DISCRETE WEIGHTED MEAN METHODS

BRUCE WATSON

ABSTRACT: Discrete weighted mean methods of summability are defined. Their basic regularity and abelian properties are developed and it is shown that each strictly includes its corresponding (J_p) method.

AMS-Classification: 40D25

1. INTRODUCTION

Throughout this paper $\sum_{n=0}^{\infty} a_n$ is a series of real or complex numbers and $\{s_n\}$ represents its associated sequence of partial sums. The sequence $\{p_k\}_{k=0}^{\infty}$ is nonnegative with $p_0 > 0$ and satisfies $P_n := \sum_{k=0}^{n} p_k \rightarrow \infty$

 ∞ . Assume that the power series $p(x) := \sum_{k=0}^{\infty} p_k x^k$ has radius of con-

vergence 1 and define
$$t_n := \frac{1}{P_n} \sum_{k=0}^n p_k s_k$$
 and $p_s(x) := \frac{1}{p(x)} \sum_{k=0}^\infty p_k s_k x^k$.

We assume that the real sequence $\{\lambda_n\}$ satisfies $1 \leq \lambda_0 < \lambda_1 < \cdots \rightarrow \infty$ and define the sequence $\{x_n\}$, associated with $\{\lambda_n\}$, by $x_n = 1 - \frac{1}{\lambda_n}$.

Weighted mean and power series methods are defined as follows. **Definition 1.1.** If $t_n \to s$ as $n \to \infty$ then we say that $\{s_n\}$ is limitable to s by the weighted mean method M_p and write $s_n \to s(M_p)$. **Definition 1.2.** If $p_s(x)$ exists for each $x \in (0, 1)$ and $\lim_{x \to 1^-} p_s(x) = s$

then we say that $\{s_n\}$ is limitable to s by the power series method (P) and write $s_n \to s(P)$.

Weighted mean methods, also called (\overline{N}, p_n) methods in the literature, and power series methods, called (J_p) methods, have been studied extensively. It is known (see [4]) that both are regular and that $s_n \to s(M_p)$ implies $s_n \to s(P)$ (see [5]).

If $p_k = 1$ for all k then the corresponding weighted mean and power series methods are the (C, 1) method of Cesàro and ordinary Abel summability, (A), respectively.

We define discrete methods corresponding to (M_p) and (P) as follows.

Definition 1.3. We say that $\{s_n\}$ is limitable to s by the discrete weighted mean method, $(M_{P_{\lambda}})$, and write $s_n \to s(M_{P_{\lambda}})$ if $\tau_n := t_{[\lambda_n]} =$

 $\frac{1}{P_{[\lambda_n]}}\sum_{k=0}^{[\lambda_n]} p_k s_k \to s \text{ as } n \to \infty \text{ where } [\cdot] \text{ denotes the greatest integer}$ function.

Definition 1.4. Suppose that $p_s(x_n)$ exists for all n. If $\lim_{n \to \infty} p_s(x_n) = s$ then s_n is limitable to s by the discrete power series method (P_{λ}) and we write $s_n \to s(P_\lambda)$.

Discrete methods have been investigated in [1], [2] and [6]. Note that $(M_{P_{\lambda}})$ includes (M_p) and (P_{λ}) includes (P) in the sense that $s_n \to$ $s(M_p)$ or $s_n \to s(P)$ implies $s_n \to s(M_{P_\lambda})$ or $s_n \to s(P_\lambda)$ respectively. Consequently, $(M_{P_{\lambda}})$ and (P_{λ}) inherit regularity from the underlying weighted mean or power series method.

Regularity of $(M_{P_{\lambda}})$ can also be shown directly. In fact, τ_n can be expressed as a nonnegative matrix method, $\tau_n = \sum_{k=0}^{\infty} c_{n,k} s_k$, where $c_{n,k}$

is $\frac{p_k}{P_{n-1}}$ for $0 \le k \le [\lambda_n]$ and is zero otherwise. This infinite matrix clearly satisfies the regularity requirements of the general theorem in [4]. The regularity of (P_{λ}) was established directly in [6].

