MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Fall 2005	Pure Mathematics 3370	Due: Friday
	Assignment 2	September 23, 2005

Marks

[4]

1. Let $F_n = 2^{2^n} + 1$.

- [3] (a) Prove that $\prod_{0 \le k \le n} F_k = F_n 2$ for $n \ge 1$.
 - (b) Hence prove that $(F_m, F_n) = 1$ for $m \neq n$.
- [3] (c) Hence prove that there are infinitely many primes.
 - 2. In your solution set we proved that $\alpha^n = f_{n-1} + \alpha f_n$ where α is any root of $x^2 x 1 = 0$. (You should study this proof!) Use this result to
- [3] (a) derive the *Binet* formula

$$f_n = \frac{\alpha^n - \beta^n}{\sqrt{5}},$$

where α , β are the roots of $x^2 - x - 1 = 0$, α being the larger root; (In class we proved the Binet formula by induction.)

[3] (b) evaluate
$$\alpha^{15}$$
.

- [6] 3. For each of the pair of numbers (a, b), find the gcd and find x and y such that ax + by = gcd: (a) (61358,2090) (b) (24168,6555).
- [3] 4. If $a \mid b$ and $b \mid a$, prove that $a = \pm b$.

[25]