MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

		Fin	NAL EXAM	${ m PM} 3370 - { m Solutions}$	Fall 2005
Marks					
[2]	1.	(a)		97 modulo 192. ee divisions with quotients 1, 1, and 47, we have rse of 97 is $-95 \equiv 97 \pmod{192}$. (That is,	
[3]		(b)	Solution: It is fairly from part (a) to s	ruent solutions of the congruence $485x \equiv 5$ (y easy to see that $(485, 960) = 5(97, 192)$, so w olve the problem. We divide the congruen $7x \equiv 1 \pmod{192}$ has solution $x = 97$ and 0) are given by	e can use the information ce by 5 and then solve.
			97,97+19	2 = 289,289 + 192 = 481,481 + 192 = 673,7	763 + 192 = 865.
[2]		(c)		tine equation $192x + 97y = 5000$. et (a) again the general solution is	
			x = 48(5000) + 97	7t = 240000 + 97t, y = -95(5000) - 192t =	$-475000 - 192t, t \in \mathbb{Z}.$
[2]		(d)	Solution: We need and since $\frac{-240000}{97} \approx$	olutions, if any. to solve for t, $x > 0$ and $y > 0$. We have $-$ $x - 2474.227$ and $\frac{-475000}{192} \approx -2473.958$, we have the solution is $x = 22, y = 8$.	
[2]		(e)	Find the smallest p	positive solution of the Diophantine equation et (a), $1 = 192(48) - 97(95)$, and hence the g	-
			x = 48(5000)	-97t = 240000 - 97t, y = 95(5000) - 192t	t = 475000 - 192t.
				$y > 0$ we get $t < \frac{240000}{97} \approx 2474.227$ and $t < $ ne smallest solution is given when $t = 2473$.	
[2]		(f)	d so that $D: C \mapsto$ is, $D \circ E =$ the ide Solution: Since $\phi(2)$ where we saw that part (a) we compute	$7 \times 13, e = 97$, and the encryption function E $C^{d} \pmod{n}$ is the decryption function in the ntity function for integers mod n which are $221) = \phi(17)\phi(13) = 16 \times 12 = 192$. (Surpri- number before?!) Recall that d is the inver- enced the inverse of 97 to be 97 modulo 192. He uld never choose n so that the secret number	e RSA-Algorithm. (That relatively prime to n .) ise, surprise I wonder rese of e modulo $\phi(n)$. In ence $d = 97$. (In a serious

the public number e.)

- [3] 2. If c | ab and (b, c) = 1, prove that c | a.
 Proof: Since (b, c) = 1, there exist integers x and y such that bx + cy = 1. Multiplying by a we have abx + acy = a. Since c | ab, c divides the left side of the last equation and hence c | a.
- [3] 3. Let $\{f_n\}$ be the Fibonacci sequence. For $n \ge 1$ prove, by mathematical induction, that $f_n = \frac{\alpha^n \beta^n}{\sqrt{5}}$, where α, β are the roots of $x^2 x 1 = 0$, α being the larger root.

Proof: Note that $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$. For n = 1 and n = 2,

$$\frac{\alpha^1 - \beta^1}{\sqrt{5}} = \frac{\frac{1 + \sqrt{5}}{2} - \frac{1 - \sqrt{5}}{2}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}} = 1 = f_1, \quad \frac{\alpha^2 - \beta^2}{\sqrt{5}} = \frac{(\alpha + 1) - (\beta + 1)}{\sqrt{5}} = 1 = f_2.$$

Assume that the formula holds for n = k and n = k + 1. Then

$$f_{k+2} = f_{k+1} + f_k = \frac{\alpha^{k+1} - \beta^{k+1}}{\sqrt{5}} + \frac{\alpha^k - \beta^k}{\sqrt{5}} = \frac{\alpha^k (\alpha + 1) - \beta^k (\beta + 1)}{\sqrt{5}}$$
$$= \frac{\alpha^k \alpha^2 - \beta^k \beta^2}{\sqrt{5}} = \frac{\alpha^{k+2} - \beta^{k+2}}{\sqrt{5}}.$$

Hence, by the principle of mathematical induction, the result holds for all $n \ge 1$.

