A TAUBERIAN THEOREM FOR DISCRETE POWER SERIES METHODS

Bruce Watson

RECEIVED:

ABSTRACT: A tauberian theorem from summability by a discrete power series method to ordinary convergence is proved.

AMS–Classification: 40D25

<u>1. INTRODUCTION</u>

Throughout this paper $\sum_{n=0}^{\infty} a_n$ is a series of real or complex numbers and $\{s_n\}$ represents its associated sequence of partial sums. The sequence $\{p_k\}$ is nonnegative with $p_0 > 0$ and satisfies $P_n := \sum_{k=0}^n p_k \to \infty$. Assume that the power series $p(x) := \sum_{k=0}^{\infty} p_k x^k$ has radius of convergence 1 and define $t_n := \frac{1}{P_n} \sum_{k=0}^n p_k s_k$ and $p_s(x) := \frac{1}{p(x)} \sum_{k=0}^\infty p_k s_k x^k$. The real sequence $\{\lambda_n\}$ satisfies $1 \le \lambda_0 < \lambda_1 < \cdots \to \infty$ and we set $x_n = 1 - \frac{1}{\lambda_n}$.

Weighted mean and power series methods are defined as follows. <u>Definition 1.1</u> If $t_n \to s$ as $n \to \infty$ then we say that $\{s_n\}$ is limitable to s by the weighted mean method M_p and write $s_n \to s(M_p)$.

<u>Definition 1.2</u> Suppose that $p_s(x)$ exists for each $x \in (0, 1)$. If $\lim_{x \to 1^-} p_s(x) = s$ then we say that $\{s_n\}$ is limitable to s by the power series method (P) and

write $s_n \to s$ (P).

Weighted mean methods and power series methods have been studied extensively. It is known (see [3] or [4]) that the condition $P_n := \sum_{k=0}^n p_k \to \infty$ guarantees that both are regular. Moreover, (P) includes (M_p) in the sense that $s_n \to s(M_p)$ implies $s_n \to s(P)$ (see [4] or [5]).

If $p_k = 1$ for all k then the corresponding weighted mean and power series methods are the (C, 1) method of Cesàro and ordinary Abel summability, (A), respectively. In the latter case, $p(x) = \frac{1}{1-x}$, and $p_s(x) = (1-x) \sum_{k=0}^{\infty} s_k x^k$.

Next we define the associated discrete methods.

<u>Definition 1.3</u> We say that $\{s_n\}$ is limitable to s by the discrete weighted mean method, $(M_{P_{\lambda}})$, and write $s_n \to s(M_{P_{\lambda}})$ if $\tau_n := t_{[\lambda_n]} = \frac{1}{P_{[\lambda_n]}} \sum_{k=0}^{[\lambda_n]} p_k s_k \to s$ as $n \to \infty$ where $[\cdot]$ denotes the greatest integer function.

<u>Definition 1.4</u> If $p_s(x_n)$ exists for all n and $\lim_{n\to\infty} p_s(x_n) = s$ then we say that s_n is limitable to s by the discrete power series method (P_{λ}) and write $s_n \to s(P_{\lambda})$.

Discrete methods have been studied recently by Armitage and Maddox in [1], [2] and by the author in [6], [7].

Note that, trivially, $(M_{P_{\lambda}})$ includes (M_p) and (P_{λ}) includes (P). Consequently, $(M_{P_{\lambda}})$ and (P_{λ}) inherit regularity from the underlying weighted mean or power series method. Other abelian-type results have been given in [7]. Reverse implications only hold under additional hypotheses called "tauberian conditions". The main theorem of this paper is a tauberian result from (P_{λ}) summability to convergence. In general, one might expect to require tauberian conditions on both $\{\lambda_n\}$ and $\{p_n\}$. One might also expect tauberian theorems for the corresponding power series method (P) to suggest results for (P_{λ}) . Our result is inspired by theorem 3 in [5].

2. THE MAIN THEOREM

<u>Theorem 2.1</u> Suppose that

(i)
$$\frac{P_n}{p(x_n)} = O(1) \text{ as } n \to \infty,$$

(ii) $0 < p_k \le M$ for all $k \ge 0,$
(iii) $\frac{\lambda_n}{P_n} = O(1),$
(iv) $\sum_{k=0}^{\infty} a_k = s(P_{\lambda})$ and
(v) $a_k = o(\frac{p_k}{P_k})$ as $k \to \infty.$
Then $\sum_{k=0}^{\infty} a_k = s.$

Proof. First, write

$$s_{n} - p_{s}(x_{n}) = \frac{1}{p(x_{n})} \left\{ \sum_{k=0}^{\infty} s_{n} p_{k} x_{n}^{k} - \sum_{k=0}^{\infty} s_{k} p_{k} x_{n}^{k} \right\}$$
$$= \frac{1}{p(x_{n})} \sum_{k=0}^{\infty} (s_{n} - s_{k}) p_{k} x_{n}^{k}$$
$$= \frac{1}{p(x_{n})} \left\{ \sum_{k=0}^{n-1} (s_{n} - s_{k}) p_{k} x_{n}^{k} + \sum_{k=n+1}^{\infty} (s_{n} - s_{k}) p_{k} x_{n}^{k} \right\}$$
$$= I + J.$$

