to gather some data. Here are some
others:

(20, 21, 29), (12, 35, 37), (9, 40, 41), (16, 63, 65), (28, 45, 53).

We can draw a few tentative conclusions from this list. It looks like one of a and b is even
and the other odd, and that c is always odd. This is not hard to prove. If a and b are both
even then so is c, and so the triple (a, b, c) is not primitive. If a and b are both odd then c
is even so that for some integers x, y, and z

a = 2x+ 1, b = 2y + 1, and c = 2z.

We can substitute these into the equation a2 + b2 = c2 to get

(2x+ 1)2 + (2y + 1)2 = (2z)2.

1Talk given at CMC Seminar, Waterloo, June 2006
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This simplifies to 2x2 + 2x+ 2y2 + 2y + 1 = 2z2. This last equation is impossible, and so a
and b cannot both be odd. It isnow obvious that c is odd.

Since we can always switch a and b, our problem now is to find all solutions in whole
numbers to the equation a2 + b2 = c2 with a odd, b even, and a, b, c having no common
factors. Our first observation is that

a2 = c2 − b2 = (c− b)(c+ b).

Here are a few examples from the list earlier, where we always take a odd and b even:

32 = 52 − 42 = (5− 4)(5 + 4) = 1 · 9
452 = 532 − 282 = (53− 28)(53 + 28) = 25 · 81

772 = 852 − 362 = (85− 36)(85 + 36) = 49 · 121

652 = 972 − 722 = (97− 72)(97 + 72) = 25 · 169

We conjecture that c − b and c + b are always squares of odd numbers. How can we prove
this? First, we observe that c− b and c+ b seem to have no common factors. Suppose that d
is a common factor of c− b and c+ b; that is, d divides both c− b and c+ b. It is an exercise
to show that d also divides (c + b) + (c − b) = 2c and (c + b) − (c − b) = 2b. But b and c
have no common factors since (a, b, c) is primitive, and hence d must equal 1 or 2. But d
also divides (c− b)(c+ b) = a2, and a is odd, so d must be 1. In other words, the only whole
number dividing both c − b and c + b is 1, and (c − b)(c + b) = a2. The only way this can
happen is if c− b and c+ b are themselves squares. This is intuitively clear but not entirely
trivial to prove! You are asked in grade school to accept this by faith. Hence, we can now
write c + b = s2 and c − b = t2 where s > t ≥ 1 are odd integers with no common factors.

Solving for b and c yields c = s2+t2

2
and b = s2−t2

2
, and hence a =

√
(c− b)(c+ b) = st. The

proof is now finished!

Pythagorean Triples Theorem. You will get every primitive Pythagorean triple (a, b, c)
with a odd and b even by using the formulas

a = st, b =
s2 − t2

2
, c =

s2 + t2

2
,

where s > t ≥ 1 are chosen to be any odd integers with no common factors.

Alternatively, since b is even, we could have started with b2 = c2 − a2. Hence
(
b
2

)2
=

c−a
2
· c+a

2
and, by a similar argument as above, we conclude that c+a

2
= u2 and c−a

2
= v2 so

that c = u2 + v2, a = u2 − v2 and b = 2uv where u > v ≥ 1, (u, v) = 1, and u and v have
opposite parity.

We list some of the examples above as well as a few others. You should extend this list
and make other conjectures.
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s t a = st b = s2−t2
2

c = s2+t2

2

3 1 3 4 5
5 1 5 12 13
7 1 7 24 25
9 1 9 40 41

11 1 11 60 61
13 1 13 84 85
5 3 15 8 17
9 5 45 28 53
9 7 63 32 65

11 3 33 56 65
11 5 55 48 73
11 7 77 36 85
11 9 99 20 101
13 3 39 80 89
13 5 65 72 97
15 7 105 88 137
35 3 105 608 617
21 5 105 208 233

121 41 4961 6480 8161

Is it always true that 60 divides abc? Which odd numbers appear in a primitive triple
(a, b, c)? It is a fact that c can occur if and only if the only odd primes dividing c are of the
form 4n+ 1. Can you find three primitive triples with the same c?

