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Marks

1.[2] (a) Find the inverse of 35 modulo 81.

Solution: After just three divisions with quotients 2, 3, and 5, we have 81(16)+35(−37) = 1
and hence the inverse of 35 is −37 ≡ 44 (mod 81).

[2] (b) Find all the incongruent solutions of the congruence 245x ≡ 7 (mod 567).

Solution: It is easy to see that (245, 567) = 7(35, 81) = 7, so we should first divide
through by 7. Hence we solve first 35x ≡ 1 (mod 81). From part (a) a solution is x = 44.
Hence all seven incongruent solutions are given by

x = 44, 44 + 81, 44 + 2(81), · · · , 44 + 6(81) = 530.

[2] (c) Solve the Diophantine equation 81x+ 35y = 803.

Solution: From part (a) information we have

x = 16(803) + 35t = 12848 + 35t, y = −37(803)− 81t = −29711− 81t for t ∈ Z.

[2] (d) Find the positive solutions, if any.

Solution: We need to solve for t, x > 0 and y > 0. We have
−12848

35
< t <

−29711

81
and

since −12848
35

≈ −367.0857 and −29711
81

≈ −366.802, we have one positive solution when
t = −367. The solution is x = 3, y = 16.

[3] 2. Prove, using the canonical decomposition of the integers, that (a, b)(a, c) = (a, bc) if (b, c) = 1.

Proof: Let a =
∏r

i=1 p
αi
i , b =

∏r
i=1 p

βi
i , and c =

∏r
i=1 p

γi
i , where the pi are prime and the

αi, βi, and γi ≥ 0 for 1 ≤ i ≤ r. We are given that βiγi = 0 for all i, and we need to prove
that

min{αi, βi}+ min{αi, γi} = min{αi, βi + γi}

for all i. We consider first the case for those i for which βi = 0. Then the result is
obvious since the left side is just 0 + min{αi, γi} and the right side is just min{αi, βi + γi} =
min{αi, 0+γi}. The second case is for the remaining i, those for which βi 6= 0. Since βiγi = 0
for all i, then γi = 0. By a similar argument, since the result is symmetric in βi and γi, the
result follows.

[3] 3. If a | c, b | c, and (a, b) = 1, prove that ab | c. (Prove any results used.)

Proof: Since a | c, the c = ad for some d ∈ Z. Since (a, b) = 1, ax+ by = 1 for some x, y ∈ Z.
Multiplying by d we have adx+ bdy = d, and since c = ad and b | c, then b | (adx+ bdy), so
b | d. Hence d = be for some e ∈ Z. Hence c = ad = abe and so ab | c.
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[5] 4. Let {fn} be the Fibonacci sequence. For n > 5 prove that fn = 5fn−4 + 3fn−5. Hence, prove
that 5 | f5n for n ≥ 1.

Proof: For n = 6, 5fn−4 +3fn−5 = 5f2 +3f1 = 5+3 = 8 = f6 and for n = 7, 5fn−4 +3fn−5 =
5f3 + 3f2 = 10 + 3 = 13 = f7. Assume the result holds for n = k and n = k + 1. Then

fk+2 = fk + fk+1 = (5fk−4 + 3fk−5) + (5fk−3 + 3fk−4)

= 5(fk−4 + fk−3) + 3(fk−5 + fk−4) = 5fk−2 + 3fk−3

so the result holds for n = k + 2. Hence, by the principle of mathematical induction, the
result holds for all n > 5.

For n = 1, f5 = 5, so clearly 5 | f5. Assume that 5 | f5k, then f5(k+1) = f5k+5 = 5f5k+1 +3f5k,
using the result proved above. Since 5 | f5k, then clearly 5 | f5k+5. So, by the principle of
mathematical induction, the result holds for all n ≥ 1.

5.[4] (a) State and prove Euler’s Theorem.

Euler’s Theorem: If (a,m) = 1 then aφ(m) ≡ 1 (mod m).

Proof: Let r1, r2, . . . , rφ(m) be the positive integers less than m which are relatively
prime to m. Since (a,m) = 1, we claim that ar1, ar2, . . . , arφ(m) are congruent, not
necessarily in order of appearance, to r1, r2, . . . , rφ(m). For each i, we have (ari,m) = 1
since (ri,m) = 1 and (a,m) = 1. If ari ≡ arj (mod m) then, by the cancellation law,
ri ≡ rj (mod m) and hence i = j. That is, ari 6≡ arj (mod m) if i 6= j. Hence the
set {ar1, ar2, . . . , arφ(m)} contains φ(m) elements which are relatively prime to m and
incongruent modulo m. Hence they are congruent to all of the possible remainders that
are relatively prime to m. Multiplying, we obtain

∏φ(m)
j=1 (arj) ≡

∏φ(m)
i=1 ri (mod m) and

hence aφ(m)
∏φ(m)

j=1 rj ≡
∏φ(m)

j=1 rj (mod m). Now (rj,m) = 1 so we can use the cancellation

law to cancel the rj and we obtain aφ(m) ≡ 1 (mod m).

[3] (b) Find the remainder when 17357 is divided by 55.