It suffices to show that $I, J \to 0$ as $n \to \infty$. For I we have

$$|I| = \frac{1}{p(x_n)} \left| \sum_{k=0}^{n-1} (s_n - s_k) p_k x_n^k \right|$$

$$\leq \frac{1}{p(x_n)} \sum_{k=0}^{n-1} |s_n - s_k| p_k x_n^k$$

$$\leq \frac{1}{p(x_n)} \sum_{k=0}^{n-1} |s_n - s_k| p_k$$

$$= \frac{1}{p(x_n)} \{ |a_1 + a_2 + \dots + a_n| p_0 + |a_2 + \dots + a_n| p_1 + \dots + |a_n| p_{n-1} \}$$

$$\leq \frac{1}{p(x_n)} \{ |a_1| p_0 + |a_2| (p_0 + p_1) + \dots + |a_n| (p_0 + p_1 + \dots + p_{n-1}) \}$$

$$= \frac{P_n}{p(x_n)} \frac{1}{P_n} \sum_{k=1}^n |a_k| P_{k-1}$$

$$= \frac{P_n}{p(x_n)} \frac{1}{P_n} \sum_{k=0}^n p_k \frac{|a_k| P_{k-1}}{p_k} \quad \text{where } P_{-1} = 0.$$

Now, $\frac{P_n}{p(x_n)} = O(1)$ by condition (i). Moreover, since $\frac{|a_k|P_{k-1}}{p_k} \to 0$ and the weighted mean method M_p is regular, we have

$$\frac{P_n}{p(x_n)} \frac{1}{P_n} \sum_{k=0}^n p_k \frac{|a_k| P_{k-1}}{p_k} \to 0.$$

Assign $\epsilon > 0$ and consider J. By condition (v) there is an n_0 such that $|a_k| \leq \frac{\epsilon p_k}{P_k}$ for all $k \geq n_0$. Assume that $k > n \geq n_0$. Then

$$|s_k - s_n| = |a_{n+1} + a_{n+2} + \dots + a_k|$$

$$\leq \epsilon \left\{ \frac{p_{n+1}}{P_{n+1}} + \frac{p_{n+2}}{P_{n+2}} + \dots + \frac{p_k}{P_k} \right\}$$

=: ϵQ_k .

Now,

$$|J| \leq \frac{1}{p(x_n)} \sum_{k=n+1}^{\infty} \epsilon Q_k p_k x_n^k$$

and

$$Q_k \leq \frac{p_{n+1}}{P_n} + \frac{p_{n+2}}{P_n} + \dots + \frac{p_k}{P_n}$$
$$= \frac{P_k - P_n}{P_n}$$
$$= \frac{P_k}{P_n} - 1$$
$$< \frac{P_k}{P_n}.$$

Hence, using condition (ii),

$$|J| \leq \frac{\epsilon}{p(x_n)} \frac{1}{P_n} \sum_{k=n+1}^{\infty} P_k p_k x_n^k$$
$$= \frac{\epsilon P_n}{p(x_n)} \frac{1}{P_n^2} \sum_{k=n+1}^{\infty} P_k p_k x_n^k$$
$$\leq \frac{\epsilon M P_n}{p(x_n)} \frac{1}{P_n^2} \sum_{k=n+1}^{\infty} P_k x_n^k$$

and, by conditions (i), (ii) and (iii),

$$\begin{aligned} |J| &\leq \frac{\epsilon M P_n}{p(x_n)} \frac{1}{P_n^2} \sum_{k=n+1}^{\infty} M(k+1) x_n^k \\ &= \frac{\epsilon M^2 P_n}{p(x_n)} \frac{1}{P_n^2} \sum_{k=n+1}^{\infty} (k+1) x_n^k \\ &\leq \frac{\epsilon M^2 P_n}{p(x_n)} \frac{1}{P_n^2} \sum_{k=0}^{\infty} (k+1) x_n^k \\ &= \frac{\epsilon M^2 P_n}{p(x_n)} \frac{\lambda_n^2}{P_n^2} \\ &\leq \epsilon M_1 \quad \text{for large } n \text{ and some constant } M_1. \end{aligned}$$

This completes the proof.

As an illustration, in the special case of the discrete Abel method (A_{λ}) , we get the following.

<u>Corollary 2.2</u> If $na_n \to 0$ and there exist positive constants, γ_1 and γ_2 , such that $\gamma_1 \leq \frac{\lambda_n}{n} \leq \gamma_2$ then $\sum_{k=0}^{\infty} a_k = s(A_{\lambda})$ implies $\sum_{k=0}^{\infty} a_k = s$.

References

- D. H. Armitage and I. J. Maddox, A new type of Cesàro mean, Analysis 9(1989), 195-204.
- [2] D. H. Armitage and I. J. Maddox, Discrete Abel means, Analysis 10(1990), 177-186.

- [3] D. Borwein, On Methods of Summability Based on Power Series, Proc. Royal Soc. Edinburgh, 64(1957), 342-349.
- [4] G. H. Hardy, *Divergent Series*, Oxford, 1949.
- [5] K. Ishiguro, A tauberian theorem for (J, p_n) summability, Proc. Japan Acad., **40**(1964), 807-812.
- [6] B. Watson, Discrete Power Series Methods, Analysis, 18(1998), 97-102.
- B. Watson, Discrete Weighted Mean Methods, Indian J. pure appl. Math., 30(12) (1998), 97-102.

Memorial University of Newfoundland St. John's, Newfoundland, Canada A1C 5S7 email: bruce2@math.mun.ca