Since the Diophantine2 equation a2 + b2 = c2 has infinitely many solutions, it is natural
to investigate the situation where the exponent 2 is replaced by 3, and then 4, and so on.
For example, do the equations

a3 + b3 = c3 and a4 + b4 = c4 and a5 + b5 = c5

have solutions in nonzero integers a, b, c? In 1637 Pierre de Fermat(1601-1665) showed that
there is no solution for exponent 4.

Theorem: Fermat(1637) a4 + b4 = c4 has no nontrivial solutions in integers.

Proof: We will prove a slightly more general result, that a4 + b4 = c2 has no solutions in
integers. It is an exercise to show then that a4 + b4 = c4 cannot have a solution either.

2Called such in honour of Diophantus who lived in Alexandria around 250 A.D. and who wrote Arithmetic,
one of the great classics of ancient Greek mathematics. All that we know about his life is what is given in the
following problem in a collection called the Palatine Anthology, written roughly a century after Diophantus’
death: Here you see the tomb containing the remains of Diophantus, it is remarkable: artfully it tells the
measures of his life. The sixth part of his life God granted him for his youth. After a twelfth more his cheeks
were bearded. After an additional seventh he kindled the light of marriage, and in the fifth year he accepted
a son. Alas, a dear but unfortunate child, half of his father he was when chill Fate took him. He consoled
his grief in the remaining four years of his life. By this devise of numbers, tell us the extent of his life.
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Assume that a4 + b4 = c2 where (a, b, c) have no common factor and say b is even. Then

b2 = 2uv

a2 = u2 − v2

c = u2 + v2

where u > v ≥ 1, (u, v) = 1, and u and v of opposite parity. In fact, v must be even for
if not and u is even, then from a2 = u2 − v2, we have a2 ≡ −1 ≡ 3 (mod 4) which is not
possible. Since a2 + v2 = u2, then as above

v = 2pq

a = p2 − q2

u = p2 + q2.

Therefore b2 = 2uv = 4pq(p2 + q2) and hence p, q, pq and p2 + q2 are squares since p, q, pq
and p2 + q2 have no factors in common. Let p = A2 and q = B2. Then A4 +B4 = p2 + q2 is
a square and

A4 +B4 = p2 + q2 = u < u2 + v2 = c < c2 = a4 + b4.

This sets up an infinite descent chain of squares of whole numbers of the form x4 + y4 which
is clearly impossible. (The above argument is called the method of infinite descent and was
invented by Fermat.)

The proof that there is no solution for exponent 3 turned out to be much harder. Leonhard
Euler(1707-1783), who was the greatest mathematician of his time, proved the case n = 3
in 1753 and observed that the proof seemed very different from the case n = 4.

Theorem: (Euler (1753)) a3 + b3 = c3 has no nontrivial solutions.

Proof: Assume a solution a, b, and c with no factors in common. Only one is even. If c is
even, then a and b are odd, and writing a + b = 2p and a − b = 2q, we have a = p + q and
b = p− q, and

c3 = (p+ q)3 + (p− q)3 = 2p3 + 6pq2 = 2p(p2 + 3q2).

(Similarly, if a or b is even.) Assume first that 3 does not divide p. Then 2p and p2 +3q2 have
no factors in common, so each must be a cube. (The case where 3 divides p is similar.) It is
at this point that Euler introduced complex numbers. He showed that p2 +3q2 = (c2 +3d2)3,
where c and d are chosen so that p = c3 − 9cd2 and q = 3c2d − 3d3. He factored p2 + 3q2

into p+
√
−3q and p−

√
−3q and worked with these numbers, and made statements about

them that were not completely justified. That is, he claimed and did not completely justify
that if p2 + 3q2 is a cube, then there must exist c, d such that p and q are given by the above
equations. Assuming that this can be justified we have

2p = 2c(c− 3d)(c+ 3d) = α3β3γ3

since 2p is a cube and 2c, c ± 3d have no factors in common. Since 2p | c3 then α3β3γ3 =
2p < c3 since we can assume without loss of generality that c is positive. Since

β3 + γ3 = (c− 3d) + (c+ 3d) = 2c = α3,
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and since we can assume also that α is positive, we have α < c, and so by a descent argument,
the result follows.

