MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Fall 2005	PMAT 3370	Worksheet Solutions

Marks

[4] 1. Compute a gcd of $\alpha = 26 + 7i$ and $\beta = -59 - 17i$, by copying the method for rational integers. Write the gcd in the form $\alpha\lambda + \beta\sigma$.

Solution: We have $\frac{\beta}{\alpha} = \frac{-59 - 17i}{26 + 7i} = \frac{-1653}{725} - \frac{29}{725}i = -\frac{57}{25} - \frac{1}{25}i$. Hence, $q_1 = -2 + 0i$ and $\beta = \alpha(-2) + (-7 - 3i)$. Similarly, $\frac{26 + 7i}{-7 - 3i} = \frac{-203}{58} + \frac{29}{58}i = -\frac{7}{2} + \frac{1}{2}i$. Hence, choose $q_2 = -3$ (or -3 + i or -4 or -4 + i) and then 26 + 7i = (-7 - 3i)(-3) + (5 - 2i). Since $\frac{-7 - 3i}{5 - 2i} = \frac{-29 - 29i}{29} = -1 - i \in G$, then -7 - 3i = (5 - 2i)(-1 - i) + 0. Hence a gcd of α and β is 5 - 2i the last nonzero remainder. (The other possible gcd's are the associates -5 + 2i, 2 + 5i, -2 - 5i.) We have 5 - 2i = 26 + 7i - [(-59 - 17i) - (26 + 7i)(-2)](-3). Hence

$$5 - 2i = (-59 - 17i)3 + (26 + 7i)7.$$

[3] 2. Let α and β be Gaussian integers. If $\alpha \mid \beta$, prove that $N(\alpha) \mid N(\beta)$. Is the converse true? Solution: Since $\alpha \mid \beta$, then $\beta = \alpha \gamma$ where $\gamma \in G$. Then $N(\beta) = N(\alpha \gamma) = N(\alpha)N(\gamma)$. Since $N(\alpha), N(\beta), N(\gamma)$ are rational integers, then clearly $N(\alpha) \mid N(\beta)$.

The converse is not true. For example, $N(2+3i) \mid N(2-3i)$ but $(2+3i) \not| (2-3i)$.

[7] 3. (a) Find a gcd of $\alpha = -172 + 210i$ and $\beta = 624 - 52i$. Solution: We use the Division Algorithm until we get a zero remainder:

$$\beta = \alpha(-2-2i) + (-140 + 24i)$$

$$\alpha = (-140 + 24i)(1-i) + (-56 + 46i)$$

$$-140 + 24i = (-56 + 46i)(2+i) + (18 - 12i)$$

$$-56 + 46i = (18 - 12i)(-3) + (-2 + 10i)$$

$$18 - 12i = (-2 + 10i)(-1-i) + (6 - 4i)$$

$$-2 + 10i = (6 - 4i)(-1+i) + 0.$$

Hence a gcd is 6 - 4i, the last nonzero remainder.

(b) Factor α and β completely into primes and hence check your answer in part (a). Solution: With help from Maple we have

$$\alpha = (-1)(1+i)^2(3-2i)^2(3-10i)$$

$$\beta = i(1+i)^4(3+2i)(3-2i)(-1-2i)(-5-2i).$$

Therefore a gcd is $(1+i)^2(3-2i) = 2i(3-2i) = i(6-4i)$.

[3] 4. Let $\mathbb{Z}[\sqrt{-2}] = \{a + b\sqrt{-2} \mid a, b \in \mathbb{Z}\}$. Then the norm map N is defined in exactly the same way in this set of "integers", namely, for $\alpha = a + b\sqrt{-2}$, $N(\alpha) = \alpha \overline{\alpha} = a^2 + 2b^2$. State and prove a Division Algorithm for $\mathbb{Z}[\sqrt{-2}]$.

Solution: If $\alpha, \beta \in \mathbb{Z}[\sqrt{-2}]$ and $\alpha \neq 0$, then there exist $q, r \in \mathbb{Z}[\sqrt{-2}]$ such that $\beta = \alpha q + r$ where $N(r) < N(\alpha)$.

Proof: Consider
$$\frac{\beta}{\alpha} = \frac{\beta\bar{\alpha}}{\alpha\bar{\alpha}} = A + B\sqrt{-2}$$
 where $A, B \in \mathbb{Q}$. (Note $\frac{\beta}{\alpha} = \frac{a+b\sqrt{-2}}{c+d\sqrt{-2}} = \frac{(a+b\sqrt{-2})(c-d\sqrt{-2})}{c^2+2d^2} = \frac{ac+2bd}{c^2+2d^2} + \frac{bc-ad}{c^2+2d^2}\sqrt{-2}$.) Choose $a, b \in \mathbb{Z}$ such that $|A-a| \leq \frac{1}{2}$ and $|B-b| \leq \frac{1}{2}$. Let $q = a+b\sqrt{-2}$, and $r = \beta - \alpha q$. Then clearly $\beta = \alpha q + r$ and

$$N(r) = N(\beta - \alpha q) = N(\alpha)N(\frac{\beta}{\alpha} - q) = N(\alpha)N((A - a) + (B - b)\sqrt{-2})$$

= $N(\alpha)((A - a)^2 + 2(B - b)^2) \le N(\alpha)(\frac{1}{4} + \frac{2}{4}) = \frac{3}{4}N(\alpha) < N(\alpha).$

[8] 5. Prove that you cannot have a Division Algorithm in the "rings" $\mathbb{Z}[\sqrt{-5}]$, $\mathbb{Z}[\sqrt{-6}]$ and $\mathbb{Z}[\sqrt{-10}]$ by examining the factorizations $3 \cdot 7 = (1+2\sqrt{-5})(1-2\sqrt{-5}), 2 \cdot 3 = -\sqrt{-6}\sqrt{-6}$ and $2 \cdot 5 = -\sqrt{-10}\sqrt{-10}$. (You should first show that the set of units in these three rings is $\{\pm 1\}$).

