MATH 2320 – Discrete Mathematics Winter 2016

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Wednesday February 10th in Assignment Box #44.
- 1. Determine whether the relation \mathcal{R} is reflexive:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{Z}^2 \mid x^2 + y^2 \text{ is odd}\}$
 - (b) $\mathcal{R} = \{(x, y) \in \mathbb{Q}^2 \mid xy \ge 0\}$
- 2. Determine whether the relation \mathcal{R} is symmetric:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{N}^2 | x + y = 10\}$ (b) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 | x^2 + y^4 \ge 10\}$
- 3. Determine whether the relation \mathcal{R} is antisymmetric:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x \ge y\}$
 - (b) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x^2 \ge y^2\}$
- 4. Determine whether the relation \mathcal{R} is transitive:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{N}^2 | x + y = 10\}$
 - (b) $\mathcal{R} = \{(x, y) \in \mathbb{Q}^2 \mid x + y \in \mathbb{Z}\}$
- 5. Define the relation \sim on \mathbb{R}^2 by $(a, b) \sim (c, d)$ if a + b = c + d.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Provide a geometric description of (2, 4).
- 6. Let $A = \{2, 3, 4, \dots, 17\}$ and define \preceq on A by $a \preceq b$ if a divides b.
 - (a) Draw the Hasse diagram for the poset (A, \preceq) .
 - (b) Is \leq a total order?
 - (c) Does this poset have a maximum? If yes, what is it?
 - (d) Does this poset have a minimum? If yes, what is it?
 - (e) Does this poset have any minimal elements? If yes, what are they?
 - (f) Does this poset have any maximal elements? If yes, what are they?
 - (g) What is the least upper bound of elements 3 and 4?
 - (h) What is the greatest lower bound of elements 15 and 16?

- 7. Let $A = \{1, 2, 3, \dots, 7\}$ and define the function $g : \mathcal{P}(A) \to \mathbb{Z}$ so that g(x) = |x|.
 - (a) What is the domain of g?
 - (b) How many elements are in the domain of g?
 - (c) What is the range of g?
 - (d) Is g surjective?
 - (e) Is g injective?
 - (f) Is g bijective?

8. Define $h: \mathbb{N}^2 \to \mathbb{N}$ by $h: (x, y) \mapsto (x + y)$.

- (a) State the range of h.
- (b) Is h surjective?
- (c) Is h injective?
- (d) Is h bijective?