The proof for exponent 5 is shared by two very eminent mathematicians, the young, 20
years old, Peter Gustav Lejeune Dirichlet(1805-1859) and the aged, 73 years old, Adrien-
Marie Legendre(1752-1833). They proved the result for n = 5 in 1825 using one of the first
general results on the general an + bn = cn case proved by a Monsieur Le Blanc in 1823,
namely, that if p and 2p+ 1 are primes3, then the equation ap + bp = cp has no solutions in
integers a, b, c with p not dividing the product abc.

This result was communicated to Legendre (and Cauchy) so that they could present the
result to the Académie des Sciences de Paris. Why? Because Monsieur Le Blanc was really
Sophie Germain(1776-1831) and regulations of the Academy prevented women from present-
ing their discoveries in person. Sophie Germain is best known for her Number Theory results
and so impressed the famous Gauss4 that he recommended her for an honorary degree at the
University of Göttingen. Unfortunately, Sophie Germain died in Paris before the University
of Göttingen could award her the honorary doctorate which Gauss had recommended she
receive.

The exponent 6 case is trivial, since if there is a non-trivial solution to a6 + b6 = c6 then
we would have a solution to the exponent 3 case since (a2)3 + (b2)3 = (c2)3. This we know
is not possible. In general then, we need only consider the cases n = p where p is an odd
prime. Note that every integer greater than 2 is either a multiple of 4 or an odd prime.

In 1832, seven years after his and Legendre’s proof of the case n = 5, Dirichlet published
a proof of the case n = 14. This is of course weaker than the case n = 7 and his publication
of this proof is in a way a confession of his failure with the case n = 7. Another seven years
passed before the first proof of the case n = 7 was published by Gabriel Lamé(1795-1870) in
1839.

I think it is about time that we state the general conjecture. In the margin of his copy
of Bachet’s Latin translation of the complete works of Diophantus, Fermat wrote:

“Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos,
et generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem
nominis fas est dividere: cujus rei demonstrationem mirabilem sane detexi. Hanc
marginis exiguitas non caperet” (It is impossible to separate a cube into two cubes,
or a biquadrate into two biquadrates, or in general any power higher than the
second into powers of like degree; I have discovered a truly remarkable proof
which this margin is too small to contain.)

This copy is now lost, but the remark appears in the 1670 edition of the works of Fermat,
edited in Toulouse by his son Samuel de Fermat. It is stated in Dickson’s History of the The-

3There are many primes p for which 2p + 1 is also prime, but it is still not known whether there are
infinitely many such primes.

4“Carl Friedrich Gauss(1777-1855) was the greatest of all mathematicians and perhaps the most richly
gifted genius of whom there is any record. This gigantic figure, towering at the beginning of the nineteenth
century, separates the modern era in mathematics from all that went before. He surpassed the levels of
achievement possible for ordinary men of genius in so many ways that one sometimes has the eerie feeling
that he belonged to a higher species.” (Quoted from George F. Simmons’ delightful book entitled Calculus
Gems from McGraw-Hill.)
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ory of Numbers, Volume II, that Fermat’s assertion was made about 1637. Even though no
correct proof was discovered until recently the following has always been known as Fermat’s
Last Theorem5.

Fermat’s Last Theorem. The Diophantine equation

an + bn = cn

where n is a natural number larger than 2, has no solution in integers all different from 0.

