Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 15:00 on Friday February 8th in Assignment Box #48.
- 1. Prove that there cannot exist a $PBD(v, \{k_1, k_2\}, \lambda)$ such that $k_1 < k_2$ and there is exactly one block of size k_1 .
- 2. Let $t \ge 3$. Prove that if \mathcal{D} is a *t*-design in which each block has size k and each set of t treatments occurs in λ_t blocks, then \mathcal{D} is also a (t-1)-design. Determine the value of λ_{t-1} .
- 3. As part of the proof of Fisher's Inequality we relied on the fact that $\operatorname{rank}(AA^T) \leq \operatorname{rank}(A)$. Prove that this fact is true.
- 4. Suppose \mathcal{D} is a BIBD (v, b, r, k, λ) with no repeated blocks. Let S denote the support of \mathcal{D} and let \mathcal{B} be the block set of \mathcal{D} . Let \mathcal{T} denote the set of all k-subsets of S other than those k-subsets which are in \mathcal{B} . Prove that if $b < \binom{v}{k}$ then the sets S and \mathcal{T} form a BIBD, and determine its parameters.
- 5. Suppose that B is a block of a BIBD (v, b, r, k, λ) . Let x_i denote the number of blocks other than B that intersect B in precisely i elements. Prove that $\sum_{i=0}^{k} ix_i = k(r-1)$ and also that $\sum_{i=0}^{k} i(i-1)x_i = k(k-1)(\lambda-1)$.