MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

	FINAL EXAM	Pure Mathematics 3370	Fall 2005	
κs				
	1. (a) Find the inverse of	of 97 modulo 192.		
	(b) Find all the incom	(b) Find all the incongruent solutions of the congruence $485x \equiv 5 \pmod{960}$.		
	(c) Solve the Diophan	(c) Solve the Diophantine equation $192x + 97y = 5000$.		
	(d) Find the positive	solutions, if any.		
	(e) Find the smallest positive solution of the Diophantine equation $192x - 97y = 5000$.			
	(f) Given $n = 221 = 17 \times 13$, $e = 97$, and the encryption function $E : M \mapsto M^e \pmod{n}$, find d so that $D : C \mapsto C^d \pmod{n}$ is the decryption function in the RSA–Algorithm. (That is, $D \circ E$ = the identity function for integers mod n which are relatively prime to n .)			
	2. If $c \mid ab$ and $(b, c) = 1$, prove that $c \mid a$.		
	3. Let $\{f_n\}$ be the Fibonacci sequence. For $n \ge 1$ prove, by mathematical induction, that $f_n = \frac{\alpha^n - \beta^n}{\sqrt{5}}$, where α, β are the roots of $x^2 - x - 1 = 0$, α being the larger root.			
	4. (a) State and prove B	Culer's Theorem.		
	(b) Find the remaind	er when 11^{348} is divided by 54.		
	5. (a) Find x which satis	fy simultaneously $x \equiv -3 \pmod{12} x \equiv 1 \pmod{5}$) and $x \equiv 14 \pmod{17}$	
		Remainder Theorem to find the last two digits of		
	6. (a) Define the order of	of an integer modulo a positive integer m .		
	(b) If a has order h is order h . (Note ab	modulo m and b is the inverse of a modulo m , $m \equiv 1 \pmod{m}$.	prove that b also has	
	(c) Calculate $\phi(\phi(100))$	$0 \times 19^3))$, where ϕ is Euler's phi function.		
	7. Find all the primitive Pythagorean triples a, b, c with $a^2 + b^2 = c^2$ where one of a, b, c is equal to 140.			
	8. (a) Factor into Gauss	ian primes the number $27300(1+3i)$.		
	(b) State and prove t	he Division Algorithm for Gaussian Integers.		

- [3] 9. Do **ONE** part only:
 - (a) State and prove Wilson's Theorem.
 - (b) Euclid defined perfect numbers and discovered a formula for even perfect numbers. Euler, 2000 years later, proved that this formula gave *all* the even perfect numbers. State clearly one of these results and prove it.

[50]