Solution: It is straightforward to prove that ϵ is a unit if and only if $N(\epsilon) = 1$ for $\epsilon \in \mathbb{Z}[\sqrt{-d}]$ where d is positive and square-free. Hence ϵ is a unit if and only if $a^2 + db^2 = 1$ for some $a, b \in \mathbb{Z}$. But if d > 1, then the only solutions are $b = 0, a = \pm 1$. Hence the set of units is $\{\pm 1\}$.

In the set $\mathbb{Z}[\sqrt{-5}]$, we first prove that 3, 7, $1+2\sqrt{-5}$ and $1-2\sqrt{-5}$ are primes. If 3 is NOT a prime, then $3 = \alpha\beta$ for $\alpha, \beta \in \mathbb{Z}[\sqrt{-5}]$. Then $9 = N(\alpha)N(\beta)$ and so $N(\alpha) = 3 = N(\beta)$ if neither α nor β is a unit. Let $\alpha = a + b\sqrt{-5}$, then $3 = N(\alpha) = a^2 + 5b^2$. Clearly this (Diophantine) equation has no solutions. Hence 3 is prime. In exactly the same way, one shows that 7, $1 \pm 2\sqrt{-5}$ are primes. Hence 21 has two different factorizations into primes. Hence there is no unique factorization into primes in $\mathbb{Z}[\sqrt{-5}]$, and hence no Division Algorithm.

In $\mathbb{Z}[\sqrt{-6}]$ the only units are ± 1 . We need to prove that 2, 3, $\pm \sqrt{-6}$ are primes in $\mathbb{Z}[\sqrt{-6}]$. If 2, say, in NOT prime then $2 = \alpha\beta$ and $4 = N(\alpha)N(\beta)$ so $N(\alpha) = 2 = N(\beta)$ since α and β are not units. Let $\alpha = a + b\sqrt{-6}$, then $2 = a^2 + 6b^2$. Clearly there are no solution to this (Diophantine) equation. Similarly for 3 and $\pm \sqrt{-6}$. Say $-\sqrt{-6} = \alpha\beta$, then $6 = N(-\sqrt{-6}) = N(\alpha)N(\beta)$ and hence $N(\alpha) = 2$ or 3. If $\alpha = a + b\sqrt{-6}$, then $a^2 + 6b^2 = 2$ or 3 clearly have no solutions. As in the case above, the factorizations $2(3) = -\sqrt{-6}\sqrt{-6}$ show that there is no unique factorization into primes, and hence no Division Algorithm.

Similarly in $\mathbb{Z}[\sqrt{-10}]$, $a^2 + 10b^2 = 2$ or 5 have no solutions etc.

The norm map N can be defined in the setting $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$ where d is a square free positive integer greater than 1. For $\alpha = a + b\sqrt{d} \in \mathbb{Z}[\sqrt{d}], N(\alpha) = \alpha\overline{\alpha} = (a + b\sqrt{d})(a - b\sqrt{d}) = a^2 - db^2$. Prove that $N(\alpha\beta) = N(\alpha)N(\beta)$ for $\alpha, \beta \in \mathbb{Z}[\sqrt{d}]$.

Solution: Let $\alpha = a + b\sqrt{d}$ and $\beta = c + e\sqrt{d}$. Then $\alpha\beta = ac + bed + (ae + bc)\sqrt{d}$ so $N(\alpha\beta) = (ac + bed)^2 - d(ae + bc)^2 = a^2c^2 + 2abcde + b^2e^2d^2 - da^2e^2 - 2abcde - db^2c^2 = a^2c^2 + b^2e^2d^2 - da^2e^2 - db^2c^2 = (a^2 - db^2)(c^2 - de^2) = N(\alpha)N(\beta).$

Show that $\mathbb{Z}[\sqrt{10}]$ does not have a Division Algorithm by examining the factorization $2 \cdot 5 = (\sqrt{10})^2$.

Solution: First, we show that ϵ is a unit in $\mathbb{Z}[\sqrt{d}]$ if and only if $N(\epsilon) = \pm 1$.

Proof: If ϵ is a unit then $\epsilon \epsilon' = 1$ for some $\epsilon' \in \mathbb{Z}[\sqrt{d}]$. Computing the norm we have $N(1) = N(\epsilon)N(\epsilon')$. Since N(1) = 1 and $N(\epsilon)$ and $N(\epsilon')$ are rational integers, then $N(\epsilon) = \pm 1$. Conversely, if $\pm 1 = N(\epsilon) = \epsilon \overline{\epsilon}$, then clearly $\epsilon \mid 1$ so ϵ is a unit.

Suppose 2 is not a prime in $\mathbb{Z}[\sqrt{10}]$. Then $2 = \alpha\beta$ for $\alpha, \beta \in \mathbb{Z}[\sqrt{10}]$, where neither α nor β is a unit. Since $4 = N(\alpha)N(\beta)$, then $N(\alpha) = \pm 2$. Let $\alpha = a + b\sqrt{10}$, then $a^2 + 10b^2 = \pm 2$. Hence $a^2 \equiv \pm 2 \pmod{5}$. This is clearly impossible, since the squares modulo 5 are 0, 1 and 4. In a similar way one can show that 5 and $\sqrt{10}$ are primes in $\mathbb{Z}[\sqrt{10}]$. (It is clear that no two of these primes are associates. Why?)