[4] 4. (a) State and prove Euler's Theorem.

Euler's Theorem. If (a,m) = 1, then $a^{\phi(m)} \equiv 1 \pmod{m}$, where ϕ is Euler's phi function.

Proof. Let $r_1, r_2, \ldots, r_{\phi(m)}$ be the positive integers less than m which are relatively prime to m. Since (a, m) = 1, we claim that $ar_1, ar_2, \ldots, ar_{\phi(m)}$ are congruent, not necessarily in order of appearance, to $r_1, r_2, \ldots, r_{\phi(m)}$.

For each *i*, we have $(ar_i, m) = 1$ since $(r_i, m) = 1$ and (a, m) = 1. If $ar_i \equiv ar_j \pmod{m}$ then, by the cancellation law, $r_i \equiv r_j \pmod{m}$ and hence i = j. That is, $ar_i \not\equiv ar_j \pmod{m}$ if $i \neq j$. Hence the set $\{ar_1, ar_2, \ldots, ar_{\phi(m)}\}$ contains $\phi(m)$ elements which are relatively prime to *m* and incongruent modulo *m*. Hence they are congruent to *all* of the possible remainders that are relatively prime to *m*. Multiplying, we obtain

$$\prod_{j=1}^{\phi(m)} (ar_j) \equiv \prod_{i=1}^{\phi(m)} r_i \pmod{m} \text{ and hence } a^{\phi(m)} \prod_{j=1}^{\phi(m)} r_j \equiv \prod_{j=1}^{\phi(m)} r_j \pmod{m}.$$

Now $(r_j, m) = 1$ so we can use the cancellation law to cancel the r_j and we obtain $a^{\phi(m)} \equiv 1 \pmod{m}$.

[3] (b) Find the remainder when 11^{348} is divided by 54. Solution: Since $\phi(54) = \phi(2 \cdot 3^3) = 18$, then, by Euler's Theorem, $11^{18} \equiv 1 \pmod{54}$. Hence $11^{348} = 11^{18(19)+6} = (11^{18})^{19}11^6 \equiv 11^6 = 1771561 \equiv 37 \pmod{54}$. Hence the required remainder is 37.

- [3] 5. (a) Find x which satisfy simultaneously $x \equiv -3 \pmod{12} x \equiv 1 \pmod{5}$ and $x \equiv 14 \pmod{17}$. Solution: From the first congruence x = -3 + 12a for some $a \in \mathbb{Z}$. From the second congruence, $-3 + 12a \equiv 1 \pmod{5}$. Hence $2a \equiv 4 \pmod{5}$; that is $a \equiv 2 \pmod{5}$, so x = -3 + 12a = -3 + 12(2 + 5b) for some $b \in \mathbb{Z}$. Hence $x = 21 + 60b \equiv 14 \pmod{17}$, and so $4 + 9b \equiv 14 \pmod{17}$. So $9b \equiv 10 \equiv 27 \pmod{17}$. Hence $b \equiv 3 \pmod{17}$. Hence x = 21 + 60b = 21 + 60(3 + 17c) = 201 + 1020c for some $c \in \mathbb{Z}$. The required x is 201.
- [2] (b) Use the Chinese Remainder Theorem to find the last two digits of the number 2^{1000} . Solution: Let $x = 2^{1000}$. We need to find x modulo 100. Clearly $x \equiv 0 \pmod{4}$ and since $\phi(25) = 20, 2^{20} \equiv 1 \pmod{25}$, by Euler's Theorem. Hence $x = (2^{20})^{50} \equiv 1 \pmod{25}$. Therefore $x = 4a \equiv 1 \equiv -24 \pmod{25}$ so $a \equiv -6 \equiv 19 \pmod{25}$. Hence x = 4a = 4(19 + 25b) = 76 + 100b, so the last two digits of 2^{1000} are 7 and 6.
- [2] 6. (a) Define the order of an integer modulo a positive integer m. Solution: Let (a, m) = 1. We say that a has order h if h is the smallest positive integer such that $a^h \equiv 1 \pmod{m}$.
- [3] (b) If a has order h modulo m and b is the inverse of a modulo m, prove that b also has order h. (Note ab ≡ 1 (mod m).)
 Proof: Note first that b^h ≡ a^hb^h = (ab)^h ≡ 1 (mod m). If b^l ≡ 1 (mod m) for l < h, then a^l ≡ a^lb^l = (ab)^l ≡ 1 (mod m) which contradicts the minimality of h, Hence b^l ≠ 1 (mod m) for l < h, and so b has order h.
- [2] (c) Calculate $\phi(\phi(100 \times 19^3))$, where ϕ is Euler's phi function. Solution: $\phi(\phi(100 \times 19^3)) = \phi(\phi(2^2 \cdot 5^2 \cdot 19^3)) = \phi(2 \cdot 5 \cdot 4 \cdot 19^2 \cdot 18) = \phi(2^4 \cdot 3^2 \cdot 5 \cdot 19^2) = 2^3 \cdot 3 \cdot 2 \cdot 4 \cdot 19 \cdot 18 = 65664.$
- [3] 7. Find all the primitive Pythagorean triples a, b, c with $a^2 + b^2 = c^2$ where one of a, b, c is equal to 140.

