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Abstract

Wide ranges of symmetry methods are applied to several differential equations arising in the

atmospheric sciences. Lie point symmetries of the barotropic vorticity equation, the barotropic

potential vorticity equation and the two-layer baroclinic model are computed. One- and two-

dimensional inequivalent subalgebras of the respective maximal Lie invariance algebras are clas-

sified. Based on this classification, we determine various group-invariant solutions of the inves-

tigated differential equations. The physical relevance of these particular solutions is evaluated.

Symmetries are used to find point transformations that map the barotropic potential vorticity

equation on the β-plane and the barotropic vorticity equation on the rotating sphere to the

respective equations in the inertial frame. Two refined techniques for the computation of the

complete point symmetry group of differential equations are proposed within the framework of

the direct method. The first technique is based on the invariance of megaideals of the maxi-

mal Lie invariance algebra under automorphisms generated by point symmetries. The second

technique involves knowledge on the admissible transformations of classes of differential equa-

tions containing the given equation. It is shown how symmetries can be employed to determine

closure schemes in the course of the parameterization problem. The methods we apply rest on

techniques of direct and inverse group classifications. These methods are exemplified by parame-

terizing the eddy vorticity flux in the Reynolds averaged vorticity equation. This leads to several

invariant parameterization schemes possessing different degrees of symmetry. The symmetries

of the barotropic vorticity equation and the Saltzman convection equations are used to derive

spectral finite-mode approximations. This is done using both Lie and discrete point symmetries

as a criterion for the selection of Fourier modes. It is proved that the Lorenz–1960 model can be

systematically re-derived with the aid of point symmetries of the vorticity equation. In a similar

manner, it is demonstrated that the selection of modes for the Lorenz–1963 convection model is

not compatible with the symmetries of the Saltzman equations. It is shown that the Hamiltonian

and Nambu structures of the Lorenz–1963 model are not related to the Hamiltonian and Nambu

forms of the Saltzman convection equations. A new six-component truncation of the convection

equation is proposed. The selection of modes for this model is based on point symmetries of the

convection equations. These modes are suitably scaled to allow the six-component model to be

of Hamiltonian and Nambu forms analog to those of the original Saltzman equations.
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Zusammenfassung

Zahlreiche Symmetriemethoden werden auf Differentialgleichungen der Atmosphärendynamik

angewandt. Die Lie-Punktsymmetrien der barotropen Vorticitygleichung, der barotropen poten-

tiellen Vorticitygleichung und des baroklinen Zweischichtmodels werden berechnet. Ein- und

zweidimensionale inäquivalente Subalgebren der jeweiligen maximalen Lie-Invarianzalgebren

werden klassifiziert und dazu verwendet, exakte Lösungen der jeweiligen Gleichungen zu be-

stimmen. Die physikalische Bedeutung dieser Lösungen wird untersucht und diskutiert. Mit-

tels der Symmetrien der barotropen potentiellen Vorticitygleichung auf der β-Ebene und der

barotropen Vorticitygleichung auf der rotierenden Kugel können Punkttransformationen gefun-

den werden, die beide Gleichungen in die jeweiligen Gleichungen im Inertialsystem transfor-

mieren. Zwei erweiterte Techniken zur Berechnung der gesamten Punktsymmetriegruppe von

Differentialgleichungen werden vorgestellt, die im Rahmen der direkten Methode angewandt

werden können. Die erste Technik basiert auf der Invarianz von Megaidealen der maximalen Lie-

Invarianzalgebra unter von Punktsymmetrien erzeugten Automorphismen. Die zweite Technik

verwendet Kenntnisse über admissible transformations von Klassen von Differentialgleichungen,

die die untersuchte Gleichung enthalten. Weiters wird gezeigt wie Symmetrien dazu verwen-

det werden können, Schließungen im Zuge des Parameterisierungsproblems zu definieren. Für

diesen Zweck werden Verfahren der direkten und inversen Gruppenklassifikation benützt. Als

Beispiel werden verschiedene Parameterisierungen für den Eddy-Vorticityfluß in der Reynolds-

gemittelten Vorticitygleichung konstruiert, die unterschiedliche Symmetrieeigenschaften besit-

zen. In einem weiteren Schritt werden die Symmetrien der barotropen Vorticitygleichung und

der Saltzman’schen Konvektionsgleichungen dazu verwendet um spektrale, niedrigdimensionale

