MATH 2320 – Discrete Mathematics Winter 2016

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Wednesday January 20th in Assignment Box #44.

The following symbols will be used to represent certain sets of numbers:

- \mathbb{Z} the set of integers
- \mathbb{N} the set of natural numbers, namely $\{1, 2, 3, \ldots\}$
- $\mathbb R$ the set of real numbers
- \mathbb{Q} the set of rational numbers
- 1. Determine whether the following statements are true, false, or invalid.
 - (a) If 3 is even and $4 \ge 5$ then $-2^2 = 4$
 - (b) If $7 \leq 7$ and 4 is even, then $x^2 + 9x 1 = 0$ has a real solution
 - (c) Suppose n is a non-negative integer
 - (d) 0 is positive
 - (e) If $x \in \mathbb{N}$ then $x = \sqrt{x^2}$
- 2. For each valid statement in Question 1 that is an implication,
 - (a) state the converse of the implication
 - (b) determine whether the converse holds
- 3. State the negation of each of the following statements (assuming that A, B and C are themselves statements with truth values):
 - (a) A and (B or not(C))
 - (b) A or B or C
 - (c) (A and not(B)) or (C or not(D))

Definition. For integers a and b, we say that a divides b (written as "a | b") if there exists an integer n such that b = na. An integer x is said to be even if x = 2k for some integer k. An integer x is said to be odd if x = 2k + 1 for some integer k.

- 4. Prove that each of the following statements is false:
 - (a) $9 \mid 33$
 - (b) $\forall n \in \mathbb{N}, 16 \mid n^2$ if and only if $8 \mid n$
 - (c) If $x, y \in \mathbb{R}$ such that x > 0 and y > 0, then $(x + 3)^2 + (y + 4)^2 \leq 5^2$

(d)
$$\forall x \in \mathbb{R}, \ 123x^4 > \frac{x^6}{456789}$$

(over)

- 5. Rewrite the following statements as English sentences. Also indicate whether each statement is true or false.
 - (a) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Q}, x < y.$
 - (b) $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Q}, x < y.$
- 6. Find the negation of each statement in Question 5 and indicate whether it is true or false.
- 7. Let $x, y \in \mathbb{Z}$. Prove that xy is odd if and only if x and y are both odd.
- 8. Consider the statement: $\forall x \in \mathbb{Z}, x \text{ is odd} \Rightarrow 4 | (x x^3).$
 - (a) Is this statement true or false? Justify your answer either with a proof or else with a counter-example.
 - (b) What would be the negation of the statement?