Pure Mathematics 3370 Solutions to Selected Problems in the Course Manual

Chapter 1

1.(a) When n = 1, $16^1 = 16$ clearly ends in 6. Assume that 16^k ends in 6. That is, $16^k = 10a + 6$ for some positive integer a. Then

 $16^{k+1} = 16^k \cdot 16 = (10a+6)16 = 160a+96 = 10(16a+9)+6.$

Hence 16^{k+1} ends in 6 and so for all integers $n \ge 1$, 16^n ends in 6.

3. For n = 1, (2n)! = 2! = 2 and $2^{2n}(n!)^2 = 2^2(1!)^2 = 4$. Since 2 < 4, the result holds for n = 1. Assume $(2k)! < 2^{2n}(k!)$, then

$$\begin{aligned} (2(k+1))! &= (2k+2)! &= (2k+2)(2k+1)(2k)! \\ &< (2k+2)(2k+2)(2k)! = 2^2(k+1)^2(2k)! \\ &< 2^2(k+1)^2 2^{2k}(k!)^2 = 2^{2(k+1)}((k+1)!)^2. \end{aligned}$$

Hence, the inequality holds when k is replaced by k + 1. Hence for all positive integers n, $(2n)! < 2^{2n}(n!)^2$.

11.(d) For n = 1, $n^3 - n = 1 - 1 = 0$ and 0 is divvisible by 6. Assume $k^3 - k = 6a$ for some integers a. Then

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1) = k^3 - k + 3k(k+1) = 6a + 3k(k+1).$$

But k(k + 1) is the product of two consecutive integers, and so must be a multiple of 2. Hence $(k + 1)^3 - (k + 1) = 6a + 3(2b)$ for some integer b, and so $(k + 1)^3 - (k + 1)$ is divvisible by 6. Hence, in general, $6 \mid (n^2 - n)$.

(h) For n = 0, $11^{0+2} + 12^{2(0)+1} = 121 + 12 = 133$. Assume $11^{k+2} + 12^{2k+1} = 133a$ for some $a \in \mathbb{Z}$, then

$$11^{k+3} + 12^{2k+3} = 11 \cdot 11^{k+2} + 12^2 \cdot 12^{2k+1}$$

= $11 \cdot 11^{k+2} + (133 + 11)12^{2k+1}$
= $11(11^{k+2} + 12^{2k+1}) + 133 \cdot 12^{2k+1}$
= $11(133a) + 133 \cdot 12^{2k+1}$.

Clearly the last number is divvisible by 133. Hence $133 \mid (11^{n+2} + 12^{2n+1})$ for all $n \ge 0$.

16.(d) For n = 2, $\alpha^2 = 1 + \alpha = F_1 + \alpha F_2$ and hence $\alpha^n = F_{n-1} + \alpha F_n$ for n = 2. Assume $\alpha^k = F_{k-1} + \alpha F_k$ then $\alpha^{k+1} = \alpha \cdot \alpha^k = \alpha (F_{k-1} + \alpha F_k) = \alpha F_{k-1} + \alpha^2 F_k = \alpha F_{k-1} + (1+\alpha)F_k = F_k + \alpha (F_{k-1} + F_k) = F_k + \alpha F_{k+1}$. Hence $\alpha^n = F_{n-1} + \alpha F_n$ for all $n \ge 2$. For n = 10, $\alpha^{10} = F_9 + \alpha F_{10} = 34 + 55\alpha = 34 + 55\left(\frac{1+\sqrt{5}}{2}\right) = \frac{123+55\sqrt{5}}{2}$.

Chapter 2

4.(a) Let h = (a, b). If $d \mid a$ and $d \mid b$, then $d \mid h$ since h = ax + by for some x, $y \in \mathbb{Z}$. Let g = (a, b, c) and G = ((a, b), c) = (h, c). Since $G \mid h$ and $G \mid c$, and $h \mid a, h \mid b$, then $G \mid a, G \mid b, G \mid c$. Hence $G \leq g$ since g is the greatest of the common divvisors of a, b, and c.

Since $g \mid a$ and $g \mid b$ then $g \mid h$. Since $g \mid c$ also, then $g \leq G$ since G is the greatest common divisors of h and c. Hence g = G.

(b) Since g = ((a, b), c), we can find $x_0, y_0 \in \mathbb{Z}$ such that $g = (a, b)x_0 + cy_0$. Also there exists $x_1, y_1 \in \mathbb{Z}$ such that $(a, b) = ax_1 + by_1$. Then

$$g = (a,b)x_0 + cy_0 = (ax_1 + by_1)x_0 + cy_0 = ax_1x_0 + by_1x_0 + cy_0.$$

- (c) We have g = (17574, 3277, 1365) = ((17574, 3277), 1365). Since 29 = (17574, 3277) = 17574(-11)+3277(59) and g = (29, 1365) = 1 = 29(659)+1365(-14), hence g = 1 = (17574(-11)+3277(59))659+1365(-14) = 17574(-7249)+3277(38881)+1365(-14).
- 5. Using the notation of the Euclidean Algorithm, we have $r_i = r_{i+1}q_{i+2} + r_{i+2}$. We need to prove $r_{i+2} < \frac{1}{2}r_i$.

