
Pure Mathematics 3370
Solutions to Selected Problems in the Course Manual

Chapter 1

1.(a) When n = 1, 161 = 16 clearly ends in 6. Assume that 16k ends in 6. That is,
16k = 10a+ 6 for some positive integer a. Then

16k+1 = 16k · 16 = (10a+ 6)16 = 160a+ 96 = 10(16a+ 9) + 6.

Hence 16k+1 ends in 6 and so for all integers n ≥ 1, 16n ends in 6.

3. For n = 1, (2n)! = 2! = 2 and 22n(n!)2 = 22(1!)2 = 4. Since 2 < 4, the result
holds for n = 1. Assume (2k)! < 22n(k!), then

(2(k + 1))! = (2k + 2)! = (2k + 2)(2k + 1)(2k)!

< (2k + 2)(2k + 2)(2k)! = 22(k + 1)2(2k)!

< 22(k + 1)222k(k!)2 = 22(k+1)((k + 1)!)2.

Hence, the inequality holds when k is replaced by k + 1. Hence for all positive
integers n, (2n)! < 22n(n!)2.

11.(d) For n = 1, n3 − n = 1− 1 = 0 and 0 is divvisible by 6. Assume k3 − k = 6a for
some integers a. Then

(k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1− (k + 1)

= k3 − k + 3k(k + 1)

= 6a+ 3k(k + 1).

But k(k + 1) is the product of two consecutive integers, and so must be a
multiple of 2. Hence (k + 1)3 − (k + 1) = 6a+ 3(2b) for some integer b, and so
(k + 1)3 − (k + 1) is divvisible by 6. Hence, in general, 6 | (n2 − n).

(h) For n = 0, 110+2 + 122(0)+1 = 121 + 12 = 133. Assume 11k+2 + 122k+1 = 133a
for some a ∈ Z, then

11k+3 + 122k+3 = 11 · 11k+2 + 122 · 122k+1

= 11 · 11k+2 + (133 + 11)122k+1

= 11(11k+2 + 122k+1) + 133 · 122k+1

= 11(133a) + 133 · 122k+1.

Clearly the last number is divvisible by 133. Hence 133 | (11n+2 + 122n+1) for
all n ≥ 0.
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16.(d) For n = 2, α2 = 1 + α = F1 + αF2 and hence αn = Fn−1 + αFn for n = 2.
Assume αk = Fk−1 +αFk then αk+1 = α ·αk = α(Fk−1 +αFk) = αFk−1 +α2Fk =
αFk−1 + (1 +α)Fk = Fk +α(Fk−1 +Fk) = Fk +αFk+1. Hence αn = Fn−1 +αFn
for all n ≥ 2.

For n = 10, α10 = F9 + αF10 = 34 + 55α = 34 + 55
(

1+
√

5
2

)
= 123+55

√
5

2
.

Chapter 2

4.(a) Let h = (a, b). If d | a and d | b, then d | h since h = ax + by for some x,
y ∈ Z. Let g = (a, b, c) and G = ((a, b), c) = (h, c). Since G | h and G | c, and
h | a, h | b, then G | a, G | b, G | c. Hence G ≤ g since g is the greatest of the
common divvisors of a, b, and c.

Since g | a and g | b then g | h. Since g | c also, then g ≤ G since G is the
greatest common divvisors of h and c. Hence g = G.

(b) Since g = ((a, b), c), we can find x0, y0 ∈ Z such that g = (a, b)x0 + cy0. Also
there exists x1, y1 ∈ Z such that (a, b) = ax1 + by1. Then

g = (a, b)x0 + cy0 = (ax1 + by1)x0 + cy0 = ax1x0 + by1x0 + cy0.

(c) We have g = (17574, 3277, 1365) = ((17574, 3277), 1365). Since 29 = (17574, 3277) =
17574(−11)+3277(59) and g = (29, 1365) = 1 = 29(659)+1365(−14), hence g =
1 = (17574(−11) + 3277(59))659 + 1365(−14) = 17574(−7249) + 3277(38881) +
1365(−14).

