MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

FINAL EXAM	Pure Mathematics 3370	FALL 1998

Marks

[4]	1. Eu 200 one	clid defined perfect numbers and discovered a formula for even perfect numbers. Euler, 00 years later, proved that this formula gave <i>all</i> the even perfect numbers. State clearly e of these results and prove it.
[2]	2. (a)	Show how Maple can be used to generate the Fibonacci sequence.
[3]	(b)	Let $\{F_n\}_{n=1}^{\infty}$ be the Fibonacci sequence. Prove that $F_n \leq \alpha^{n-1}$, where α is the positive root of $x^2 - x - 1 = 0$.
[3]	3. Fir	ad all the incongruent solutions of $790x \equiv 30 \pmod{2000}$.
[3]	4. (a)	Let m_1 and m_2 be positive integers with $(m_1, m_2) = 1$. Prove that the congruences $x \equiv a_1 \pmod{m_1}$ and $x \equiv a_2 \pmod{m_2}$ have a common solution which is unique modulo m_1m_2 .
[3]	(b)	Hence, state and finish proving the Chinese Remainder Theorem.
[2]	(c)	Find the common solution of the congruences $x \equiv 4 \pmod{100}$ and $x \equiv 13 \pmod{27}$.
[2]	5. (a)	Give a formula that gives all the primitive Pythagorean triples.
[3]	(b)	State Fermat's Last Theorem. By whom and when was Fermat's Last Theorem proved.
[2]	6. (a)	Find $\phi(4141)$.
[5]	(b)	Define a primitive root modulo n . Are there any primitive roots modulo 4141? (Hint: Consider $a^{\phi(4141)/2}$ modulo 4141, where $(a, 4141) = 1$.)
[4]	(c)	Let E be the following function from \mathbf{Z}_{4141}^* to \mathbf{Z}_{4141}^* defined by $E(\overline{x}) = \overline{y}$, where $y \equiv x^{51}$ (mod 4141). Find the inverse of the function E . That is, find a number d such that $D(\overline{y}) = \overline{z}$, where $z \equiv y^d \pmod{4141}$, and such that $E \circ D$ is the identity function.
[4]	7. (a)	Factor into Gaussian primes $\alpha = 264 - 168i$.
[4]	(b)	Prove that rational primes $p \equiv 3 \pmod{4}$ are Gaussian primes.
[4]	(c)	Show that the ring $\mathbf{Z}[\sqrt{10}]$ is not a unique factorization domain by considering the factorization $2 \cdot 5 = (\sqrt{10})^2$.