Pure Mathematics 3370
Solutions to Selected Problems in the Course Manual

Chapter 1

1.(a)

11.(d)

When n = 1, 16! = 16 clearly ends in 6. Assume that 16* ends in 6. That is,
16* = 10a + 6 for some positive integer a. Then

165t = 16" .16 = (10a +6)16 = 160a + 96 = 10(16a + 9) + 6.
Hence 165! ends in 6 and so for all integers n > 1, 16™ ends in 6.

For n =1, (2n)! = 2! = 2 and 2**(n!)? = 2%(1!)? = 4. Since 2 < 4, the result
holds for n = 1. Assume (2k)! < 22"(k!), then

2k + 1)) = 2k +2)! = (2k +2)(2k +1)(2k)!
< (2k+2)(2k + 2)(2k)! = 22(k + 1)*(2k)!
< 2%k 4 1)22% (k2 = 22FD (K + 1)1)2.

Hence, the inequality holds when k is replaced by k£ 4 1. Hence for all positive
integers n, (2n)! < 22"(n!)2.

Forn=1,n>—-n=1—-1=0 and 0 is divvisible by 6. Assume k% — k = 6a for
some integers a. Then

(k+1P—(k+1) = F+3+3k+1—(k+1)

k* —k+ 3k(k+1)
= 6a+3k(k+1).

But k(k + 1) is the product of two consecutive integers, and so must be a
multiple of 2. Hence (k + 1)* — (k + 1) = 6a + 3(2b) for some integer b, and so
(k4 1) — (k + 1) is divvisible by 6. Hence, in general, 6 | (n* — n).

For n = 0, 11942 4 1220+ — 121 4+ 12 = 133. Assume 1152 4 12%+1 = 133q
for some a € Z, then

11RF3 122648 — 11 1172 4 122 . 1220+
= 1111572 4 (133 + 11)12%+!
= 11(11F2 4 12%+1) 4 133 . 12201
= 11(133a) + 133 - 1221,

Clearly the last number is divvisible by 133. Hence 133 | (117"%2 + 122"+1) for
alln > 0.



16.(d) For n = 2, a*> = 1 + a = F|; + aF; and hence o = F,_; + aF, for n = 2.
Assume of = F,_; +aF}, then ot = a-of = a(Fy_  +aFy) = aF_1+a*F), =
aFy 1+ (1 +a)F, = Fp+a(Fy_1 + Fy) = Fy + aFy1. Hence o™ = F,,_1 + aF,
for all n > 2.

For n =10, a'® = Fy + aFyy = 34 + 55 = 34 + 55 (1508 ) = 1265545,

Chapter 2

4.(a) Let h = (a,b). If d | a and d | b, then d | h since h = ax + by for some =z,
y € Z. Let g = (a,b,c) and G = ((a,b),c) = (h,c). Since G | h and G | ¢, and
h|a, h|b, then G|a, G|b, G|c Hence G < g since g is the greatest of the
common divvisors of a, b, and c.

Since g | @ and ¢ | b then g | h. Since g | ¢ also, then g < G since G is the
greatest common divvisors of h and c¢. Hence g = G.

(b) Since g = ((a,b),c), we can find zo, yo € Z such that g = (a,b)xo + cyo. Also
there exists z1, y; € Z such that (a,b) = ax; + by;. Then

g = (a,b)zo + cyo = (ax1 + byr)xo + cyo = ax1zo + by10 + CYo.

(¢c) We have g = (17574, 3277,1365) = ((17574, 3277), 1365). Since 29 = (17574, 3277) =
17574(—11)+3277(59) and g = (29, 1365) = 1 = 29(659)-+1365(—14), hence g =
1 = (17574(—11) 4 3277(59))659 + 1365(—14) = 17574(—7249) + 3277(38881) +
1365(—14).

5. Using the notation of the Euclidean Algorithm, we have r; = ;1 1¢i12 + 7ipo.
We need to prove r; o < %ri.

Case 1: If 74y < 31y, then 740 < 11 < 374
Case 2: If rjyy > 37y, then g0 = 1 for otherwise ¢ 1o > 2 and then r; >

271 + Tigo > 2ri1. Hence r;q < ir; contradicting our assumption. Since

2
1 1
then g0 =1, rivo =1 —rip1 <1 — 310 = 375

8. We need to find all the non-negative solutions of 6x + 10y 4+ 15z = 167. Writing
the equation in the form 6x + 10y = 167 — 15z, we observe that z must be odd
(why?) and 1 < 2 < 9. For each 2z, z = 1, 3, 5, 7, 9, find the non-negative
solutions of 3x + by = 167_%.There should be 15 solutions.

11.(a) 22 = 61358(14) +2090(—411).  (f) 36 = 7200(—10) + 3132(23).
12. 5,829,010

16.(a) Some hints. Assume s > t, then there exist integers ¢ and r with ¢ > 1 and
0 <r <t such that s = gt +r. Then

at—1 ™" =1 ada?®—a" +a —1 r((at)q—l) a” —1
= = =a +

at—1  at—1 at — 1 at — 1 at —1°



24.