Approximationen dieser Gleichungen zu erzeugen. Dazu werden Lie-Punkt- und diskrete Sym-

metrien als Kriterium zur Auswahl der Fouriermoden verwendet. Es wird bewiesen dass das

Lorenz–1960 Modell systematisch unter Zuhilfenahme der Punktsymmetrien der Vorticityglei-

chung ableitbar ist. Auf ähnliche Weise wird demonstriert dass die Wahl der Moden des Lorenz–

1963 Modells der thermischen Konvektion nicht mittels Symmetrien begründbar ist. Zudem wird

gezeigt dass sowohl die Hamiltonsche als auch die Nambu Form des Lorenz–1963 Modells nicht

mit der entsprechenden Hamiltonschen bzw. Nambu-Darstellung der Saltzman’schen Konvekti-

onsgleichungen zusammenhängen. Aus diesem Grund wird ein sechskomponentiges Modell der

Konvektionsgleichungen abgeleitet. Die Modenwahl dieses neuen Modells basiert vollständig auf

Punktsymmetrien der Saltzman’schen Gleichungen. Durch geeignetes Skalieren dieser Moden ist

es möglich eine Hamiltonsche bwz. Nambu-Darstellung dieses sechskomponentigen Modells zu

finden, die der Hamilton- bzw. Nambuformulierung der kontinuierlichen Konvektionsgleichungen

vollständig analog ist.
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Chapter 1

Preface

1.1 General introduction

1.1.1 Motivation

Today’s range of applicability of symmetry methods is enormous and it not easy to account

appropriately even for the most recent directions in this field. Presently, symmetries play an

important role in mathematics, chemistry, engineering and in almost all branches of theoretical

physics, including classical mechanics, quantum mechanics and relativity.1 One reason for the

overall prominence of the concept of symmetry is its nativeness and its simplicity. Intuitively

speaking, a symmetry is a transformation of an object leaving this object invariant. This is

clearly such a general property that it can be recovered almost everywhere in nature and,

correspondingly, in numerous areas of science and art. To be more specific, in the course of

the thesis, our objects will be several differential equations of the atmospheric sciences and our

transformations will be point transformations preserving these equations or relating them to

each other.2

By definition, symmetries are attributes of their associated objects and thus in some sense

provide an inverse way to characterize these objects. That is, by studying the transformations

that leave an object invariant, we can already learn about the object itself. While this obser-

vation might appear to be somewhat trivial for symmetries of geometric objects, it formalizes

in a rather nontrivial way in the field of symmetry analysis of differential equations. The most

inspiring example of this finding stems from inverse group classification: Any differential equa-

tion can be represented as a function of the differential invariants of its admitted Lie symmetry

group [118]. In other words, the knowledge of the symmetries of a differential equation (i.e. the

transformations) suffice to determine the differential equation (i.e. the object) itself. Indeed,

this is a main motivation for investigating symmetries of differential equations: They help to

understand these equations, which is of inestimable value especially for all those differential

equations, for which it is difficult to determine their general (or even only particular) solution(s)

systematically.

Needless to say that symmetries are more than just a means to characterize differential equa-

tions. They can be used for several practical purposes as reviewed in the following sections. In

fact, it is astonishing how many methods were developed and successfully applied in the field of

1Not to even mention the countless occurrences of symmetries in the fields of biology, fine arts and architecture.
2Whenever we subsequently write in general about differential equations, we indeed mean systems of either

ordinary or partial differential equations.
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symmetry analysis of differential equations during the past 50 years. It is the aim of the thesis to

demonstrate the potential usefulness of some of these methods when applied to differential equa-

tions arising in the atmospheric sciences. More specifically, the thesis has three primary goals:

• Applying classical methods of symmetry analysis to several models of the atmospheric

sciences.

• Systematically re-deriving a number of known results of dynamic meteorology using sym-

metry techniques.

• Opening new fields of applications for methods of symmetry analysis.

In addition, a few of the methods applied in the thesis might be regarded as an extension or

simplification of techniques already existing.3 Yet as the thesis is devoted to the practical us-

age of symmetries in the atmospheric sciences, we will focus more on the application of these

methods in specific situations than on formulating them in a very rigorous manner.

In some way, this PhD thesis can be seen as a continuation of our master thesis, in which we

made our first experiences with symmetry methods in dynamic meteorology. It is still the great

success that the symmetry approach records in diverse mathematical and physical sciences that

inspired us to apply it more thoroughly to typical models of geophysical fluid dynamics. It is

hoped that the thesis will give an impression how fruitful these methods can be in this field.

