Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Tuesday January 23rd in Assignment Box #32.
- 1. (a) What are the necessary conditions for the existence of a (v, 4, 1)-BIBD?
 - (b) What is the smallest order v for which the existence of a nontrivial (v, 4, 1)-BIBD cannot be excluded?
- 2. (a) Prove that every (6,3,2)-BIBD is simple.
 - (b) Prove that all (6,3,2)-BIBDs are isomorphic.
- 3. (a) Consider the set $S = \{1, 2, 3, 4, 5, 6\}$. Find a partition of S into subsets of size three, such that each subset is either of the form $\{x, y, z\}$ such that x + y = z or of the form $\{x, y, z\}$ such that x + y + z = 13.
 - (b) For each set $A = \{x, y, z\}$ from part (a), where x < y < z, let A' be the set $\{0, x, x + y\}$. Let σ be the permutation (0 1 2...12). For each set A', list the sets $\sigma^i(A')$ for i = 0, 1, 2, ..., 12.
 - (c) Taken as blocks, what type of design do the sets from part (b) form?
- 4. Let A_0 be a block in a (v, k, 1)-BIBD, say (X, \mathcal{A}) .
 - (a) Find a formula for the number of blocks $A \in \mathcal{A}$ such that $|A \cap A_0| = 1$.
 - (b) Use this formula to show that $b \ge k(r-1) + 1$ if a (v, k, 1)-BIBD exists.
 - (c) Using the facts that vr = bk and v = r(k-1) + 1, deduce that $(r-k)(r-1)(k-1) \ge 0$ and hence $r \ge k$, which implies Fisher's Inequality.
- 5. Let A_0 be a block in a (v, k, 1)-BIBD, say (X, \mathcal{A}) . Let $x \in X \setminus A_0$ and show that there are at least k blocks that contain x and intersect A_0 . From this, deduce that $r \ge k$, which implies Fisher's Inequality.
- 6. We define a Latin square of order n to be an $n \times n$ array in which each of the n^2 cells is filled with a symbol from a set S of cardinality n, such that each symbol occurs once in each row of the array and each symbol occurs once in each column of the array. Typically the set S is chosen to be $\{1, 2, \ldots, n\}$. A Latin square is called symmetric if, for each i and j, the symbol in cell (i, j) is the same as the symbol in cell (j, i).
 - (a) Construct an example of a Latin square of order 3 that is not symmetric.
 - (b) Construct an example of a symmetric Latin square of order 3.
 - (c) Construct an example of a Latin square of order 4 that is not symmetric.
 - (d) Construct an example of a symmetric Latin square of order 4.