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Marks

1.[3] (a) If a | bc and (a, b) = 1, prove that a | c.
Proof: First, note that ax + by = (a, b) = 1 for some x, y ∈ Z. Then acx + bcy = c and
since a | bc then clearly a divides the left side. Hence a | c.

[3] (b) Solve the Diophantine equation 25x+ 11y = 557.

Solution: After four applications of the Division Algorithm, with quotients 2, 3, 1 and 2,
we have 25(4) + 11(−9) = 1. Hence the general solution of the Diophantine equation is:

x = 4(557) + 11t = 2228 + 11t, and y = −9(557)− 25t = −5013− 25t, for t ∈ Z.

[2] (c) Find the positive solutions, if any.

Solution: We have to solve x > 0 and y > 0. This gives the following inequality for t,
−2228

11
< t <

−5013

25
. Since

−2228

11
≈ −202.545 and

−5013

25
≈ −200.52 then the integer

solutions are t = −201 and t = −202. Hence x = 17, y = 12 and x = 6, y = 37.

2.[3] (a) Prove that any composite integer n has a prime factor ≤
√
n.

Proof: Since n is composite n = ab where without any loss of generality 1 < a ≤ b < n.
Let p be a prime factor of a, then clearly p is a prime factor of n. Since a2 ≤ ab = n,
then a ≤

√
n, and hence p ≤

√
n.

[2] (b) List 50 consecutive composite numbers.

Solution: The numbers 51! + 2, 51! + 3, 51! + 4, · · · , 51! + 51 are 50 consecutive integers
which are all composite since j | 51! + j.

[3] (c) Give a formula to generate all the primitive Pythagorean triples and list 6 such triples.

Solution: One such formula for the primitive Pythagorean triples is a = u2 − v2, b =
2uv, c = u2 + v2 where u > v, (u, v) = 1, and u 6≡ v (mod 2). (Note a2 + b2 = c2.) Six
such triples are (3, 4, 5), (5, 12, 13), (7, 24, 25), (9, 40, 41), (15, 8, 17) and (21, 20, 29). (To
impress marker the last example should be (4961, 6480, 8161) :-))

3.[3] (a) Find the last two digits of 999999.

Solution: The smart way to solve this problem is to let x = 999999 and then 9x = 9100000.
Euler’s theorem for m = 100 say that aφ(100) ≡ 1 (mod 100). Since φ(100) = 40, then
940 ≡ 1 (mod 100). Hence 9100000 = 9(40)(2500) = (940)2500 ≡ 1 (mod 100). Hence we have
to solve for x the congruence 9x ≡ 1 (mod 100). This is easy since 9x ≡ −99 (mod 100).
Hence x ≡ −11 ≡ 89 (mod 100). Hence the last two digits of 999999 are 8 and 9.
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[3] (b) Find the common solution of the congruences x ≡ 16 (mod 41), x ≡ 2 (mod 7), and
x ≡ 2 (mod 15).

Solution: Note that the second congruence is equivalent to x ≡ 16 (mod 7) and hence
the first two congruences are equivalence to the one congruence x ≡ 16 (mod 287).
Substituting this information into the third equation we get x = 16 + 287a ≡ 2 (mod
15) and hence a ≡ 8 (mod 15). Hence x = 16 + 287a = 16 + 287(8 + 15b) = 2312 + 4305b
for some b ∈ Z. Hence the unique solution modulo the product of the three moduli is
x = 2312.

4.[2] (a) Define a primitive root modulo a positive integer m.

Solution: The number a is a primitive root modulo m if (a,m) = 1 and the order of
a modulo m is φ(m), where φ is Euler’s phi function. That is, at 6≡ 1 (mod m) for
1 ≤ t < φ(m).

[2] (b) How many primitive roots are there modulo m = 125?

Solution: The number of primitive roots are φ(φ(125)) = φ(52(4)) = 5(4)(2) = 40.

[3] (c) If a has order h modulo m, prove that h | φ(m).

Proof: We have φ(m) = hq + r where 0 ≤ r < h. Then by Euler’s theorem, 1 ≡ aφ(m) ≡
ahq+r ≡ (ah)qar ≡ ar (mod m), using the fact that ah ≡ 1 (mod m). Since h is minimal
and r < h then r = 0 and hence h | φ(m).

5.[3] (a) Either: Prove that a rational prime p ≡ 1 (mod 4) is not a Gaussian prime.

Proof: We proved that the congruence x2 ≡ −1 (mod p) has a solution x = a if p is
a prime congruent to 1 modulo 4. Hence a2 + 1 ≡ 0 (mod p). Hence there is an inte-
ger b such that a2 + 1 = pb, or (a + i)(a − i) = pb. If p were a Gaussian prime then
since p | (a + i)(a − i) we would have p | (a + i) or p | (a − i). But this is impossi-
ble since neither a

p
+ 1
p
i nor a

p
− 1
p
i is a (Gaussian) integer. Therefore, p is not a prime in G.