It is doubtful that Fermat had a correct proof. The person who made the greatest
contribution in the latter part of the 19th century was Ernst Eduard Kummer(1810-1893)
who developed a whole new area of mathematics called algebraic number theory and used
this theory to prove Fermat’s Last Theorem for many exponents, but still only a finite list.
Kummer worked with complex numbers arising naturally from the factorization

ap + bp = (a+ b)(a+ ζb)(a+ ζ2b)(a+ ζ3b) · · · (a+ ζp−1b)

where ζ = cos 2π
p

+ i sin 2π
p
. Gauss had worked with these numbers in the case p = 3 where

ζ = −1+
√

3i
2

. This is a primitive cube root of one since ζ3 = 1. If a and b are integers then
Kummer tried to work with the “integers” a + ζnb. He was successful in certain cases to
show that if

cp = (a+ b)(a+ ζb)(a+ ζ2b)(a+ ζ3b) · · · (a+ ζp−1b)

then each a+ζnb is a pth power, leading to a contradiction. He encountered many difficulties
which he was able to resolve in a large number of cases, and was able to prove the theorem
for regular primes. No one knows if there are infinitely many of these primes, but there are
infinitely many of the other kind, the irregular ones, the first one being p = 37. He was
able to overcome some of the difficulties with irregular primes and prove the theorem for all
prime p < 100. The statement of Fermat’s Last Theorem is often divided into two cases:

First Case. There do not exist integers a, b, c such that abc is NOT divisible by p and
ap + bp = cp.

Second Case. There do not exist integers a, b, c, all different from 0, such that p is a
divisor of abc and ap + bp = cp.

The first case of Fermat’s Last Theorem is considered easier than the second case. In 1909
Wieferich discovered a simple criterion for the first case. If the first case fails for exponent
p then p2 is a factor of 2p−1 − 1. Then in 1910 Mirimanoff, after understanding Wieferich’s
proof, showed that if the first case fails for p then p2 is a factor of 3p−1 − 1. Then by 1971
the first case was proved for all p < 3× 109. The second case is harder and up to 1993 the
theorem was proved for all primes p < 4, 000, 000.

In 1983, Gerd Faltings showed that if an + bn = cn for n > 2 had a solution, then there
could only be finitely many of them.

5Fermat’s Last Theorem has been featured in science fiction; attempting a solution was even mentioned
as a hobby of Captain Jean-Luc Picard in a Star Trek New Generation episode called “The Royale”.
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In 1985 L.M. Adleman, D.R. Heath-Brown, and E. Fouvry used Sophie Germain’s results
together with difficult analytic estimates to prove that there are infinitely many primes p
such that ap + bp = cp has no solutions with p not dividing abc.

In 1985 Gerhart Frey suggested a new line of attack on Fermat’s problem using a notion
called modularity. He wrote down the cubic curve

y2 = x(x+ an)(x− bn)

where (a, b, c) is a primitive solution of an + bn = cn where n > 2. This curve is called an
elliptic curve6. In general, elliptic curves are given by equations of the form

y2 = x3 + ax2 + bx+ c.

The numbers a, b, and c are fixed and the notion of modularity came about from studying
the rational points on such curves7. Frey suggested in a lecture at Oberwolfach in 1985 that
the above curve might contradict the Taniyama-Shimura conjecture that every elliptic curve
with coefficients that are rational numbers is modular. He highlighted several features of
these elliptic curves that seemed too good to be true. Kenneth Ribet(1990) proved that this
elliptic curve is NOT modular. But Andrew Wiles(1994) proved that it had to be! Hence
the contradiction proving Fermat’s Last Theorem.

Andrew Wiles(1953- ) received his Ph.D. at Cambridge University where his supervisor
was an Australian, John Coates. He accepted a full professorship at the prestigious Harvard
University in the early eighties, and very soon after that he decided to spend all of his
research time trying to prove Fermat’s Last Theorem. This was done with much secrecry
since he was afraid that others, who also knew the results that he was using to try to prove
the theorem, might also get interested and prove the theorem before he did. In particular, he
wanted to keep it secret from Gerd Faltings, a brilliant, and brusque, young German who for
several years was a Princeton Institute of Advanced Study colleague of Wiles’s. In May of
1993 Wiles thought he had a proof and had taken Professor Nick Katz into his confidence, to
check the details of his arguments. The proof was completed just in time to be delivered at a
conference in Cambridge, England, in June, organized by his former supervisor John Coates.
He told Professor Coates that he wanted to have three lectures to present his ideas instead
of the one hour offered. The title of Wiles’ talks was “Modular Forms, Elliptic Curves, and
Galois Representations,” but the title gave no hint where the lectures would lead.

