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Marks

1.[2] (a) Find the inverse of 97 modulo 192.

Solution: After three divisions with quotients 1, 1, and 47, we have 1 = 97(−95) + 192(48)
and hence the inverse of 97 is −95 ≡ 97 (mod 192). (That is, 97 is the inverse of 97 –
cute!)

[3] (b) Find all the incongruent solutions of the congruence 485x ≡ 5 (mod 960).

Solution: It is fairly easy to see that (485, 960) = 5(97, 192), so we can use the information
from part (a) to solve the problem. We divide the congruence by 5 and then solve.
The congruence 97x ≡ 1 (mod 192) has solution x = 97 and so all the solutions of
485x ≡ 5 (mod 960) are given by

97, 97 + 192 = 289, 289 + 192 = 481, 481 + 192 = 673, 763 + 192 = 865.

[2] (c) Solve the Diophantine equation 192x + 97y = 5000.

Solution: From part (a) again the general solution is

x = 48(5000) + 97t = 240000 + 97t, y = −95(5000)− 192t = −475000− 192t, t ∈ Z.

[2] (d) Find the positive solutions, if any.

Solution: We need to solve for t, x > 0 and y > 0. We have
−240000

97
< t <

−475000

192
and since −240000

97
≈ −2474.227 and −475000

192
≈ −2473.958, we have one positive solution

when t = −2474. The solution is x = 22, y = 8.

[2] (e) Find the smallest positive solution of the Diophantine equation 192x− 97y = 5000.

Solution: From part (a), 1 = 192(48)− 97(95), and hence the general solution is

x = 48(5000)− 97t = 240000− 97t, y = 95(5000)− 192t = 475000− 192t.

When x > 0 and y > 0 we get t < 240000
97

≈ 2474.227 and t < 475000
192

≈ 2473.958 and
hence t ≤ 2473. The smallest solution is given when t = 2473. The smallest solution is
x = 119, y = 184.

[2] (f) Given n = 221 = 17×13, e = 97, and the encryption function E : M 7→ M e (mod n), find
d so that D : C 7→ Cd (mod n) is the decryption function in the RSA–Algorithm. (That
is, D ◦ E = the identity function for integers mod n which are relatively prime to n.)

Solution: Since φ(221) = φ(17)φ(13) = 16 × 12 = 192. (Surprise, surprise ... I wonder
where we saw that number before?!) Recall that d is the inverse of e modulo φ(n). In
part (a) we computed the inverse of 97 to be 97 modulo 192. Hence d = 97. (In a serious
application one would never choose n so that the secret number d would be the same as
the public number e.)
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[3] 2. If c | ab and (b, c) = 1, prove that c | a.

Proof: Since (b, c) = 1, there exist integers x and y such that bx + cy = 1. Multiplying by
a we have abx + acy = a. Since c | ab, c divides the left side of the last equation and hence
c | a.

[3] 3. Let {fn} be the Fibonacci sequence. For n ≥ 1 prove, by mathematical induction, that

fn =
αn − βn

√
5

, where α, β are the roots of x2 − x− 1 = 0, α being the larger root.

Proof: Note that α =
1 +

√
5

2
and β =

1−
√

5

2
. For n = 1 and n = 2,

α1 − β1

√
5

=
1+
√

5
2

− 1−
√

5
2√

5
=

√
5√
5

= 1 = f1,
α2 − β2

√
5

=
(α + 1)− (β + 1)√

5
= 1 = f2.

Assume that the formula holds for n = k and n = k + 1. Then

fk+2 = fk+1 + fk =
αk+1 − βk+1

√
5

+
αk − βk

√
5

=
αk(α + 1)− βk(β + 1)√

5

=
αkα2 − βkβ2

√
5

=
αk+2 − βk+2

√
5

.

Hence, by the principle of mathematical induction, the result holds for all n ≥ 1.

4.[4] (a) State and prove Euler’s Theorem.

Euler’s Theorem. If (a, m) = 1, then aφ(m) ≡ 1 (mod m), where φ is Euler’s phi
function.

Proof. Let r1, r2, . . . , rφ(m) be the positive integers less than m which are relatively prime
to m. Since (a, m) = 1, we claim that ar1, ar2, . . . , arφ(m) are congruent, not necessarily
in order of appearance, to r1, r2, . . . , rφ(m).

For each i, we have (ari, m) = 1 since (ri, m) = 1 and (a, m) = 1. If ari ≡ arj (mod m)
then, by the cancellation law, ri ≡ rj (mod m) and hence i = j. That is, ari 6≡ arj

(mod m) if i 6= j. Hence the set {ar1, ar2, . . . , arφ(m)} contains φ(m) elements which are
relatively prime to m and incongruent modulo m. Hence they are congruent to all of the
possible remainders that are relatively prime to m. Multiplying, we obtain

φ(m)∏
j=1

(arj) ≡
φ(m)∏
i=1

ri (mod m) and hence aφ(m)

φ(m)∏
j=1

rj ≡
φ(m)∏
j=1

rj (mod m).

