Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday October 12th in Assignment Box #35.
- 1. Let $A = \{1, 2, 3, \dots, 13\}$ and define \leq on A by $a \leq b$ if a divides b.
 - (a) Show that (A, \preceq) is a poset.
 - (b) Is the poset totally ordered?
 - (c) Does this poset have a maximum? If yes, what is it?
 - (d) Does this poset have a minimum? If yes, what is it?
 - (e) What are the maximal elements of this poset?
 - (f) What are the minimal elements of this poset?
 - (g) Draw the poset's Hasse diagram.
- 2. Let $A = \mathbb{R}^2$ and define \leq on A by $(a, b) \leq (x, y)$ if $a \leqslant x$ and $b \geqslant y$.
 - (a) Show that (A, \preceq) is a poset.
 - (b) Is the poset totally ordered?
 - (c) What is the least upper bound on $(9, \sqrt{3})$ and (-4, 6)?
 - (d) What is the greatest lower bound on $(\pi^2, \frac{4}{5})$ and $(7, -\frac{3}{8})$?
- 3. Let $f: \mathbb{N} \to \mathbb{Q}$ be defined by $f(x) = \frac{x-1}{x+2}$.
 - (a) Prove or disprove: f is surjective.
 - (b) Prove or disprove: f is injective.
 - (c) Is f bijective?
- 4. Define $f: \mathbb{N}^2 \to \mathbb{N}$ by $f: (x,y) \mapsto x+y$.
 - (a) State the range of f.
 - (b) Prove or disprove: f is surjective.
 - (c) Prove or disprove: f is injective.
 - (d) Is f bijective?
- 5. Let $A = \{x \in \mathbb{R} \mid x \neq -\frac{1}{2}\}$ and define $f: A \to \mathbb{R}$ by $f(x) = \frac{x}{2x+1}$.
 - (a) Show that f is injective.
 - (b) Is f is surjective?
 - (c) What is the range of f?
 - (d) Let D be the range of f and define $g: A \to D$ such that $g: x \mapsto f(x)$. What is g^{-1} ?
- 6. Exercise 10 of Section 3.2, except part (a).
- 7. Exercise 11 of Section 3.2, except part (a).
- 8. Let $f:A\to B$ and $g:B\to C$ be functions. Prove that if $g\circ f$ is injective then f is injective.