PMAT 4282 – Cryptography Winter 2001

Assignment #6

1. Prove the following statement:

If the order of $a \in \mathbb{Z}_n^*$ is t and $a^s \equiv 1 \pmod{n}$, then t divides s.

- 2. (a) Suppose that α is a generator of \mathbb{Z}_n^* . Prove that α^k is also a generator of \mathbb{Z}_n^* if and only if $GCD(k, \phi(n)) = 1$.
 - (b) Provided that \mathbb{Z}_n^* has at least one generator, then how many generators does it have?
 - (c) When p is prime, \mathbb{Z}_p^* is known to have a generator. How many generators are there in:
 - i. \mathbb{Z}_{19}^*
 - ii. \mathbb{Z}_{31}^*
 - iii. \mathbb{Z}_{181}^*
 - iv. \mathbb{Z}_{257}^*
 - v. $\mathbb{Z}_{2^t+1}^*$, where (2^t+1) is prime
 - vi. \mathbb{Z}_{2t+1}^* , where t and (2t+1) are prime
- 3. Algorithm 4.9 on page 162 of the Handbook of Applied Cryptography, is as follows:

Input: A multiplicative finite group \mathcal{G} of order n, an element $a \in \mathcal{G}$, and the prime factorisation $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$.

Output: The order t of a.

- 1 Set $t \leftarrow n$.
- 2 For $i = 1, 2, \dots, k$ do each of the following:
 - 2.1 Set $t \leftarrow \frac{t}{p_i^{e_i}}$.
 - 2.2 Compute $b \leftarrow a^t$.
 - 2.3 While b is not the multiplicative identity do the following: compute $b \leftarrow b^{p_i}$ and set $t \leftarrow tp_i$.
- 3 Return t.

Use this algorithm to determine the order of each of the following elements:

- (a) 5 in \mathbb{Z}_7^*
- (b) 12 in \mathbb{Z}_{25}^*
- (c) 3 in \mathbb{Z}_{61}^*

Which of these elements are generators?