MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Fall 2005	Pure Mathematics 3370	Due: Friday
	Assignment 7	November 4, 2005

- 1. Compute $\phi(10^5)$, $\phi(256)$, $\phi(9901)$, and $\phi(462^3)$.
- 2. If precisely the primes 3, and 7 divide n prove that $\phi(n) = \frac{4n}{7}$.
- 3. If $a \mid b$, prove that $\phi(a) \mid \phi(b)$. Is the converse true?
- 4. Find the smallest primitive root g modulo 54. Write the numbers 41 and 23 as powers of g, and compute 41×23 modulo 54 using these powers.
- 5. If a has order h modulo m, and $ab \equiv 1 \pmod{m}$, prove that b has order h.
- 6. (a) Which m have primitive roots for $m = 77, 2012, 1622, \text{ and } 498002 = 2(499)^2$?
 - (b) How many primitive roots modulo m are there for those m above which have primitive roots?

7. (a) Prove
$$\prod_{\substack{p|m \\ or \\ p|n}} (1 - \frac{1}{p}) \prod_{\substack{p|m \\ and \\ p|n}} (1 - \frac{1}{p}) = \prod_{p|m} (1 - \frac{1}{p}) \prod_{p|n} (1 - \frac{1}{p}).$$

- (b) Let (m,n) = g. Prove that $\phi(mn)\phi(g) = g\phi(m)\phi(n)$. (Hint: Use the formula $\phi(u) = u \prod_{p|u} (1 \frac{1}{p})$.)
- (c) Hence, prove $\phi(mn) = \phi(m)\phi(n)$ if and only if (m, n) = 1.

The Final Exam in PM 3370 is Wednesday, December 14, 2004 at 9am in HH-3017.