OR: Prove, using the Either part, that such a prime can be written as the sum of two
squares of rational integers.

Proof: Since p is not a prime in G, then there exist nonunit integers α and β such
that αβ = p. Then going to Cheers and fetching Norm, we have N(α)N(β) = p2. Since
N(α) > 1 andN(β) > 1 we must haveN(α) = p. Let α = a+bi, then p = N(α) = a2+b2.

[3] (b) Factor the Gaussian integer 14(23− 15i).

Solution: Since 7 ≡ 3 (mod 4), then 7 is a Gaussian prime. Also 2 = −i(1+i)2, and since
23 and 15 are odd, 1+i divides 23−15i. Hence 14(23−15i) = −i(1+i)2(7)(1+i)(4−19i).
Since N(4 − 19i) = 377 = 13 × 29, then one of the prime divisors of 13, namely 2 ± 3i
must divide 4 − 19i. We have 4 − 19i = (2 − 3i)(5 − 2i), and since N(5 − 2i) = 29,
a rational prime, then 5 − 2i is prime, so the required factorization of 14(23 − 15i) is
−i(1 + i)2(7)(1 + i)(2− 3i)(5− 2i).
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[5] 6. Prove ONE of the following theorems:

(a) If (a,m) = 1 and m ≥ 1, prove that aφ(m) ≡ 1 (mod m).

Proof: Let r1, r2, . . . , rφ(m) be the positive integers less than m which are relatively
prime to m. Since (a,m) = 1, we claim that ar1, ar2, . . . , arφ(m) are congruent, not
necessarily in order of appearance, to r1, r2, . . . , rφ(m). For each i, we have (ari,m) = 1
since (ri,m) = 1 and (a,m) = 1. If ari ≡ arj (mod m) then, by the cancellation
law, ri ≡ rj (mod m) and hence i = j. That is, ari 6≡ arj (mod m) if i 6= j. Hence
the set {ar1, ar2, . . . , arφ(m)} contains φ(m) elements which are relatively prime to m
and incongruent modulo m. Hence they are congruent to all of the possible remainders
that are relatively prime to m. Multiplying, we obtain

∏φ(m)
j=1 (arj) ≡

∏φ(m)
i=1 ri (mod m),

and hence aφ(m)
∏φ(m)

j=1 rj ≡
∏φ(m)

j=1 rj (mod m). Now (rj,m) = 1 so we can use the

cancellation law to cancel the rj and we obtain aφ(m) ≡ 1 (mod m).

(b) If p is a prime then (p− 1)! ≡ −1 (mod p).

Proof: If p = 2 or p = 3, the congruence is easily verified. Suppose that p ≥ 5. For each
j, 1 ≤ j ≤ p− 1, we have (j, p) = 1 and hence there exists a (unique) inverse i modulo p
with ji ≡ 1 (mod p). The integer i can be chosen so that 1 ≤ i ≤ p−1. Since p is prime,
j = i if and only if j = 1 or j = p − 1. For if j = i, the congruence j2 ≡ 1 (mod p) is
equivalent to (j − 1)(j + 1) ≡ 0 (mod p). Therefore, either j − 1 ≡ 0 (mod p), in which
case j = 1, or j + 1 ≡ 0 (mod p), in which case j = p − 1. If we omit the numbers 1
and p−1, the effect is to group the remaining integers 2, 3, . . . , p−2 into pairs j, i where
j 6= i, such that ji ≡ 1 (mod p). When these p−3

2
congruences are multiplied together

and the factors rearranged, we get 2 · 3 · 4 . . . (p− 2) ≡ (p− 2)! ≡ 1 (mod p). Multiplying
by p− 1 we obtain the congruence (p− 1)! ≡ p− 1 ≡ −1 (mod p).

(c) Every even perfect number is of the form N = 2n−1(2n − 1) with 2n − 1 a prime.

Proof: Let N = 2n−1F where n > 1 and F is odd. Let 1 = f1, f2, . . . , fm = F be the
factors of F and let S = f1 + f2 + . . .+ fm. Given that N is perfect, we have

2N = sum of factors of N = f1 + f2 + . . .+ fm

+ 2f1 + 2f2 + . . .+ 2fm · · ·

+ 2n−1f1 + 2n−1f2 + . . .+ 2n−1fm

= (2n − 1)f1 + (2n − 1)f2 + . . .+ (2n − 1)fm

= (2n − 1)S

and hence we have 2nF = 2N = (2n − 1)S. Therefore, S =
2nF

2n − 1
=

(2n − 1)F + F

2n − 1

and hence, S = F +
F

2n − 1
. Since S and F are integers, 2n − 1 must divide F evenly

and hence F/(2n − 1) is an integer and a factor of F . But S is the sum of the factors of
F , two of which are clearly 1 and F . Hence, F/(2n−1) = 1 and hence F = 2n−1. Since
the only positive factors of F are 1 and F , F must be prime, that is, 2n − 1 is prime.

[40]


