MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

MIDTERM EXAM	Pure Mathematics 3370	October 25, 2004
MIDTERM EXAM	1 ure mathematics 5570	OCTOBER 25, 2004

Marks

- [7] 1. (a) Define the gcd of two integers a and b.
 - (b) Solve the Diophantine equation

$$461x + 142y = 4789.$$

- (c) Find the positive solution pairs, if any.
- [7] 2. (a) List 50 consecutive composite integers.
 - (b) State the Prime Number Theorem.
 - (c) Find the remainder when 319^{566} is divided by 23.
- [3] 3. If $\{f_n\}_{n=1}^{\infty}$ is the Fibonacci sequence, prove that $f_n < \alpha^n$ for all $n \ge 1$, where $\alpha = \frac{1+\sqrt{5}}{2}$.

[3] 4. Prove **ONE** of the following:

- (a) If $2^n 1$ is prime, prove that $N = 2^{n-1}(2^n 1)$ is even and perfect.
- (b) If p is prime and $x^2 \equiv -1 \pmod{p}$ has a solution, prove that p = 2 or $p \equiv 1 \pmod{4}$.
- (c) If (a, b) = 1, prove that <u>all</u> the solutions of ax + by = n are given by $x = x_0 + bt$ and $y = y_0 at$ where (x_0, y_0) is a particular solution of ax + by = n.

[20]