2. Abelian Results

The main theorems of this paper establish abelian results between different discrete weighted mean methods and between $(M_{P_{\lambda}})$ and (P_{λ}) . They use the following notation. The "greatest integer range" of the sequence $\{\lambda_n\}$ is denoted by $E(\lambda) := \{[\lambda_n] : n \ge 0\}.$

The following result includes theorem 1(i) of [1]. Theorem 2.1.

- (1) $(M_{P_{\lambda}}) \subseteq (M_{P_{\mu}})$ if $E(\mu) \setminus E(\lambda)$ is finite. (2) Suppose that $p_k > 0$ for all k. If $(M_{P_{\lambda}}) \subseteq (M_{P_{\mu}})$ then $E(\mu) \setminus$ $E(\lambda)$ is finite.

Proof. For part (1) suppose that $E(\mu) \setminus E(\lambda)$ is finite. Then there exists an integer N such that $\{[\mu_n] : n \ge N\} \subseteq E(\lambda)$. That is, there is an increasing sequence $\{j_n\}_{n=N}^{\infty}$ such that $j_n \to \infty$ and $[\mu_n] = [\lambda_{j_n}]$ for $n \geq N$.

If $s_n \to s(M_{P_\lambda})$ then

$$\frac{1}{P_{[\mu_n]}} \sum_{k=0}^{[\mu_n]} p_k s_k = \frac{1}{P_{[\lambda_{j_n}]}} \sum_{k=0}^{[\lambda_{j_n}]} p_k s_k$$
$$\longrightarrow s.$$

That is, $s_n \to s(M_{P_{\mu}})$.

For the second part suppose, by way of contradiction, that $(M_{P_{\lambda}}) \subseteq (M_{P_{\mu}})$ but that $E(\mu) \setminus E(\lambda)$ is infinite.

There there exists a strictly increasing sequence $\{[\mu_{n_j}]\}_{j=1}^{\infty}$ such that $[\mu_{n_j}] \notin E(\lambda)$.

Recall that
$$t_n := \frac{1}{P_n} \sum_{k=0}^n p_k s_k$$
 and define a sequence $\{t_n\}$ as follows.
$$t_n = \begin{cases} 0 & \text{if } n \neq [\mu_{n_j}], \\ (-1)^j & \text{if } n = [\mu_{n_j}]. \end{cases}$$

Recover the sequence $\{s_n\}$ using $P_n t_n - P_{n-1} t_{n-1} = p_n s_n$ with $t_{-1} = P_{-1} = 0$. Then $s_n \to 0(M_{P_{\lambda}})$ since $t_{[\lambda_n]} = 0$ for all n but $\{s_n\}$ is not limitable $(M_{P_{\mu}})$. This completes the proof. **Corollary 2.2.**

- (1) $(M_{P_{\lambda}})$ is equivalent to $(M_{P_{\mu}})$ (in the sense that each includes the other) if the symmetric difference $E(\lambda)\Delta E(\mu)$ is finite.
- (2) Suppose that $p_k > 0$ for all k. If $(M_{P_{\lambda}})$ is equivalent to $(M_{P_{\mu}})$ then $E(\lambda)\Delta E(\mu)$ is finite.

The observation earlier that $(M_{P_{\lambda}})$ includes (M_p) also follows from part 1 of Theorem 2.1.

Corollary 2.3. $(M_p) \subseteq (M_{P_{\mu}})$ for any $\{\mu_n\}$.

Proof. Since $E(\mu) \setminus \{1, 2, 3, \dots\}$ is empty, the result follows with a suitable choice of the sequence $\{\lambda_n\}$ in theorem 2.1. For example, either $\lambda_n = n + 1$ for $n \ge 0$ or $\lambda_0 = 1$ and $\lambda_n = n + \frac{1}{2}$ for $n \ge 1$ will work.