The write-up of his results took 200 pages and Wiles was done just in time to catch his
plane for England. After his first two lectures on Monday and Tuesday June 21st and 22nd,
1993, the question from Kenneth Ribet and others in the audience was “What can he possibly
say on Wednesday?” When Wiles finally delivered the coup de grâce the last day of the
conference a little after 10:30a.m. on June 23rd, he did it with characteristic understatement
and, he admits, a little dramatic forethought. He turned from the blackboard, covered in
algebraic script, faced the audience and smiled: “I’d better stop there.”

6An elliptic curve is not an ellipse. Elliptic curves first arose when mathematicians tried to compute the
circumference of an ellipse, and hence the name.

7The delightful book by Joseph H. Silverman entitled A Friendly Introduction to Number Theory from
Prentice Hall gives an excellent explanation of how these ideas help to prove Fermat’s Last Theorem.
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The roof fell in in September when his colleague Nick Katz had a problem working out
some details. By December Wiles was persuaded to enlist the help of another mathemati-
cian. He settled on Richard Taylor, a promising young Cambridge mathematician who had
been taught by Wiles and who was familiar with the “proof”. Finally around 10a.m. on the
morning of September 19, 1994 Wiles had closed the gap and the seven-year quest for the
mathematician’s Holy Grail was over! With Taylor’s help in writing up and “TEX-ing” the
report it was ready on October 6, 1994 and sent off by Federal Express to three mathemati-
cians to check all the details. They were Henri Darmon, a French-Canadian mathematician
at McGill, Fred Diamond, a young American mathematician at Princeton, and Gerd Falt-
ings at the Max Planck Institute in Bonn, who all said it was correct and complete. The
full manuscript is published in Annals of Mathematics vol 141, no. 3, May 1995 containing
Wiles’ original Cambridge paper and the correction by Taylor and Wiles.

There was a conference on Fermat’s Last Theorem at Boston University in August 1995.
On Friday afternoon, August 18, 1995, the last day of the conference, while giving a talk
entitled “Modularity of Semistable Elliptic Curves,” Andrew Wiles thanked Gerhart Frey
for his great ideas and asked him if he had any ideas about certain zeros of the Riemann
Zeta function. At this conference t-shirts were sold with a very brief proof on the front and
references on the back. This proof is given on the last page.

Amateur mathematicians (often cranks) came out of the woods in large numbers after
the so called Wolfskehl prize of 1908 for a solution was announced. It was an enormous
amount of money — 100,000DM at a time when the mark was transferable into gold. At
the time 100,000DM was worth roughly 38 kgs of gold! The competition for the Wolfskehl
prize is now over since Andrew Wiles was awarded this prize amounting to £30,000 on June
27, 19978.

Bibliography

Here are some books that are very helpful to start learning some of the mathematics
behind Fermat’s Last Theorem.

A Friendly Introduction to Number Theory 3rd ed., Joseph H. Silverman, Prentice Hall,
Upper Saddle River, NJ 07458, 2006.

This is the best introductory and elementary book in Number Theory that I have read.
It is well motivated and explains some of the mathematics behind the proof of FLT.

Fermat’s Enigma, Simon Singh, Viking Penguin, 1997.

This is a delightful book for the amateur giving the history of FLT. There is a video
that complements the above book very well. It is one of the Nova Series videos entitled The
Proof which is written and produced by John Lynch, and directed by Simon Singh. (See the
Internet address: http://www.wgbh.org.)

8The prize was greatly decreased by virtue of inflation following the world wars.
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Appendix: A Geometric solution to a2 + b2 = c2.

We can attack the problem of finding all the solutions of the Diophantine Equation a2 +b2 =
c2 by dividing this equation by c2, obtaining

(
a

c

)2

+

(
b

c

)2

= 1.