<u>Case 1</u>: If $r_{i+1} \leq \frac{1}{2}r_i$, then $r_{i+2} < r_{i+1} \leq \frac{1}{2}r_i$.

<u>Case 2</u>: If $r_{i+1} > \frac{1}{2}r_i$, then $q_{i+2} = 1$ for otherwise $q_{i+2} \ge 2$ and then $r_i \ge 2r_{i+1} + r_{i+2} \ge 2r_{i+1}$. Hence $r_{i+1} \le \frac{1}{2}r_i$ contradicting our assumption. Since then $q_{i+2} = 1$, $r_{i+2} = r_i - r_{i+1} < r_i - \frac{1}{2}r_i = \frac{1}{2}r_i$.

8. We need to find all the non-negative solutions of 6x + 10y + 15z = 167. Writing the equation in the form 6x + 10y = 167 - 15z, we observe that z must be odd (why?) and $1 \le z \le 9$. For each z, z = 1, 3, 5, 7, 9, find the non-negative solutions of $3x + 5y = \frac{167 - 15z}{2}$. There should be 15 solutions.

11.(a)
$$22 = 61358(14) + 2090(-411)$$
. (f) $36 = 7200(-10) + 3132(23)$.

- 12. 5, 829, 010
- 16.(a) Some hints. Assume $s \ge t$, then there exist integers q and r with $q \ge 1$ and $0 \le r < t$ such that s = qt + r. Then

$$\frac{a^s - 1}{a^t - 1} = \frac{a^{qt + r} - 1}{a^t - 1} = \frac{a^r a^{qt} - a^r + a^r - 1}{a^t - 1} = a^r \left(\frac{(a^t)^q - 1}{a^t - 1}\right) + \frac{a^r - 1}{a^t - 1}.$$

24. $\sqrt{a^2+b^2}$.

25.(iii) x = -282 + 37t, y = 376 - 49t, no positive solutions.

- (vi) x = -13 + 12t, y = -13 + 11t, infinitely many positive solutions for $t \ge 2$.
- 26.(g) x = -102 + 15t, y = 51 7t, $t \in \mathbb{Z}$. The only positive solution is x = 3, y = 2.
 - (i) x = -7000 + 24t, y = -5000 + 17t, $t \in \mathbb{Z}$. There are infinitely many positive solutions, given by x = 80 + 24t, y = 15 + 17t, for $t \ge 0$.
- 27.(i) impossible (ii) 5 ways

29. \$10.21

- 33. 3121 coconuts.
- 37. The smallest number of people is 63, the largest number is 91.

Chapter 4

- 3. Since $f(97) \equiv 10 \pmod{11}$, the remainder is 10.
- 5. The inverse of 1143 modulo 1985 is 1497.
- 7. By Fermat's (Little) Theorem $n^{16} \equiv 1 \equiv a^{16} \pmod{17}$ if (17, n) = (17, a) = 1. Similarly $n^{16} = (n^4)^4 \equiv 1 \equiv (a^4)^4 \equiv a^{16} \pmod{5}$ if (5, n) = (5, a) = 1. Hence $17 \mid (n^{16} - a^{16})$ and $5 \mid (n^{16} - a^{16})$. And since (17, 5) = 1, $85 \mid (n^{16} - a^{16})$.
 - 13. If p is prime, then $\binom{p}{i} = \frac{p!}{i!(p-i)!}$ is not only an integer for $1 \le i \le p-1$ but is a multiple of p since p is a factor in the numerator and clearly not a factor in the denominator. Hence

$$(k+1)^{p} = k^{p} + {p \choose 1} k^{p-1} + {p \choose 2} k^{p-2} + \ldots + {p \choose p-1} k + 1$$

$$\equiv k^{p} + 0 + 0 + \ldots + 0 + 1$$

$$\equiv k^{p} + 1 \pmod{p}.$$

That is, $(k+1)^p - k^p \equiv 1 \pmod{p}$. Let *a* be a positive integer, then adding the congruences

$$(k+1)^p - k^p \equiv 1 \pmod{p}$$

for $0 \le k \le a - 1$ we have a telescopic sum on the left side resulting in

$$a^p \equiv a \pmod{p}.$$

(You need to prove also that this result holds even when $a \leq 0$.)

18. If $31 \mid (4n^2 + 4)$, then since (31, 4) = 1, $31 \mid (n^2 + 1)$. Hence $n^2 \equiv -1 \pmod{31}$. But this is impossible since $31 \not\equiv 1 \pmod{4}$.