1.1.2 Classical symmetry analysis

In the first part of the thesis, symmetries are mainly used to obtain exact solutions of se-

lected differential equations of the atmospheric sciences. This is a classical usage of symmetries

and is related to the original stimulation of Sophus Lie to develop the theory of continuous

transformation groups at the end of the 19th century as a tool for the integration of ordinary

differential equations [82]. Since we are solely dealing with partial differential equations, sym-

metries are used to determine exact solution by carrying out group-invariant reduction, which

finally leads to group-invariant solutions. The method of group-invariant reduction rests on the

possibility to introduce the invariants of a Lie symmetry (sub)group as new variables in the

associated differential equation. It is then guaranteed that a symmetry (sub)group possessing

r-dimensional orbits allows to reduce the number of independent variables p ≥ r by r. Any

solution of the reduced differential equation gives rise to a particular solution of the initial dif-

ferential equation after transforming back to the original variables of the initial equation. As

this construction is classical, it can be found in virtually all textbooks on symmetry analysis,

such as in [23, 62, 115, 149].4

Among exact solutions, Lie symmetries can also be used for several other purposes related

to differential equations. Here we list a few important fields of applications that play a role in

the present thesis. For further discussions, see the textbooks [22, 23, 62, 97, 115, 118].

Determining new solutions from known ones. Symmetries are transformations that map

the set of solutions of a differential equation to itself. For this reason, a symmetry can be

used to transform a given exact solution of a differential equation to another (possibly new)

exact solution. Thus, by acting on the set of known solutions of a differential equation with

3We intentionally avoid the term new method in this place as it is used in almost an inflationary manner in

symmetry analysis. Unfortunately, not all these “new“ methods are as new as they pretend to be.
4For an ordinary differential equation, symmetries can be used to lower the order of the equation and can

thereby help to obtain its general solution, see also [23, 62, 115, 149].
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symmetries of the same equation, series of exact solutions can be produced with very little

effort. On the other hand, the property of a symmetry to map solutions to other solutions

renders it necessary to classify the set of group-invariant solutions of a differential equation

into dissimilar subsets, which cannot be related to each other by means of a symmetry.

As equivalent subalgebras of the corresponding maximal Lie invariance algebra lead to

similar subsets of invariant solutions, the classification of inequivalent subalgebras of the

maximal Lie invariance algebras of the differential equations we investigate in the thesis

is of striking importance.

Identification of related differential equations. Symmetries can be used to determine sim-

ilar differential equations, which can be mapped to each other by point transformations.

The criterion is that the symmetry groups of similar equations are similar with respect to

the same point transformations. This necessary condition is used in the first part of the

thesis to map the barotropic vorticity equation on the rotating sphere and the barotropic

potential vorticity equation on the β-plane to the respective equations in the inertial

frames. Moreover, this property is especially useful in the case where it is possible to

find a linear differential equation associated with a nonlinear one, as it is then possible to

linearize the nonlinear equation. A prominent example in fluid mechanics is the system of

one-dimensional shallow-water equations, which can be transformed to a system of linear

differential equations using a hodograph transformation [62].

Computation of discrete symmetries. Lie symmetries also provide a way to determine the

complete point symmetry group of a differential equation, which includes both Lie and dis-

crete point symmetries. The main idea is the following. Any point symmetry (continuous

or discrete) of a differential equation induces an automorphism of the corresponding Lie

invariance algebra. This condition in turn restricts the general form of a transformation

that can be a point symmetry of a given differential equation. Plugging this restricted form

of a general point transformation into the symmetry determining equations and factoring

out the continuous symmetries allows to determine the group of discrete symmetries [61].

The outlined method can be further simplified by noting that there are certain subalge-

bras which are invariant under any transformation from the group of automorphisms of

the given Lie algebra. By this method, which is discussed more thoroughly in the end of

the first part of the thesis and exemplified with the barotropic vorticity equation on the

β-plane and the baroclinic two-layer model, the complete group of point symmetries of a

differential equation can be determined. A second approach that can simplify the compu-

tation of the complete point symmetry group of a differential equation uses information

on the set of admissible transformation of a normalized class of differential equation con-

taining the given differential equation. This method is also demonstrated for the vorticity

equation on the β-plane using the set of admissible transformations of a class of generalized

vorticity equations, which is derived in the second part of the thesis.

