DISCRETE WEIGHTED MEAN METHODS
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ABSTRACT: Discrete weighted mean methods of summability are de-
fined. Their basic regularity and abelian properties are developed and
it is shown that each strictly includes its corresponding (.J,) method.
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1. INTRODUCTION

[e.9]

Throughout this paper Z a, is a series of real or complex numbers
n=0
and {s,} represents its associated sequence of partial sums. The se-

quence {pg}72, is nonnegative with py > 0 and satisfies P, := Z Pr —

oo. Assume that the power series p(x Z pex” has radius of con-
k=0
vergence 1 and define t,, ;= — Zpksk and ps(x) == Zpksk:c

" k=
We assume that the real sequence {A\n} satisfies 1 < /\0 < )\1 <-

oo and define the sequence {z,}, associated with {\,}, by z,, = 1— ﬁ
Weighted mean and power series methods are defined as follows.
Definition 1.1. Ift, — s asn — oo then we say that {s,} is limitable

to s by the weighted mean method M, and write s, — s(M,).

Definition 1.2. If ps(z) exists for each x € (0,1) and lim ps(z) = s
z—1—

then we say that {s,} is limitable to s by the power series method (P)
and write s, — s(P).

Weighted mean methods, also called (N, p,) methods in the litera-
ture, and power series methods, called (.J,) methods, have been stud-
ied extensively. It is known (see [4]) that both are regular and that
$p — s(M,) implies s, — s(P) (see [5]).

If pr, = 1 for all k then the corresponding weighted mean and power
series methods are the (C,1) method of Cesaro and ordinary Abel
summability, (A), respectively.



We define discrete methods corresponding to (M,) and (P) as fol-
lows.
Definition 1.3. We say that {s,} is limitable to s by the discrete
weighted mean method, (Mp,), and write s, — s(Mp,) if 7, =t} =
[An]
1

P—Zpksk — s as n — oo where [-] denotes the greatest integer
Pl o

function.
Definition 1.4. Suppose that ps(x,) exists for alln. If lim ps(x,) = s

then s, is limitable to s by the discrete power series method (Py) and
we write s, — s(Py).

Discrete methods have been investigated in [1], [2] and [6]. Note
that (Mp, ) includes (M,) and (P,) includes (P) in the sense that s,, —
s(M,) or s, — s(P) implies s, — s(Mp,) or s, — s(Py) respectively.
Consequently, (Mp,) and (P)) inherit regularity from the underlying
weighted mean or power series method.

Regularity of (Mp,) can also be shown directly. In fact, 7, can be

e}
expressed as a nonnegative matrix method, 7, = Z Cn Sk, Where ¢,
k=0
Pk
el . : .
clearly satisfies the regularity requirements of the general theorem in
[4]. The regularity of (Py) was established directly in [6].

is for 0 < k < [A\,] and is zero otherwise. This infinite matrix

2. ABELIAN RESULTS

The main theorems of this paper establish abelian results between
different discrete weighted mean methods and between (Mp, ) and (Py).
They use the following notation. The “greatest integer range” of the
sequence {\,} is denoted by E(XA) := {[\,] : n > 0}.

The following result includes theorem 1(7) of [1].

Theorem 2.1.

(1) (Mp,) € (Mp,) if E(u) \ E(X) is finite.
(2) Suppose that pr > 0 for all k. If (Mp,) € (Mp,) then E(p) \
E(X) is finite.

Proof. For part (1) suppose that F(u) \ E(\) is finite. Then there
exists an integer N such that {[u,] : n > N} C E()). That is, there is
an increasing sequence {j, }>> v such that j, — oo and [u,] = [A,,] for
n > N.



If s, — s(Mp,) then

[1n]

Zpksk =

.“n]ko ]n]k.o

That is, s, — s(Mp,).

For the second part suppose, by way of contradiction, that (Mp,) C
(Mp,) but that E(u) \ E()) is infinite.

There there exists a strictly increasing sequence {[p,,]}32, such that

[t ] & E(A).

Recall that t,, ;= — Z prSk and define a sequence {t,} as follows.
" k=0

. _{ 0 if n # [pn,],
oLy =)

Recover the sequence {s,} using P,t, — P,_1t,—1 = ppsS, with t_; =
P_y = 0. Then s, — 0(Mp,) since t[,,) = 0 for all n but {s,} is not
limitable (Mp,). This completes the proof.

Corollary 2.2.

(1) (Mp,) is equivalent to (Mp,) (in the sense that each includes
the other) if the symmetric difference E(N)AE(u) is finite.

(2) Suppose that p;, > 0 for all k. If (Mp,) is equivalent to (Mp,)
then E(A)AE(u) is finite.

The observation earlier that (Mp,) includes (M),) also follows from
part 1 of Theorem 2.1.
Corollary 2.3. (M,) C (Mp,) for any {jin}.
Proof. Since E(u) \ {1,2,3,---} is empty, the result follows with a
suitable choice of the sequence {\,} in theorem 2.1. For example,
either/\n:n+1forn200r/\0:1and)\n:n+%fornleill
work.

And, reversing the role of the set {1,2,3,---} gives
Corollary 2.4. (Mp,) C (M,) if {1,2,3,---} \ E()\) is finite.

The second main abelian result is the following.
Theorem 2.5.

(1) (Mp,) € () 4f {1,2,3,--- } \ E()) is finite.
(2) Suppose that p > 0 for all k. If (Mp,) C (Py) then the set
{1,2,3,--- } \ E(\) is finite.
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Proof. If {1,2,3,---} \ E()) is finite then the chain of inclusions
(Mp,) € (M) € (P) € (P))

establishes (1).

On the other hand, suppose that {1,2,3,---} \ E()) is infinite and
that {px} is positive. Then there is a sequence of positive integers
{n;}52, such that nJ ¢ E(\) and njq —n; > 2.

With ¢, = — Zpksk representing the (M),)-transform of the se-

quence {s,}, deﬁne {t } as follows.

;—i' lf n = nj,
by = g
0 otherwise
Then, sy — 0(Mp,).
But p,;s,, = n;! since we always have Put, — P 1tp1 = PpSn.
(o]

Hence, ansnx” diverges for all z € (0,1). This implies that ps(z,,)
n=0
does not exist for any n and, hence, {s,} is not limitable (Py). This
completes the proof of (2).
Note that the same proof gives
Corollary 2.6.
(1) (Mp,) € (P) if {1,2,3,--- } \ E(X) is finite.
(2) Suppose that py, > 0. If (Mp,) C (P) then {1,2,3,---} \ E())
18 finite.
In [6] the following was shown.
Theorem 2.7. If p, > 0 for all k > 0 then (P) C (Py) strictly.
Combining results gives the following observations.
Theorem 2.8. Ifp, >0 for alln >0 and {1,2,3,---}\ E()) is finite
then (Mp,) C (Py) strictly.
Theorem 2.9 If p, > 0 for alln > 0 then (M,) C (P\) strictly.
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