Chapter 5

- 1.(n) Since (7200, 3132) = 36, we first solve $\frac{7200}{36}x \equiv \frac{3636}{36} \pmod{\frac{3132}{36}}$; that is, solve $200x \equiv 101 \pmod{87}$. Since 200(-10)+87(23) = 1, a solution is $x = 101(-10) = -1010 \equiv 34 \pmod{87}$. Hence the 36 incongruent solutions of $7200x \equiv 3636 \pmod{3132}$ are $\{34+87k \mid 0 \leq k \leq 35\}$.
- 2. The congruences $5x \equiv 9 \pmod{16}$, $3x \equiv 1 \pmod{13}$, $x \equiv 4 \pmod{3}$ are equivalent to

x	\equiv	$5 \pmod{16}$	$\dots (1)$
x	\equiv	$9 \pmod{13}$	$\dots(2)$
x	\equiv	$4 \pmod{3}$	\ldots (3).

From congruence (1), x = 5 + 16a for some $a \in \mathbb{Z}$. From congruence (2), $5 + 16a \equiv 9 \pmod{13}$ and hence $a \equiv 10 \pmod{13}$. Therefore, x = 5 + 16a = 5 + 16(10 + 13b) = 165 + 208b. From (3), $165 + 208b \equiv 4 \pmod{3}$ and hence $b \equiv 1 \pmod{3}$. Hence x = 165 + 208b = 165 + 208(1 + 3c) = 373 + 624c. That is, $x \equiv 373 \pmod{624}$.

Chapter 6

7.(a) Given $f(\overline{a}) = (\overline{b}, \overline{c}) = f(\overline{a'})$. Then from the definition of $f, a \equiv b \equiv a' \pmod{m}$ and $a \equiv c \equiv a' \pmod{n}$. Hence $m \mid (a - a')$ and $n \mid (a - a')$. But (m, n) = 1and hence $mn \mid (a - a')$. Therefore $a \equiv a' \pmod{mn}$, so that $\overline{a} = \overline{a'}$. Hence fis one-to-one.

Let $(\overline{b}, \overline{c}) \in \mathbb{Z}_m^* \times \mathbb{Z}_n^*$. The Chinese Remainder Theorem says that there is a common solution x = a for the congruences $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$ since (m, n) = 1. Hence $f(\overline{a}) = (\overline{b}, \overline{c})$ so that f is also onto.

- (b) Since f is one-to-one and onto the number of elements in the set \mathbb{Z}_{mn}^* is the same as that of $\mathbb{Z}_m^* \times \mathbb{Z}_n^*$. The former has $\phi(mn)$ elements and the latter has $\phi(m)\phi(n)$ elements.
- 10. A hint for this problem is to note that

$$\prod_{\substack{2 \le p \le 19 \\ p \text{ prime}}} (1 - \frac{1}{p}) = \frac{55296}{323323} > \frac{1}{6}.$$

15. Let $x = 7^{9999}$. Note that $\phi(1000) = 1000 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) = 400$. Hence by Fermat's (Little) Theorem

$$7x = 7^{10000} = \left(7^{\phi(1000)}\right)^{25} \equiv 1^{25} \equiv 1 \pmod{1000}.$$

Since 7(143)+1000(-1) = 1, then $143(7) \equiv 1 \pmod{1000}$. Hence $x \equiv 143 \pmod{1000}$, and so the last three digits in x are 1, 4, 3.

22.(a) We are given that $a^h \equiv 1 \pmod{p}$ and hence $p \mid (a^h - 1)$. That is,

$$p \mid (a^{\frac{h}{2}} - 1)(a^{\frac{h}{2}} + 1).$$

Since p is prime then $p \mid (a^{\frac{h}{2}} - 1)$ or $p \mid (a^{\frac{h}{2}} + 1)$. But $a^{\frac{h}{2}} \not\equiv 1 \pmod{p}$ since h is the smallest positive exponent such that $a^h \equiv 1 \pmod{p}$. Hence $p \mid (a^{\frac{h}{2}} + 1)$ and so $a^{\frac{h}{2}} \equiv -1 \pmod{p}$.

(b) For p = 2 the result is trivial. Assume that p is an odd prime and let g be a primitive root modulo p. (We assume that g exists, but we have not proved this!) Hence $g^{p-1} \equiv 1 \pmod{p}$ and p-1 is the order of g modulo p. Hence by part(a) $g^{\frac{p-1}{2}} \equiv -1 \pmod{p}$. We have

$$(p-1)! \equiv \prod_{i=1}^{p-1} g^i = g^{\sum_{i=1}^{p-1} i} = g^{\frac{(p-1)p}{2}} = \left(g^{\frac{p-1}{2}}\right)^p \equiv (-1)^p = -1 \pmod{p}.$$