5. Using the notation of the Euclidean Algorithm, we have ri = ri+1qi+2 + ri+2.
We need to prove ri+2 <

1
2
ri.

Case 1: If ri+1 ≤ 1
2
ri, then ri+2 < ri+1 ≤ 1

2
ri.

Case 2: If ri+1 > 1
2
ri, then qi+2 = 1 for otherwise qi+2 ≥ 2 and then ri ≥

2ri+1 + ri+2 ≥ 2ri+1. Hence ri+1 ≤ 1
2
ri contradicting our assumption. Since

then qi+2 = 1, ri+2 = ri − ri+1 < ri − 1
2
ri = 1

2
ri.

8. We need to find all the non-negative solutions of 6x+ 10y+ 15z = 167. Writing
the equation in the form 6x+ 10y = 167− 15z, we observe that z must be odd
(why?) and 1 ≤ z ≤ 9. For each z, z = 1, 3, 5, 7, 9, find the non-negative
solutions of 3x+ 5y = 167−15z

2
.There should be 15 solutions.

11.(a) 22 = 61358(14) + 2090(−411). (f) 36 = 7200(−10) + 3132(23).

12. 5, 829, 010

16.(a) Some hints. Assume s ≥ t, then there exist integers q and r with q ≥ 1 and
0 ≤ r < t such that s = qt+ r. Then

as − 1

at − 1
=
aqt+r − 1

at − 1
=
araqt − ar + ar − 1

at − 1
= ar

(
(at)q − 1

at − 1

)
+
ar − 1

at − 1
.
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24.
√
a2 + b2.

25.(iii) x = −282 + 37t, y = 376− 49t, no positive solutions.

(vi) x = −13 + 12t, y = −13 + 11t, infinitely many positive solutions for t ≥ 2.

26.(g) x = −102 + 15t, y = 51− 7t, t ∈ Z. The only positive solution is x = 3, y = 2.

(i) x = −7000 + 24t, y = −5000 + 17t, t ∈ Z. There are infinitely many positive
solutions, given by x = 80 + 24t, y = 15 + 17t, for t ≥ 0.

27.(i) impossible (ii) 5 ways

29. $10.21

33. 3121 coconuts.

37. The smallest number of people is 63, the largest number is 91.

Chapter 4

3. Since f(97) ≡ 10(mod 11), the remainder is 10.

5. The inverse of 1143 modulo 1985 is 1497.

7. By Fermat’s (Little) Theorem n16 ≡ 1 ≡ a16(mod 17) if (17, n) = (17, a) = 1.

Similarly n16 = (n4)4 ≡ 1 ≡ (a4)4 ≡ a16(mod 5) if (5, n) = (5, a) = 1. Hence
17 | (n16 − a16) and 5 | (n16 − a16). And since (17, 5) = 1, 85 | (n16 − a16).

13. If p is prime, then
(
p
i

)
= p!

i!(p−i)! is not only an integer for 1 ≤ i ≤ p− 1 but is a
multiple of p since p is a factor in the numerator and clearly not a factor in the
denominator. Hence

(k + 1)p = kp +

(
p

1

)
kp−1 +

(
p

2

)
kp−2 + . . .+

(
p

p− 1

)
k + 1

≡ kp + 0 + 0 + . . .+ 0 + 1

≡ kp + 1(mod p).

That is, (k + 1)p − kp ≡ 1(mod p). Let a be a positive integer, then adding the
congruences

(k + 1)p − kp ≡ 1(mod p)

for 0 ≤ k ≤ a− 1 we have a telescopic sum on the left side resulting in

ap ≡ a(mod p).

(You need to prove also that this result holds even when a ≤ 0.)