Now (rj, m) = 1 so we can use the cancellation law to cancel the rj and we obtain
aφ(m) ≡ 1 (mod m).

[3] (b) Find the remainder when 11348 is divided by 54.

Solution: Since φ(54) = φ(2 · 33) = 18, then, by Euler’s Theorem, 1118 ≡ 1 (mod 54).
Hence 11348 = 1118(19)+6 = (1118)19116 ≡ 116 = 1771561 ≡ 37 (mod 54). Hence the
required remainder is 37.
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5.[3] (a) Find x which satisfy simultaneously x ≡ −3 (mod 12) x ≡ 1 (mod 5) and x ≡ 14 (mod 17).

Solution: From the first congruence x = −3 + 12a for some a ∈ Z. From the second
congruence, −3 + 12a ≡ 1 (mod 5). Hence 2a ≡ 4 (mod 5); that is a ≡ 2 (mod 5), so
x = −3 + 12a = −3 + 12(2 + 5b) for some b ∈ Z. Hence x = 21 + 60b ≡ 14 (mod 17),
and so 4 + 9b ≡ 14 (mod 17). So 9b ≡ 10 ≡ 27 (mod 17). Hence b ≡ 3 (mod 17). Hence
x = 21 + 60b = 21 + 60(3 + 17c) = 201 + 1020c for some c ∈ Z. The required x is 201.

[2] (b) Use the Chinese Remainder Theorem to find the last two digits of the number 21000.

Solution: Let x = 21000. We need to find x modulo 100. Clearly x ≡ 0 (mod 4) and
since φ(25) = 20, 220 ≡ 1 (mod 25), by Euler’s Theorem. Hence x = (220)50 ≡ 1
(mod 25). Therefore x = 4a ≡ 1 ≡ −24 (mod 25) so a ≡ −6 ≡ 19 (mod 25). Hence
x = 4a = 4(19 + 25b) = 76 + 100b, so the last two digits of 21000 are 7 and 6.

6.[2] (a) Define the order of an integer modulo a positive integer m.

Solution: Let (a, m) = 1. We say that a has order h if h is the smallest positive integer
such that ah ≡ 1 (mod m).

[3] (b) If a has order h modulo m and b is the inverse of a modulo m, prove that b also has
order h. (Note ab ≡ 1 (mod m).)

Proof: Note first that bh ≡ ahbh = (ab)h ≡ 1 (mod m). If bl ≡ 1 (mod m) for l < h,
then al ≡ albl = (ab)l ≡ 1 (mod m) which contradicts the minimality of h, Hence bl 6≡ 1
(mod m) for l < h, and so b has order h.

[2] (c) Calculate φ(φ(100× 193)), where φ is Euler’s phi function.

Solution: φ(φ(100× 193)) = φ(φ(22 · 52 · 193)) = φ(2 · 5 · 4 · 192 · 18) = φ(24 · 32 · 5 · 192) =
23 · 3 · 2 · 4 · 19 · 18 = 65664.

[3] 7. Find all the primitive Pythagorean triples a, b, c with a2 +b2 = c2 where one of a, b, c is equal
to 140.

Solution: One of a or b must be even, say b is even. Then a = u2 − v2, b = 2uv = 140, and
c = u2 + v2, where u > v, u 6≡ v (mod 2) and (u, v) = 1. Since uv = 70, we have just four
cases: u = 70, v = 1; u = 35, v = 2; u = 14, v = 5; and u = 10, v = 7. Then the triples
(a, b, c) are (4969, 140, 4971), (1221, 140, 1229), (171, 140, 221), and (51, 140, 149).

8.[3] (a) Factor into Gaussian primes the number 27300(1 + 3i).

Solution: We have the obvious factorization 27300(1+3i) = 22 · 3 · 52 · 7 · 13(1+3i). The
rational primes 3 and 7 are Gaussian primes. Since 1 and 3 are odd, (1 + i) | (1 + 3i).
We have 1 + 3i = (1 + i)(2 + i), 4 = −(1 + i)4, 5 = (2 + i)(2− i) and 13 = (3 + i)(3− i).
Hence the prime factorization of 27300(1 + 3i) is:

−(1+i)4·3(2+i)2(2−i)2·7(3+i)(3−i)(1+i)(2+i) = −3·7(1+i)5(2+i)3(2−i)2(3+i)(3−i).

