MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Pure Mathematics 3370

Fall 2004

Marks		
[2] [2] [2]	 (a) Find the inverse of 35 modulo 81. (b) Find all the incongruent solutions of the congruence 245x ≡ 7 (mod 567). (c) Solve the Diophantine equation 81x + 35y = 803. (d) Find the positive solutions, if any. 	
[3]	2. Prove, using the canonical decomposition of the integers, that $(a, b)(a, c) = (a, bc)$ if $(b, c) = (a, bc)$: 1
[3]	3. If $a \mid c, b \mid c$, and $(a, b) = 1$, prove that $ab \mid c$. (Prove any results used.)	
[5]	4. Let $\{f_n\}$ be the Fibonacci sequence. For $n > 5$ prove that $f_n = 5f_{n-4} + 3f_{n-5}$. Hence protect that $5 \mid f_{5n}$ for $n \ge 1$.	ve
[4] [3]	 5. (a) State and prove Euler's Theorem. (b) Find the remainder when 17³⁵⁷ is divided by 55. 	
[3]	6. (a) Prove the Chinese Remainder Theorem for two congruences. That is, if $(m, n) = 1$ the show that the congruences $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$ have a common solution modulo mn . (You do not need to prove uniqueness.)	en on
[2]	(b) Illustrate the proof by finding the common solution modulo 238 of the pair of congruence $x \equiv -3 \pmod{14}$ and $x \equiv 13 \pmod{17}$.	es
[2] [2] [2]	 (a) Define the <i>order</i> of an integer modulo a positive integer m. (b) If a has order h modulo m and aⁿ ≡ 1 (mod m), prove that h n. (c) Calculate φ(φ(200 × 41³)), where φ is Euler's phi function. 	
[3]	8. If $a^2 + b^2 = c^2$ is a primitive Pythagorean triple with b even, give two examples of surples with $b = 308$.	ch
[3] [3]	 9. (a) Factor into Gaussian primes the number 210 + 90<i>i</i>. (b) State and prove the Division Algorithm for Gaussian Integers. 	
[4]	10. Given $n = 391 = 17 \times 23$, $e = 101$, and the encryption function $E: M \mapsto M^e \pmod{n}$, for d so that $D: C \mapsto C^d \pmod{n}$ is the decryption function. Briefly explain how the RS public-key cryptosystem works. That is, explain how 'Bob' can send a secret message 'Alice' so that Alice knows it comes from Bob.	nd SA to

FINAL EXAM