Computation of invariants and differential invariants. Invariants of a Lie group action

play an important role in the construction of group-invariant or partially invariant solu-

tions. The can be determined using the infinitesimal Lie symmetry generators, by solving a

quasi-linear characteristic system of differential equations [118]. Another method is based

on finite symmetry transformations and involves the moving frame method [40]. In the

same way, differential invariants are obtainable as well. These are the invariants of the

group action extended to derivatives of the dependent variables up to a fixed order. It

3



was already noted above that any differential equation can be expressed in terms of the

differential invariants of its symmetry group action. This way, the differential invariants

allow to determine the most general class of differential equations admitting the chosen

group as a symmetry group. This is of primary importance for various practical applica-

tions of symmetries, as virtually all theories of physics are based on symmetry principles

(e.g. classical mechanics is based on the Galilei group and special relativity is based on

the Poincaré group [131]). A more comprehensive discussion of differential invariants is

presented in the second part of the thesis.

Computation of conservation laws. Conservation laws have a significant relevance in the

study of differential equations. They are useful to understand the behavior of the asso-

ciated differential equations and provide essential information whether or not it may be

possible to explicitly integrate these equations. Moreover, they can be used as a consistency

test for numerical integration schemes [163]. Any conservation law of an ordinary differen-

tial equation is nothing but a first integral of this equation. The classical relation between

symmetries and conservation laws was established by Emmy Noether [111]. More exactly,

Noether’s theorem relates (generalized) variational symmetries (i.e. symmetries of a varia-

tional problem) with conservation laws of the associated Euler–Lagrange equations. Meth-

ods for finding conservation laws of systems of differential equations that are not Euler–

Lagrange equations of variational functionals were developed much later [3, 24, 160, 163],

although the necessary theoretical background was well known [115]. The basic idea of the

most effective approach is to solve the system that is adjoint to the system of determining

equations for generalized symmetries. This yields the set of adjoint symmetries of the

given differential equation. Any characteristic of every conservation law of a differential

equation is an adjoint symmetry of the same equation but the inverse claim is not true.

Characteristics should be separated from adjoint symmetries by satisfying additional con-

ditions. This method also works for systems possessing a variational principle. In this

case, adjoint symmetries and generalized symmetries coincide, which then leads back to

the usual Noether case. For a more formal discussion and a description of other methods

for the direct construction of conservation laws, see [130, 132, 163]. Conservation laws also

play an outstanding role in the Hamiltonian formulation of physical models, which is a

central matter in the third part of the thesis.

1.1.3 Symmetries and parameterization schemes

It is often the case that the differential equations modeling real world phenomena include one

or more arbitrary parameters, thus representing classes of differential equations rather than a

single equation. These parameters might be essential to fit the model to experimental data or

to make it applicable to a wide range of situations. For such classes of differential equations, it

can be the case that for different values of these parameters, the resulting differential equations

possess different symmetry properties. Keeping in mind that equations of successful physical

theories are characterized by wide symmetry groups, it might as well be beneficial to single

out from a class of differential equations those elements that possess Lie invariance algebras of

maximal dimensions. The complete and systematic description of symmetry properties of classes

of differential equations is referred to as group classification. A discussion of the classical group

classification problem can be found in the textbook [118] and in the recent paper [131] (see also

the references therein).
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The problem of group classification of classes of differential equations is hence a very natural

one and it is essentially the issue of the second part of the present thesis. Namely, we use

techniques of group classification to construct physical parameterization schemes that possess

certain invariance properties. In general, the parameterization problem is certainly one of the

most crucial problems that has to be treated appropriately in order to obtain valuable numerical

weather and climate forecasts. Parameterizations are intimately linked to the discretization or

averaging of a differential equation. In the course of discretization, it is necessary to choose a grid

at whose vertices all the dependent variables of the differential equation to be discretized are de-

fined. Obviously, by choosing a finite grid resolution (usually dictated by the limits of computer

resources), all processes taking place at scales below those of the grid cannot be explicitly re-

solved by the model. Similarly, any measurement of real atmospheric data does not represent an

instantaneous value at a single point but rather some mean value over a (suitable short) interval

in time and a (suitable small) domain in space. To feed these measurements as initial or bound-

ary conditions to a differential equation naturally also calls for an averaging of this equation,

which in turn again introduces a splitting into resolved and unresolved scales. Unfortunately, as

the governing equations of the atmospheric sciences are nonlinear, it is not reasonable to simply

neglect the processes occurring at the unresolved scales. By nonlinear interaction of scales, the

subgrid scale will, sooner or later, have an impact on the gridscale. If this interaction is not

adequately taken into account, any result of a numerical weather or climate prediction will be

spoilt. This is why it is essential to find a way to incorporate the effects of the subgrid scale

processes on the resolved quantities. By definition, this is the issue of parameterization.

