MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Fall 2005	Pure Mathematics 3370	Due: Friday
	Assignment 1	September 16, 2005

Marks

- [3] 1. Recall that the *binomial coefficient* $\binom{m}{k}$ is defined to be $\frac{m!}{k!(m-k)!}$, where $m \ge k \ge 0$, $k! = k(k-1)\cdots 3\cdot 2\cdot 1$ and 0! = 1. Prove, by induction, that $\binom{2n}{n} \ge \frac{4^n}{n+1}$ if $n \ge 1$.
- [6] 2. Let $\{f_n\}_{n=1}^{\infty}$ be the Fibonacci sequence.
 - (a) Prove that $f_n^2 f_{n-1}f_{n+1} = (-1)^{n-1}$ for $n \ge 2$.
 - (b) Prove that $\alpha^{n-2} \leq f_n \leq \alpha^{n-1}$ for all $n \geq 1$, where $\alpha = \frac{1+\sqrt{5}}{2}$.

[3] 3. (a) Prove by mathematical induction that for n odd, $x^{n-1} - x^{n-2} + \ldots + x^2 - x + 1 = \frac{x^n + 1}{x+1}$.

- [3] (b) If $2^a + 1$ is prime, prove that $a = 2^m$ for some $m \in N$. (Hint: Use part (a).)
- [4] 4. Use the \log_{10} function on your calculator to find the number of digits in the largest known prime (the largest one, not the one in your Course Notes). Justify your answer.
- [6] 5. In a letter to Euler in 1742, Goldbach stated that Statement A: Every integer greater than 5 is the sum of three primes. Euler replied that this was equivalent to Statement B: Every even integer greater that or equal to 4 is the sum of two primes. Show that the two statements are equivalent. (Hint: To prove A implies B, consider n + 2, and to prove B implies A, consider n even and the n odd.)

The assignments are on my home page: http://www.math.mun.ca/~drideout.

[25]