Solution: One of a or b must be even, say b is even. Then $a = u^2 - v^2$, b = 2uv = 140, and $c = u^2 + v^2$, where $u > v, u \not\equiv v \pmod{2}$ and (u, v) = 1. Since uv = 70, we have just four cases: u = 70, v = 1; u = 35, v = 2; u = 14, v = 5; and u = 10, v = 7. Then the triples (a, b, c) are (4969, 140, 4971), (1221, 140, 1229), (171, 140, 221), and (51, 140, 149).

[3] 8. (a) Factor into Gaussian primes the number 27300(1+3i). Solution: We have the obvious factorization $27300(1+3i) = 2^2 \cdot 3 \cdot 5^2 \cdot 7 \cdot 13(1+3i)$. The rational primes 3 and 7 are Gaussian primes. Since 1 and 3 are odd, $(1+i) \mid (1+3i)$. We have 1+3i = (1+i)(2+i), $4 = -(1+i)^4$, 5 = (2+i)(2-i) and 13 = (3+i)(3-i). Hence the prime factorization of 27300(1+3i) is:

$$-(1+i)^4 \cdot 3(2+i)^2 (2-i)^2 \cdot 7(3+i)(3-i)(1+i)(2+i) = -3 \cdot 7(1+i)^5 (2+i)^3 (2-i)^2 (3+i)(3-i).$$

[3] (b) State and prove the Division Algorithm for Gaussian Integers.
(Division Algorithm): Given α ≠ 0 and β ∈ G, the set of Gaussian integers, there exist γ, δ ∈ G such that β = γα + δ, where N(α) < N(β), N being the norm mapping from G to N ∪ {0}.

Proof. Note $\frac{\beta}{\alpha} = \frac{\beta\bar{\alpha}}{\alpha\bar{\alpha}} = A + Bi$ where $A, B \in \mathbb{Q}$. Choose $a, b \in \mathbb{Z}$ such that $|A - a| \leq \frac{1}{2}$ and $|B - b| \leq \frac{1}{2}$. Let $\gamma = a + bi$ and $\delta = \beta - \gamma \alpha$. We need to show that $N(\delta) < N(\alpha)$. But $N(\delta) = N(\beta - \gamma \alpha) = N\left(\alpha\left(\frac{\beta}{\alpha} - \gamma\right)\right) = N(\alpha)N\left(\frac{\beta}{\alpha} - \gamma\right) = N(\alpha)N((A - a) + (B - b)i) = N(\alpha)((A - a)^2 + (B - b)^2) \leq N(\alpha)\left(\frac{1}{4} + \frac{1}{4}\right) = \frac{1}{2}N(\alpha) < N(\alpha)$ since $N(\alpha) \neq 0$.

- [3] 9. Do **ONE** part only:
 - (a) State and prove Wilson's Theorem.

Wilson's Theorem. If p is a prime then $(p-1)! \equiv -1 \pmod{p}$.