More mathematically, in the course of parameterization an expression of the unresolved quan-

tities via the resolved ones is established, which we will call the parameterization function. By

substituting this expression into the discretized (resp. averaged) differential equation, the latter

is turned into a class of differential equation, whose tuple of arbitrary elements is precisely the

parameterization function. There are several conditions a physical parameterization has to meet,

such as correct dimensionality, tensorial properties and invariance under Galilean transforma-

tions, but all of these restrictions are not sufficient to completely determine the specific form

of the parameterization function. It is the aim of the second part of the thesis to demonstrate

that the Lie symmetries of a differential equation can be used to restrict the general form of

the parameterization function. The main paradigm is to construct the parameterizations in a

way such that the resulting equations possess different symmetry properties. For this reason,

in the framework of the present thesis it is convenient to postulate the following assertion: The

(invariant) parameterization problem is a group classification problem. That is, we solve the

parameterization problem using well-known techniques of group classification. This program

results in a list of invariant parameterization schemes for the models of geophysical fluid dy-

namics that could subsequently be tested with real data to assess, which of the parameterizations

accounts best for the nature of the problem.

1.1.4 Symmetries, Nambu mechanics and finite-mode models

It was reported above that a classical way to employ symmetries is by carrying out group

invariant reduction. This procedure finally results in a number of exact solutions of the original

partial differential equation. In the third part of the thesis, we use symmetries to reduce the

dynamic equations in another way, which in general does not result in new exact solutions of

the given partial differential equations, but which may instead lead to some general insights in
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prevailing physical processes of atmospheric dynamics. Symmetries are used in the course of

spectral modeling. Using the spectral method, the dependent variables of a system of partial

differential equations are expanded into series with respect to orthogonal functional bases. In

geophysical fluid dynamics, usually trigonometric functions or spherical harmonics are used as

basis functions. This expansion is subsequently plugged into the dynamic equations. Multiplying

the resulting relation with the basis functions, integrating over the given domain and using

the orthogonality properties of the basis functions, the original partial differential equations

are converted into a system of infinitely many ordinary differential equations that govern the

evolution of the series expansion coefficients. To allow for a comprehensive mathematical and

numerical treatment of the resulting problem, it is usually necessary to truncate this infinite

system by dropping all but finitely many modes. At the same time, this leads to a negligence

of various physical processes. See the textbook [77] for further details on spectral modeling.

Historically, the main motivation for low-dimensional models stems from the pre-super-

computer era, where it was difficult or even impossible to deal with the complete set of hydro-

thermodynamical equations of the atmospheric sciences. It was argued that by comparing the

results of such simplified model studies with the real state of the atmosphere, an understanding

of the importance of the neglected processes can be gained [84]. In addition to the indisputable

value of these simplified models for the atmosphere sciences, these studies also greatly stimu-

lated the theory of dynamical systems, in particular following the pioneering work on chaotic

dynamics by Edward N. Lorenz [85].

Generally speaking, there is no unique or natural criterion, which modes to retain and how to

truncate the series expansion. Indeed, a key problem in spectral modeling is to assure that the

resulting reduced model inherits some of the structural properties of the original system of partial

differential equations. Choosing a poor truncation may lead to models violating conservation

properties of the initial system, which in turn can give rise to unphysical solutions of the reduced

model. In such a case, the aim of reduced model studies is at once rendered obsolete.

In the present thesis we restrict ourselves to the investigation of very low-dimensional model,

i.e. models that only consist of up to six Fourier modes. The amount of physics in such heavily

reduced models is obviously rather small and compared to the possibilities of today’s numerical

simulations it cannot be expected to gain new physical insights from these models. We never-

theless still consider the problem of structure-preserving low-dimensional models as important.