And, reversing the role of the set $\{1, 2, 3, \dots\}$ gives

Corollary 2.4. $(M_{P_{\lambda}}) \subseteq (M_p)$ if $\{1, 2, 3, \dots\} \setminus E(\lambda)$ is finite.

The second main abelian result is the following.

Theorem 2.5.

- (1) $(M_{P_{\lambda}}) \subseteq (P_{\lambda})$ if $\{1, 2, 3, \dots\} \setminus E(\lambda)$ is finite.
- (2) Suppose that $p_k > 0$ for all k. If $(M_{P_{\lambda}}) \subseteq (P_{\lambda})$ then the set $\{1, 2, 3, \dots\} \setminus E(\lambda)$ is finite.

Proof. If $\{1, 2, 3, \dots\} \setminus E(\lambda)$ is finite then the chain of inclusions

$$(M_{P_{\lambda}}) \subseteq (M_p) \subseteq (P) \subseteq (P_{\lambda})$$

establishes (1).

On the other hand, suppose that $\{1, 2, 3, \dots\} \setminus E(\lambda)$ is infinite and that $\{p_k\}$ is positive. Then there is a sequence of positive integers $\{n_j\}_{j=0}^{\infty}$ such that $n_j \notin E(\lambda)$ and $n_{j+1} - n_j \geq 2$.

With $t_n := \frac{1}{P_n} \sum_{k=0}^{n} p_k s_k$ representing the (M_p) -transform of the se-

quence $\{s_n\}$, define $\{t_n\}$ as follows.

$$t_n = \begin{cases} \frac{n_j!}{P_{n_j}} & \text{if } n = n_j, \\ 0 & \text{otherwise} \end{cases}$$

Then, $s_k \to 0(M_{P_\lambda})$.

But $p_{n_j}s_{n_j} = n_j!$ since we always have $P_nt_n - P_{n-1}t_{n-1} = p_ns_n$. Hence, $\sum_{n=1}^{\infty} p_ns_nx^n$ diverges for all $x \in (0, 1)$. This implies that $p_s(x_n)$

does not exist for any n and, hence, $\{s_n\}$ is not limitable (P_{λ}) . This completes the proof of (2).

Note that the same proof gives

Corollary 2.6.

- (1) $(M_{P_{\lambda}}) \subseteq (P)$ if $\{1, 2, 3, \cdots\} \setminus E(\lambda)$ is finite.
- (2) Suppose that $p_k > 0$. If $(M_{P_{\lambda}}) \subseteq (P)$ then $\{1, 2, 3, \dots\} \setminus E(\lambda)$ is finite.

In [6] the following was shown.

Theorem 2.7. If $p_k > 0$ for all $k \ge 0$ then $(P) \subset (P_{\lambda})$ strictly. Combining results gives the following observations.

Theorem 2.8. If $p_n > 0$ for all $n \ge 0$ and $\{1, 2, 3, \dots\} \setminus E(\lambda)$ is finite then $(M_{P_{\lambda}}) \subset (P_{\lambda})$ strictly.

Theorem 2.9 If $p_n > 0$ for all $n \ge 0$ then $(M_p) \subset (P_\lambda)$ strictly.

References

- D. H. Armitage and I. J. Maddox, A new type of Cesàro mean, Analysis 9(1989), 195-204.
- [2] D. H. Armitage and I. J. Maddox, Discrete Abel means, Analysis 10(1990), 177-186.
- [3] D. Borwein and W. Kratz, On relations between weighted mean and power series methods of summability, J. Math. Anal. Appl., 139(1989), 178-186.
- [4] G. H. Hardy, Divergent Series, Oxford, 1949.

- [5] K. Ishiguro, A tauberian theorem for (J, p_n) summability, Proc. Japan Acad., **40**(1964), 807-812.
- [6] B. Watson, Discrete power series methods, Analysis 18(1998), 97-102.

Memorial University of Newfoundland, St. John's, NF, CANADA, A1C 5S7