MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Final Exam

Pure Mathematics 3370

Fall 2000

Marks

- [3] 1. (a) If $a \mid b$ and $a \mid c$, prove that $a \mid bx + cy$ for all $x, y \in \mathbb{Z}$.
- [3] (b) Solve the Diophantine equation 3029x + 1066y = 26533.
- [2] (c) Find the positive solutions, if any.
- [5] 2. (a) Given g = (a, m), prove that $ax \equiv b \pmod{m}$ has a solution if and only if $g \mid b$.
- [3] (b) Find all the incongruent solutions of $85x \equiv 15 \pmod{105}$.
- [2] 3. (a) State the Chinese Remainder Theorem.
- [3] (b) Find the common solution modulo 90 of the pair of congruences $3x \equiv 7 \pmod{10}$ and $5x \equiv 2 \pmod{9}$.
- [3] (c) Find the last two digits of the Mersenne prime $p = 2^{2203} 1$.
- [4] 4. (a) Define a primitive root modulo a positive integer m, and calculate the number of primitive roots modulo 2×101^4 . (Note that 101 is a prime.)
- [3] (b) If a has order h modulo m, prove that $h \mid \phi(m)$.
- [2] 5. (a) State the Division Algorithm for Gaussian Integers.
- [3] (b) For $\beta = 8 9i$ and $\alpha = 3 + 5i$, find a quotient satisfying the requirements of the Division Algorithm.
- [4] (c) Prove that any rational prime $p \equiv 3 \pmod{4}$ is a Gaussian prime.
- [5] 6. Given n = 77, e = 17, and the encryption function $E : M \mapsto M^e \pmod{n}$, find d so that $D : C \mapsto C^d \pmod{n}$ is the decryption function. Briefly explain how the RSA public-key cryptosystem works. That is, explain how 'Bob' can send a secret message to 'Alice' so that Alice knows it comes from Bob.