For one reason, these models are well-suited for pedagogical purposes. There is a great amount

of papers in the atmospheric sciences, in which very low-dimensional models are used to mo-

tivate issues of data assimilation, ensemble prediction or the parameterization problem. For

these purposes, in turn, it is desirable to use reduced models that inherit some of the struc-

ture of the original system of equations, c.f. the discussion in Chapter 12. Moreover, the same

problem of finding appropriate criteria for the truncation of a series expansion also arises in all

present day’s spectral numerical weather and climate prediction models. Although these models

comprise of many more coefficients than the models discussed in this part, they can also suffer

from similar deficiencies including violation of conservation properties, wrong turbulence spectra

and wrong phase velocities of characteristic wave phenomena (such as gravity waves or Rossby

waves), leading to inaccurate or incorrect forecasts (i.e. to ”unphysical” solutions), especially in

the course of long-term integrations. Owing to these reasons, any contribution to the solution of

the truncation problem might be seen as an important preliminary stage on the route to more

consistent atmospheric numerical models.
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In the previous paragraphs we have discussed our motivation for addressing the problem

of structure-preserving low-dimensional atmospheric models. Now it remains to specify what

structures we regard as essential to be preserved. As the thesis is concerned with symmetries,

it is natural to attempt preserving symmetry properties in low-dimensional modeling. More

precisely, we use point symmetries of the original partial differential equations and investigate

their implications on the series expansion coefficients. This allows to place restrictions on the

modes that must be included in the truncated expansion.

A second structure we intend to preserve is related to conservation laws. It was mentioned in

Section 1.1.2 that conservation laws play an important role in the theory of differential equations.

As the equations of the atmospheric sciences often possess a large number of conservation laws

it is sensible to propose reduced models that inherit as many conservation laws as possible. It

happens that several of these conservation laws are associated with the specific Hamiltonian

formulation of the governing field equations. Preserving the Hamiltonian form (in particular

the Poisson bracket) in the course of the derivation of reduced models is therefore a primary

concern in the present thesis.

A Hamiltonian formulation of an atmospheric low-dimensional model always guarantees en-

ergy conservation due to antisymmetry of the Poisson bracket. On the other hand, the equations

of ideal hydro-thermodynamics also have conserved quantities related to integrals over functions

of the vorticity vector, such as the vorticity moments in two-dimensional fluid mechanics or the

helicity in three-dimensional fluid mechanics. In the Hamiltonian formulation of the equations

of fluid mechanics, these conserved quantities do not explicitly appear in the Poisson bracket

formulation in the same way as the energy does. The occurrence of multiple conserved quantities

inspired Yōichirō Nambu [104] to propose an extension of the Hamiltonian formalism that allows

to incorporate other conserved quantities besides the energy in the representation of the system.

This is done by defining multi-linear, totally antisymmetric Nambu brackets. Using the Nambu

bracket, energy and other conserved quantities enter the representation of a system on an equal

level. While originally proposed for discrete systems, the idea of Nambu was passed over to ideal

fluid mechanics. For various systems it was found that it is possible to extend the bilinear Pois-

son brackets to trilinear Nambu-like brackets. Although a theoretical foundation of this trilinear

Nambu field formulation is vastly lacking, for the application to numerical modeling it is only

the antisymmetry of a Nambu bracket that counts. Saving the trilinear Nambu bracket in the

course of spectral or finite-difference discretization in turn guarantees two conserved quantities

(usually the energy and one vorticity quantity) to be numerically preserved. The inclusion of

only one additional conserved quantity may appear to be rather restrictive, especially in view of

the infinite number of conserved quantities in two-dimensional ideal fluid mechanics. The main

problem indeed is that there exists so far no universally applicable procedure how to construct

discrete approximations of Hamiltonian field equations, c.f. the discussion in Section 12.2. On

the other hand, for very low-dimensional models as considered in the third part of the thesis,

preserving two conserved quantities is already quite enough and goes beyond various finite-mode

models in the literature. This is why we find it appropriate to derive low-dimensional models

that inherit a Nambu representation similar to those of the original field equations.

It should be kept in mind that Hamiltonian mechanics has been an increasingly wide field in

mathematical physics since several decades. It plays a key role in various areas including classical

and quantum mechanics, fluid mechanics, stability theory and perturbation analysis. Having

said that, it is important to remark that for the present purpose we only need the Hamiltonian

7



or Nambu field representation of the governing equations. That is, we are not concerned of

what can be concluded from these formulations apart from the guarantee of preserving distinct

conservative properties. Detailed information on both the theoretical foundation as well as on

applications of discrete Hamiltonian mechanics and Hamiltonian field equations can be found

in several textbooks, including [9, 10, 90, 115, 142]. In addition, all the necessary material

concerning Hamiltonian mechanics and the Nambu representation for the thesis is presented in

the introductory sections of the first and third papers in the third part (Chapters 10 and 12).

