MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

		FINAL EXAM		Pure Mathematics 3370	Fall 1999
Marks					
[3]	1.	(a)	If $a \mid bc$ and $(a, b) = 1$	I, prove that $a \mid c$.	
[3]		(b)	Solve the Diophantine	e equation $25x + 11y = 557$.	
[2]		(c)	Find the positive solu	itions, if any.	
[3]	2.	(a)	Prove that any comp	osite integer n has a prime factor $\leq \sqrt{n}$.	
[2]		(b)	List 50 consecutive co	omposite numbers.	
[3]		(c)	Give a formula to ger	nerate all the primitive Pythagorean triples and lis	st 6 such triples.
[3]	3.	(a)	Find the last two dig	its of 9 ⁹⁹⁹⁹⁹⁹ .	
[3]		(b)	Find the common solution $x \equiv 2 \pmod{15}$.	lution of the congruences $x \equiv 16 \pmod{41}, x \equiv$	$2 \pmod{7}$, and
[2]	4.	(a)	Define a <i>primitive roo</i>	pt modulo a positive integer m .	
[2]		(b)	How many primitive	roots are there modulo $m = 125$?	
[3]		(c)	If a has order $h \mod a$	ulo m , prove that $h \mid \phi(m)$.	
[3]	5.	(a)	Either: Prove that a OR: Prove, using the squares of rational in	a rational prime $p \equiv 1 \pmod{4}$ is not a Gaussian p e Either part, that such a prime can be written as tegers.	orime. s the sum of two
[3]		(b)	Factor the Gaussian i	integer $14(23 - 15i)$.	
[5]	6.	Prove ONE of the following theorems:			
		(a)	If $(a,m) = 1$ and $m \ge 1$	≥ 1 , prove that $a^{\phi(m)} \equiv 1 \pmod{m}$.	
		(b)	If p is a prime then (2)	$p-1)! \equiv -1 \pmod{p}.$	
		(c)	Every even perfect nu	umber is of the form $N = 2^{n-1}(2^n - 1)$ with $2^n - 1$	l a prime.

[40]