Proof. If p = 2 or p = 3, the congruence is easily verified. Suppose that $p \ge 5$. For each $j, 1 \le j \le p - 1$, we have (j, p) = 1 and hence there exists a (unique) inverse *i* modulo *p* with

$$ji \equiv 1 \pmod{p}.$$

The integer *i* can be chosen so that $1 \le i \le p-1$. Since *p* is prime, j = i if and only if j = 1 or j = p-1. For if j = i, the congruence $j^2 \equiv 1 \pmod{p}$ is equivalent to $(j-1)(j+1) \equiv 0 \pmod{p}$. Therefore, either $j-1 \equiv 0 \pmod{p}$, in which case j = 1, or $j+1 \equiv 0 \pmod{p}$, in which case j = p-1. If we omit the numbers 1 and p-1, the effect is to group the remaining integers $2, 3, \ldots, p-2$ into pairs j, i where $j \neq i$, such that $ji \equiv 1 \pmod{p}$. When these $\frac{p-3}{2}$ congruences are multiplied together and the factors rearranged, we get

$$2 \cdot 3 \cdot 4 \dots (p-2) \equiv (p-2)! \equiv 1 \pmod{p}.$$

Multiplying by p-1 we obtain the congruence

$$(p-1)! \equiv p-1 \equiv -1 \pmod{p}.$$

(b) Euclid defined perfect numbers and discovered a formula for even perfect numbers. Euler, 2000 years later, proved that this formula gave *all* the even perfect numbers. State clearly one of these results and prove it.

Theorem 1: If $2^n - 1$ is prime, then $N = 2^{n-1}(2^n - 1)$ is perfect. *Proof:* Since $2^n - 1$ is prime, the divisors of N, including $N = 2^{n-1}(2^n - 1)$, are

$$1, 2, 2^2, \dots, 2^{n-1}, (2^n - 1), 2(2^n - 1), 2^2(2^n - 1), \dots, 2^{n-1}(2^n - 1).$$

Adding, and using the formula $1 + x + x^2 + \dots + x^{n-1} = \frac{x^n - 1}{x - 1}$, with x = 2, we have

sum =
$$1 + 2 + 2^2 + \ldots + 2^{n-1} + (2^n - 1)(1 + 2 + 2^2 + \ldots + 2^{n-1})$$

= $(2^n - 1) + (2^n - 1)(2^n - 1) = (2^n - 1)(1 + (2^n - 1)) = 2N.$

Hence, the sum of all the divisors of N is 2N so N is perfect.

Theorem 2: Every even perfect number is of the form $N = 2^{n-1}(2^n - 1)$ with $2^n - 1$ a prime.

Proof: Let $N = 2^{n-1}F$ where n > 1 and F is odd. Let $1 = f_1, f_2, \ldots, f_m = F$ be the factors of F and let $S = f_1 + f_2 + \ldots + f_m$. Given that N is perfect, we have

$$2N = \text{sum of factors of } N = f_1 + f_2 + \ldots + f_m + 2f_1 + 2f_2 + \ldots + 2f_m + 2^2f + 2^2f_2 + \ldots + 2^2f_m \vdots + 2^{n-1}f_1 + 2^{n-1}f_2 + \ldots + 2^{n-1}f_m = (2^n - 1)f_1 + (2^n - 1)f_2 + \ldots + (2^n - 1)f_m = (2^n - 1)S$$

and hence we have

$$2^{n}F = 2N = (2^{n} - 1)S.$$

Therefore,

$$S = \frac{2^{n}F}{2^{n}-1} = \frac{(2^{n}-1)F + F}{2^{n}-1}$$

and hence,

$$S = F + \frac{F}{2^n - 1}.$$

Since S and F are integers, $2^n - 1$ must divide F evenly and hence $F/(2^n - 1)$ is an integer and a factor of F. But S is the sum of the factors of F, two of which are clearly 1 and F. Hence, $F/(2^n - 1) = 1$ and hence $F = 2^n - 1$. Since the only positive factors of F are 1 and F, F must be prime, that is, $2^n - 1$ is prime.