PMAT 4340 – Combinatorial Analysis Fall 2003

Assignment #8

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at: 3:00 pm on Wednesday November 26th.
- 1. Assuming that n is a power of 2, solve the following recurrence relations:
 - (a) $a_n = a_{\frac{n}{2}} + 7, a_1 = 5.$
 - (b) $a_n = 4a_{\frac{n}{2}} 5n, a_1 = 2.$
 - (c) $a_n = -3a_{\frac{n}{2}} + 2n, a_1 = 1.$
- 2. Assuming that n is a power of k, a_1 is given, and that c > 0, prove that $a_n = An^2 + Bn^{\log_k c}$ is a solution to the recurrence relation $a_n = ca_{\frac{n}{k}} + dn^2$, where A and B are constants.
- 3. Solve the following linear recurrence relation: $a_n = -7a_{n-1} 9a_{n-2}, a_0 = 0, a_1 = 1.$
- 4. Solve the following inhomogeneous recurrence relations:
 - (a) $a_n = 2a_{n-1} + n, a_0 = 17.$
 - (b) $a_n = 4a_{n-1} 3^n, a_0 = 1.$
 - (c) $a_n = 3a_{n-1} 2n + n^2, a_0 = 0.$
- 5. Use generating functions to solve the following recurrence relations:
 - (a) $a_n = a_{n-1} 3n, a_0 = 3.$
 - (b) $a_n = 3a_{n-1} + 4a_{n-2}, a_0 = 1, a_1 = 2.$
 - (c) $a_n = 3a_{n-1} + 2^n, a_0 = 1.$
 - (d) $a_n = 3a_{n-1} 2a_{n-2} + n, a_0 = 2, a_1 = 4.$
- 6. Exercise 7.5.14.
- 7. What is the size of the set of symmetries of a cube? Explain.
- 8. Exercise 9.1.16.