1.2 Structure of the thesis

The thesis is divided into three main parts, to which we refer as: (i) Classical symmetry analysis,

(ii) Symmetry preserving parameterization schemes and (iii) Symmetries, Nambu mechanics

and finite-mode models. Each part is composed of one or more papers that are either already

published or presently under review. In the latter case, preprints of the papers are made available

using the preprint net arXiv. For the sake of brevity, in some of the papers it was necessary to

present results concerning the classification of inequivalent subalgebras without given detailed

calculations. Two examples of these calculations can be found in the end of the first part

(Chapter 7).

The first part of the thesis is based on the following papers:

• Bihlo, A. and R.O. Popovych, 2009. Symmetry analysis of barotropic potential vorticity

equation. Commun. Theor. Phys., 52 (4), 697–700.

• Bihlo, A. and R.O. Popovych, 2009. Lie symmetries and exact solutions of the barotropic

vorticity equation. J. Math. Phys. 50 (12), 123102, 12 pp.

• Bihlo, A. and R.O. Popovych, 2010. Point symmetry group of the barotropic vorticity

equation. Submitted to the Proceedings of the Fifth workshop “Group Analysis of Differ-

ential Equations & Integrable Systems”, arXiv:1009.1523v1, 13 pp.

• Bihlo, A. and R.O. Popovych, 2010. Lie symmetry analysis and exact solutions of the

quasi-geostrophic two-layer problem, arXiv:1010.1542v1, 23 pp.

The first paper is a direct comment to two papers [59, 152] that appeared in the journal Com-

munications in Theoretical Physics. In both of these papers, the barotropic potential vorticity

equation was investigated using the classical Lie symmetry method. While in the first paper

a basis element of the maximal Lie invariance algebra is missing, in both of the papers group-

invariant reductions are carried out in a non-systematic fashion. The systematic investigation

of group-invariant reduction is based on the computation of an optimal list of inequivalent sub-

algebras, which was considered in none of these papers. In our paper, we present the optimal

lists of one- and two-dimensional subalgebras and discuss reductions of the barotropic potential

vorticity equation based on this list. This allows to greatly simplify the construction of invari-

ant solutions compared to those presented in [59, 152]. Another key result of this paper is that

it is possible to set β = 0 in the barotropic potential vorticity equation by means of a point

transformation. This means that by studying reductions using Lie symmetries, it is possible to

consider the reduced case β = 0 initially and finally obtain a solution of the equation with β 6= 0

by applying the point transformation relating these two cases. This once more simplifies the

construction of particular solutions of the barotropic potential vorticity equation.
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The second paper provides the link to our master thesis. In the master thesis, Lie symme-

tries were used to derive group-invariant solutions of the barotropic vorticity equation on the

β-plane. Group-invariant reductions were carried out using inequivalent one-dimensional subal-

gebras of the maximal Lie invariance algebra of the vorticity equation. This enabled reductions

to (1 + 1)-dimensional equations. Reductions to ordinary differential equations by means of

two-dimensional subalgebras were not considered in the master thesis and hence are the natu-

ral starting point of the present work. In the second step, we extend the investigation of the

barotropic vorticity equation to the spherical case. Different exact solutions are constructed. In

the master thesis, the famous Rossby wave solution was obtained as a group-invariant solution.

In the present work, it is shown that also the Rossby–Haurwitz wave solution on the sphere can

be realized as a group-invariant solution. Moreover, a number of partially invariant solutions are

computed for the vorticity equation on the β-plane, using the natural splitting of this equation

into a diagnostic equation for the definition of the vorticity in terms of the stream function and

the prognostic equation governing the evolution of the vorticity.

The third paper is devoted to the investigation of the complete point symmetry group of

the barotropic vorticity equation on the β-plane. This involves both Lie and discrete point

symmetries. Two different techniques are introduced that allow an a priori simplification of

the calculations that are necessary in order to determine the complete point symmetry group.

The first technique explicitly uses knowledge about the maximal Lie invariance algebra of the

given differential equation. It is different from the method proposed in [61] in that it only uses

minimal information on the automorphism group rather than computing the complete automor-

phism group. This minimal information is encoded in the set of megaideals of the maximal Lie

invariance algebra. The second technique uses information about the set of admissible trans-

formations of a normalized class of differential equations. For such classes, the point symmetry

group of any equation belonging to this class is contained in the projection of the associated

equivalence group to the space of independent and dependent variables. After either of these

techniques was applied, the usual direct method for the computation of symmetries must be

used to finally obtain the complete point symmetry group of the studied differential equation.