Solution: First note that φ(55) = φ(5)φ(11) = 4(10) = 40. Let x = 17357. Then the
smart way to solve this problem is to note that 4913x = 173x = 17360 = (1740)9 ≡ 1
(mod 55), by Euler’s Theorem. Since 4913 ≡ 18 (mod 55), then we have to solve for x,
18x ≡ 1 ≡ −54 (mod 55). Clearly the solution is x = −3 ≡ 52 (mod 55). This is the
required remainder.

6.[3] (a) Prove the Chinese Remainder Theorem for two congruences. That is, if (m,n) = 1 then
show that the congruences x ≡ a (mod m) and x ≡ b (mod n) have a common solution
modulo mn. (You do not need to prove uniqueness.)

Proof: To satisfy the first congruence x must be of the form a + my for some y ∈ Z.
Hence we need to prove that a + my ≡ b (mod n) has a solution. This is equivalent to
solving my ≡ b− a (mod n). There is a solution y since (m,n) = 1. (This solution can
be given explicitly as y = X(b− a) where mX + nY = 1.) Now substitute this value for
y into a+my and reduce modulo mn.
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[2] (b) Illustrate the proof by finding the common solution modulo 238 of the pair of congruences
x ≡ −3 (mod 14) and x ≡ 13 (mod 17).

Solution: From the first congruence x = −3 + 14y for some y ∈ Z. Substituting in the
second congruence we have −3+14y ≡ 13 (mod 17). Then 14y ≡ 16 (mod 17), and hence
−3y ≡ −1 ≡ −18 (mod 17). That is, y ≡ 6 (mod 17). Then x = −3 + 14(6 + 17z) =
81 + 238z for some z ∈ Z. Hence the common solution is x = 81.

7.[2] (a) Define the order of an integer modulo a positive integer m.

Solution: We say that an integer a, where (a,m) = 1, has order h if ah ≡ 1 (mod m)
and, if a 6= 1, at 6≡ 1 (mod m) for 1 ≤ t < h.

[2] (b) If a has order h modulo m and an ≡ 1 (mod m), prove that h | n.

Proof: Let n = hq + r where 0 ≤ r < h. Then 1 ≡ an = ahq+r = (ah)qar ≡ 1qar = ar

(mod m). Since h is minimal, r = 0, and hence h | n.

[2] (c) Calculate φ(φ(200× 413)), where φ is Euler’s phi function.

Solution: We have φ(φ(200 × 413)) = φ(φ(23 × 52 × 413)) = φ(22 × 20 × 412 × 40) =
φ(27 × 52 × 412) = 26 × 20× 41× 40) = 2, 099, 200.

[3] 8. If a2 + b2 = c2 is a primitive Pythagorean triple with b even, give two examples of such
triples with b = 308.

Solution: Recall the formula for the primitive Pythagorean triples is a = u2−v2, b = 2uv, c =
u2 + v2 where u > v, (u, v) = 1, u 6≡ v (mod 2). Since b = 4× 7× 11 then for u = 14, v = 11,
a = 75, b = 308, c = 317, and for u = 22, v = 7, a = 435, b = 308, c = 533.

9.[3] (a) Factor into Gaussian primes the number 210 + 90i.

Solution: The obvious factorization is 210+90i = 2×3×5×(7+3i). Then 2 = −i(1+i)2,
3 is a Gaussian prime and 5 is not, but 5 = (1 + 2i)(1 − 2i), both factors being prime.
Note that 7 + 3i = (1 + i)(5− 2i) and since N(5− 2i) = 29, then 5− 2i is prime. Hence
we have the factorization into primes 210 + 90i = −3i(1 + i)3((1 + 2i)(1− 2i)(5− 2i).

[3] (b) State and prove the Division Algorithm for Gaussian Integers.

Given α, β ∈ G, α 6= 0, there exist γ, δ ∈ G such that β = αγ + δ, where N(δ) < N(α).

Proof: Note β
α

= βᾱ
αᾱ

= A + Bi where A,B ∈ G. Choose a, b ∈ Z such that |A − a| ≤ 1
2

and |B−b| ≤ 1
2
. Let γ = a+bi and δ = β−γα. We need to show that N(δ) < N(α). But

N(δ) = N(β− γα) = N
(
α
(
β
α
− γ
))

= N(α)N
(
β
α
− γ
)

= N(α)N((A− a) + (B− b)i) =
N(α)((A− a)2 + (B − b)2) ≤ N(α)

(
1
4

+ 1
4

)
= 1

2
N(α) < N(α) since N(α) 6= 0.

[4] 10. Given n = 391 = 17× 23, e = 101, and the encryption function E : M 7→ M e (mod n), find
d so that D : C 7→ Cd (mod n) is the decryption function. Briefly explain how the RSA
public-key cryptosystem works. That is, explain how ‘Bob’ can send a secret message to
‘Alice’ so that Alice knows it comes from Bob.

Solution: First we compute d. Since φ(391) = 16 × 22 = 352 and since (101, 352) = 1,
then after four steps in the Euclidean Algorithm for Z we have 101(−115) + 352(33) = 1, so
d = 237 ≡ −115 (mod 352). Now see text for the rest of the story.

[50]