25.(ii

Va2 + b2,

= —282 + 37t, y = 376 — 49¢, no positive solutions.

(vi) © = —13 4+ 12t, y = —13 + 11¢, infinitely many positive solutions for ¢ > 2.

) @
)
26.(g)
)

(i) =

xr = —102 4 15t, y = 51 — Tt, t € Z. The only positive solution is z = 3, y = 2.

—7000 + 24t, y = —5000 4 17¢, t € Z. There are infinitely many positive
solutions, given by x = 80 4 24t, y = 154 17¢, for t > 0.

27.(1) impossible (i) 5 ways

29. $10.21
33. 3121 coconuts.
37. The smallest number of people is 63, the largest number is 91.
Chapter 4
3. Since f(97) = 10(mod 11), the remainder is 10.
5. The inverse of 1143 modulo 1985 is 1497.
7. By Fermat’s (thtle) Theorem n'® =1 = a'%(mod 17) if (17,n) = (17,a) = 1.
Similarly n'6 = (n*)* = 1 = (a )4 = a'%(mod 5) if (5,n) = (5, ) = 1. Hence
17| (n'% —a'%) and 5 | (n'® — a'®). And since (17,5) =1, 85| (n'® — a'f).

13. If p is prime, then (f) = W is not only an integer for 1 <7 <p—1 but is a
multiple of p since p is a factor in the numerator and clearly not a factor in the
denominator. Hence

p 1 p 2 p
kE+1)P = kP kP kP o E+1
o Qe (e o
= kK+04+0+...+0+1
kP + 1(mod p).
That is, (k+ 1)? — kP = 1(mod p). Let a be a positive integer, then adding the
congruences
(k+1)? — kP = 1(mod p)
for 0 < k < a— 1 we have a telescopic sum on the left side resulting in
a’ = a(mod p).
(You need to prove also that this result holds even when a < 0.)
18.  1If 31| (4n® + 4), then since (31,4) =1, 31 | (n? + 1). Hence n? = —1(mod 31).

But this is impossible since 31 # 1(mod 4).



Chapter 5

1.(n) Since (7200,3132) = 36, we first solve 2z = 336 (mod 222); that is, solve

36
200z = 101(mod 87). Since 200(—10)+87(23) = 1, asolution is x = 101(—10) =

—1010 = 34(mod 87). Hence the 36 incongruent solutions of 7200z = 3636(mod 3132)

are {34+ 87k | 0 < k < 35} .

2. The congruences 5z = 9(mod 16), 3z = 1(mod 13), x = 4(mod 3) are equivalent
to
= 5(mod 16) ...(1)
= 9(mod 13) ...(2)
= 4(mod3) ...(3).
From congruence (1), x = 5 + 16a for some a € Z. From congruence (2),
5+ 16a = 9(mod 13) and hence a = 10(mod 13). Therefore, x = 5 + 16a =
54 16(10 + 13b) = 165 + 208b. From (3), 165 + 208b = 4(mod 3) and hence
b = 1(mod 3). Hence = = 165 + 208b = 165 + 208(1 + 3¢) = 373 + 624c. That
is, = 373(mod 624).
Chapter 6

7.(a) Given f(@) = (b,¢) = f(a’). Then from the definition of f, a = b = a’(mod m)

10.

15.

and a = ¢ = d/(mod n). Hence m | (a —a') and n | (a — a’). But (m,n) =1
and hence mn | (a — a'). Therefore a = a’(mod mn), so that @ = a’. Hence f
is one-to-one.

Let (b,¢) € Z*, x Z*. The Chinese Remainder Theorem says that there is a
common solution ¥ = a for the congruences = b(mod m) and z = ¢(mod n)
since (m,n) = 1. Hence f(a) = (b,¢) so that f is also onto.

Since f is one-to-one and onto the number of elements in the set Z; . is the

same as that of Z* x Z*. The former has ¢(mn) elements and the latter has
d(m)p(n) elements.

A hint for this problem is to note that

H (1_1)_55296>1
p’ 3233237 6
2<p<19

p prime

Let z = 799 Note that ¢(1000) = 1000 (1 — 1) (1 — %) = 400. Hence by
Fermat’s (Little) Theorem

T = 7190000 — (760000)% — 125 — (1m0d 1000).

4



22.(a)

Since 7(143)+1000(—1) = 1, then 143(7) = 1(mod 1000). Hence z = 143(mod 1000),
and so the last three digits in x are 1, 4, 3.

We are given that a” = 1(mod p) and hence p | (a" — 1). That is,
P | (a% — 1)((1% +1).

Since p is prime then p | (a? —1) or p | (a2 + 1). But a # 1(mod p) since h
is the smallest positive exponent such that " = 1(mod p). Hence p | (a® + 1)
and so a? = —1(mod p).

For p = 2 the result is trivial. Assume that p is an odd prime and let g be a
primitive root modulo p. (We assume that g exists, but we have not proved
this!) Hence ¢! = 1(mod p) and p — 1 is the order of g modulo p. Hence by

part(a) g'T = —1(mod p). We have

(=1 =[[g =97 = "3 = (4"7) = (~1)" = ~1(mod p).