[3] (b) State and prove the Division Algorithm for Gaussian Integers.

(Division Algorithm): Given α 6= 0 and β ∈ G, the set of Gaussian integers, there
exist γ, δ ∈ G such that β = γα + δ, where N(α) < N(β), N being the norm mapping
from G to N ∪ {0}.
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Proof. Note β
α

= βᾱ
αᾱ

= A + Bi where A, B ∈ Q. Choose a, b ∈ Z such that |A − a| ≤ 1
2

and |B−b| ≤ 1
2
. Let γ = a+bi and δ = β−γα. We need to show that N(δ) < N(α). But

N(δ) = N(β− γα) = N
(
α

(
β
α
− γ

))
= N(α)N

(
β
α
− γ

)
= N(α)N((A− a) + (B− b)i) =

N(α)((A− a)2 + (B − b)2) ≤ N(α)
(

1
4

+ 1
4

)
= 1

2
N(α) < N(α) since N(α) 6= 0.

[3] 9. Do ONE part only:

(a) State and prove Wilson’s Theorem.

Wilson’s Theorem. If p is a prime then (p− 1)! ≡ −1 (mod p).

Proof. If p = 2 or p = 3, the congruence is easily verified. Suppose that p ≥ 5. For each
j, 1 ≤ j ≤ p− 1, we have (j, p) = 1 and hence there exists a (unique) inverse i modulo p
with

ji ≡ 1 (mod p).

The integer i can be chosen so that 1 ≤ i ≤ p − 1. Since p is prime, j = i if and only
if j = 1 or j = p − 1. For if j = i, the congruence j2 ≡ 1 (mod p) is equivalent to
(j − 1)(j + 1) ≡ 0 (mod p). Therefore, either j − 1 ≡ 0 (mod p), in which case j = 1,
or j + 1 ≡ 0 (mod p), in which case j = p − 1. If we omit the numbers 1 and p − 1,
the effect is to group the remaining integers 2, 3, . . . , p − 2 into pairs j, i where j 6= i,
such that ji ≡ 1 (mod p). When these p−3

2
congruences are multiplied together and the

factors rearranged, we get

2 · 3 · 4 . . . (p− 2) ≡ (p− 2)! ≡ 1 (mod p).

Multiplying by p− 1 we obtain the congruence

(p− 1)! ≡ p− 1 ≡ −1 (mod p).

(b) Euclid defined perfect numbers and discovered a formula for even perfect numbers. Euler,
2000 years later, proved that this formula gave all the even perfect numbers. State clearly
one of these results and prove it.

Theorem 1: If 2n − 1 is prime, then N = 2n−1(2n − 1) is perfect.

Proof: Since 2n − 1 is prime, the divisors of N , including N = 2n−1(2n − 1), are

1, 2, 22, . . . , 2n−1, (2n − 1), 2(2n − 1), 22(2n − 1), . . . , 2n−1(2n − 1).

Adding, and using the formula 1 + x + x2 + · · ·+ xn−1 =
xn − 1

x− 1
, with x = 2, we have

sum = 1 + 2 + 22 + . . . + 2n−1 + (2n − 1)(1 + 2 + 22 + . . . + 2n−1)

= (2n − 1) + (2n − 1)(2n − 1) = (2n − 1)(1 + (2n − 1)) = 2N.

Hence, the sum of all the divisors of N is 2N so N is perfect.



–5–

Theorem 2: Every even perfect number is of the form N = 2n−1(2n − 1) with 2n − 1 a
prime.

Proof: Let N = 2n−1F where n > 1 and F is odd. Let 1 = f1, f2, . . . , fm = F be the
factors of F and let S = f1 + f2 + . . . + fm. Given that N is perfect, we have

2N = sum of factors of N = f1 + f2 + . . . + fm

+ 2f1 + 2f2 + . . . + 2fm

+ 22f + 22f2 + . . . + 22fm

...

+ 2n−1f1 + 2n−1f2 + . . . + 2n−1fm

= (2n − 1)f1 + (2n − 1)f2 + . . . + (2n − 1)fm

= (2n − 1)S

and hence we have
2nF = 2N = (2n − 1)S.

Therefore,

S =
2nF

2n − 1
=

(2n − 1)F + F

2n − 1

and hence,

S = F +
F

2n − 1
.

Since S and F are integers, 2n − 1 must divide F evenly and hence F/(2n − 1) is an
integer and a factor of F . But S is the sum of the factors of F , two of which are clearly
1 and F . Hence, F/(2n − 1) = 1 and hence F = 2n − 1. Since the only positive factors
of F are 1 and F , F must be prime, that is, 2n − 1 is prime.

[50]


