MATH 2320 – Discrete Mathematics Fall 2017

Instructions

- Answer each question completely; justify your answers.
- This assignment is due at 17:00 on Thursday October 5th in Assignment Box #35.
- 1. Consider the statement: $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$ for all sets A, B, C and D. Is this statement true? If yes, prove it; otherwise show that it is false.
- 2. Determine whether the relation \mathcal{R} is reflexive:

(a)
$$\mathcal{R} = \{(x, y) \in \mathbb{Z}^2 \mid x^2 + y^2 \text{ is odd}\}$$

- (b) $\mathcal{R} = \{(x, y) \in \mathbb{Q}^2 \mid xy \ge 0\}$
- 3. Determine whether the relation \mathcal{R} is symmetric:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{N}^2 \, | \, x + y = 10\}$
 - (b) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 | x^2 y^2 \ge 10\}$
- 4. Determine whether the relation \mathcal{R} is antisymmetric:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x \ge y\}$ (b) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x^2 \ge y^2\}$
- 5. Determine whether the relation \mathcal{R} is transitive:
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{N}^2 | x + y = 10\}$
 - (b) $\mathcal{R} = \{(x, y) \in \mathbb{Q}^2 \mid x + y \in \mathbb{Z}\}$
- 6. Define the relation \sim on \mathbb{R}^2 by $(a,b) \sim (c,d)$ if 2a b = 2c d.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Provide a geometric description of (2, 4).
- 7. Define the relation \sim on \mathbb{Z} by $a \sim b$ if 3a + 5b is even.
 - (a) Prove that \sim is an equivalence relation.
 - (b) What is $\overline{3}$?
 - (c) What is \mathbb{Z}/\sim ?