So the pair of rational numbers (a/c, b/c) is a solution to the equation

x2 + y2 = 1.

We know that this is the equation of a circle C with radius 1. We will use the geometry of
C to find all the points on C whose xy-coordinates are rational numbers. Consider the line
through (−1, 0) having slope m:

L : y = m(x+ 1) (point-slope formula).

It is clear from the picture that the intersection C ∩ L consists of exactly two points, and
one of those points is (−1, 0). We want to find the other one.

(−1, 0)

(0,m)

(x, y)
L

C

To find the intersection of C and L, we need to solve the equations

x2 + y2 = 1 and y = m(x+ 1)

for x and y. We leave that to the reader. We obtain

x =
1−m2

1 +m2
and y =

2m

1 +m2
.

Hence, for every rational number m we get the above rational solution to the equation
x2 + y2 = 1. On the other hand, if we have a solution (x1, y1) in rational numbers, then
the slope of the line through (x1, y1) and (−1, 0) will be a rational number. So by taking all
possible values of m, we get every solution to x2 + y2 = 1 in rational numbers (except for
(−1, 0), which corresponds to the vertical line having “infinite” slope).
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How is the formula for rational points on a circle related to our formula for Pythagorean
triples? We can write the rational number m as a fraction v/u and then our formula for x
and y becomes

(x, y) =

(
u2 − v2

u2 + v2
,

2uv

u2 + v2

)
,

and clearing denominators gives the Pythagorean triple

(a, b, c) = (u2 − v2, 2uv, u2 + v2).

We can relate this to our formula above by setting

u =
s+ t

2
and v =

s− t
2

.

Let’s return to our circle once more, this time to do some trigonometry since we have the
point (x, y) written in a form which is very helpful.

(−1, 0)
m

(x, y)

θθ/2

L

C

Note that

cos θ = x =
1−m2

1 +m2
and sin θ = y =

2m

1 +m2
.

If you have a complicated identity in sine and cosine that you want to test, all you have to
do is to substitute for cos θ and sin θ above, collect powers of m and see if you get zero. Trig
identities now become an algebra exercise!

Next assume θ is positive and less than π radians. Can you explain why the angle above
is θ/2? Clearly then m = tan θ

2
. Hence we have the following trigonometric identities

tan

(
θ

2

)
=

sin θ

1 + cos θ
, cos θ =

1− tan2(θ/2)

1 + tan2(θ/2)
, sin θ =

2 tan(θ/2)

1 + tan2(θ/2)
.

These identities are very tedious to derive and are useful in calculus for integrating rational
functions involving sines and cosines.
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FERMAT’S LAST THEOREM: Let n, a, b, c ∈ Z with n > 2. If an + bn = cn then abc
= 0.

Proof: The proof follows a program formulated around 1985 by Frey and Serre [F,S]. By
classical results of Fermat, Euler, Dirichlet, Legendre, and Lamé, we may assume n = p,
an odd prime ≥ 11. Suppose a, b, c ∈ Z, abc 6= 0, and ap + bp = cp. Without loss of
generality we may assume 2|a and b ≡ 1 mod 4. Frey [F] observed that the elliptic curve
E : y2 = x(x − ap)(x + bp) has the following “remarkable” properties: (1) E is semistable
with conductor NE =

∏
`|abc `; and (2) ρ̄E,p is unramified outside 2p and is flat at p. By

the modularity theorem of Wiles and Taylor-Wiles [W,T-W], there is an eigenform f ∈
S2(Γ0(NE)) such that ρf,p = ρE,p. A theorem of Mazur implies that ρ̄E,p is irreducible, so
Ribet’s theorem [R] produces a Hecke eigenform g ∈ S2(Γ0(2)) such that ρg,p ≡ ρf,p mod
℘ for some ℘|p. But X0(2) has genus zero, so S2(Γ0(2)) = 0. This is a contradiction and
Fermat’s Last Theorem follows.
Q.E.D.
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