18. If 31 | (4n2 + 4), then since (31, 4) = 1, 31 | (n2 + 1). Hence n2 ≡ −1(mod 31).
But this is impossible since 31 6≡ 1(mod 4).
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Chapter 5

1.(n) Since (7200, 3132) = 36, we first solve 7200
36
x ≡ 3636

36
(mod 3132

36
); that is, solve

200x ≡ 101(mod 87). Since 200(−10)+87(23) = 1, a solution is x = 101(−10) =
−1010 ≡ 34(mod 87). Hence the 36 incongruent solutions of 7200x ≡ 3636(mod 3132)
are {34 + 87k | 0 ≤ k ≤ 35} .

2. The congruences 5x ≡ 9(mod 16), 3x ≡ 1(mod 13), x ≡ 4(mod 3) are equivalent
to

x ≡ 5(mod 16) . . . (1)

x ≡ 9(mod 13) . . . (2)

x ≡ 4(mod 3) . . . (3).

From congruence (1), x = 5 + 16a for some a ∈ Z. From congruence (2),
5 + 16a ≡ 9(mod 13) and hence a ≡ 10(mod 13). Therefore, x = 5 + 16a =
5 + 16(10 + 13b) = 165 + 208b. From (3), 165 + 208b ≡ 4(mod 3) and hence
b ≡ 1(mod 3). Hence x = 165 + 208b = 165 + 208(1 + 3c) = 373 + 624c. That
is, x ≡ 373(mod 624).

Chapter 6

7.(a) Given f(a) = (b, c) = f(a′). Then from the definition of f , a ≡ b ≡ a′(mod m)
and a ≡ c ≡ a′(mod n). Hence m | (a − a′) and n | (a − a′). But (m,n) = 1
and hence mn | (a − a′). Therefore a ≡ a′(mod mn), so that a = a′. Hence f
is one-to-one.

Let (b, c) ∈ Z∗m × Z∗n. The Chinese Remainder Theorem says that there is a
common solution x = a for the congruences x ≡ b(mod m) and x ≡ c(mod n)
since (m,n) = 1. Hence f(a) = (b, c) so that f is also onto.

(b) Since f is one-to-one and onto the number of elements in the set Z∗mn is the
same as that of Z∗m × Z∗n. The former has φ(mn) elements and the latter has
φ(m)φ(n) elements.

10. A hint for this problem is to note that∏
2 ≤ p ≤ 19
p prime

(1− 1

p
) =

55296

323323
>

1

6
.

15. Let x = 79999. Note that φ(1000) = 1000
(
1− 1

2

) (
1− 1

5

)
= 400. Hence by

Fermat’s (Little) Theorem

7x = 710000 =
(
7φ(1000)

)25 ≡ 125 ≡ 1(mod 1000).
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Since 7(143)+1000(−1) = 1, then 143(7) ≡ 1(mod 1000). Hence x ≡ 143(mod 1000),
and so the last three digits in x are 1, 4, 3.

22.(a) We are given that ah ≡ 1(mod p) and hence p | (ah − 1). That is,

p | (a
h
2 − 1)(a

h
2 + 1).

Since p is prime then p | (a
h
2 − 1) or p | (a

h
2 + 1). But a

h
2 6≡ 1(mod p) since h

is the smallest positive exponent such that ah ≡ 1(mod p). Hence p | (ah2 + 1)

and so a
h
2 ≡ −1(mod p).

(b) For p = 2 the result is trivial. Assume that p is an odd prime and let g be a
primitive root modulo p. (We assume that g exists, but we have not proved
this!) Hence gp−1 ≡ 1(mod p) and p − 1 is the order of g modulo p. Hence by

part(a) g
p−1

2 ≡ −1(mod p). We have

(p− 1)! ≡
p−1∏
i=1

gi = g
∑p−1
i=1 i = g

(p−1)p
2 =

(
g
p−1

2

)p
≡ (−1)p = −1(mod p).
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