Finally, in the fourth paper, the classical Lie problem is solved for the baroclinic two-

layer equations. Again, Lie symmetries are computed and the optimal lists of one- and two-

dimensional inequivalent subalgebras are determined. Lie reductions are carried out on the basis

of this classification. For the reductions in one variable, the resulting differential equations are

again investigated for their symmetry properties. In cases where the reduced equations ad-

mit hidden symmetries, i.e. symmetries that are not induced by Lie symmetries of the original

differential equations, we also carry out Lie reductions to ordinary differential equations using

these hidden symmetries. This allows us to extend the set of exact solutions of the two-layer

equations that is obtainable by Lie methods. The physical significance of these exact solutions

is discussed. It is found that (baroclinic) Rossby waves provide an important class of invariant

solutions of the two-layer model. Moreover, also the complete point symmetry group of the

two-layer equations is computed, which enables the identification of discrete symmetries. For

this aim, we use the first technique described in the third paper of the thesis. We find three

independent discrete mirror symmetries. An interpretation in terms of Lie symmetries is given

for the method of reduction of linear equations by a generalized ansatz. This interpretation is

based on consideration of multiple copies of the initial equation. The method is exemplified with

a linear submodel of the two-layer equations.
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The second part of the thesis consists of the paper:

• R.O. Popovych and A. Bihlo, 2010. Symmetry preserving parameterization schemes.

arXiv:1010.3010v1, 30 pp.

In this paper, we present general paradigms for the construction of parameterization schemes

that exhibit symmetry properties. The main idea is to use techniques of inverse and direct group

classification to determine possible closure assumptions for subgrid scale terms arising in aver-

aged nonlinear differential equations. Using inverse group classification, differential invariants of

subgroups of the maximal Lie invariance group of the differential equation under consideration

are determined. By constructing the basis of differential invariants and the associated operators

of invariant differentiation, an exhaustive description of differential invariants of arbitrary order

is made available. These differential invariants can be assembled to parameterizations schemes,

yielding invariant representations of the subgrid scale terms. Using direct group classification,

first a general ansatz for the parameterizations has to be chosen. This yields a class of differential

equations for which the equivalence algebra is determined. By investigating extensions of the

kernel of Lie invariance algebras of the given class of differential equations induced by inequiv-

alent subalgebras of the equivalence algebra, different ansatzes for the unknown subgrid scale

terms can be adopted. In addition, the set of admissible transformations for the chosen class

may be computed. For classes possessing the normalization property, it is guaranteed that the

parameterizations obtained by extensions induced by the equivalence algebra exhaust the set of

all possible invariant parameterizations. The resulting closure schemes have different symmetry

properties and are still general enough to allow the incorporation of other desirable physical

attributes. Both of these general techniques are illustrated by parameterizing the eddy vorticity

flux in the Reynolds averaged barotropic vorticity equation. Distinct parameterization schemes

possessing different degrees of invariance are constructed and discussed. Although several of

these invariant parameterization schemes are obviously unphysical, we are also able to recover

ansatzes that are well-known in the atmospheric sciences.

The third part of the thesis is based on the following papers:

• Bihlo, A., 2008. Rayleigh–Bénard Convection as a Nambu–metriplectic problem. J. Phys.

A, 41 (29), 292001, 6 pp.

• Bihlo, A. and R.O. Popovych, 2010. Symmetry justification of Lorenz’ maximum simpli-

fication. Nonlin. Dyn., 61 (1), 101–107.

• Bihlo, A. and J. Staufer, 2010. Minimal atmospheric finite-mode models preserving sym-

metry and generalized Hamiltonian structures, arXiv:0909.1957v3, 18 pp.

In the first paper it is shown that the Saltzman equations governing Rayleigh–Bénard convection

can be cast into Nambu bracket form. The starting point of the discussion is the noncanonical

Hamiltonian formulation of these equations. The Casimir functionals of the noncanonical Poisson

bracket are presented. There is an infinite number of Casimir functionals that split into two

different classes. A representative of the first class of Casimir functionals can be used to extend

the Poisson bracket to a twofold antisymmetric Nambu tri-bracket. Using this bracket, the

conservative part of the convection equations is completely determined. The difference between

the Hamiltonian and a representative of the second class of Casimir functionals is used to

define the generalized free energy as introduced in [100]. Using this generalized free energy it
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is possible to define a symmetric two-bracket, which allows to formulate the dissipative part of

the convection equations. The sum of the antisymmetric tri-bracket and the symmetric two-

bracket defines the Nambu–metriplectic bracket. The dissipative Saltzman equations can then

be rewritten in a completely geometric manner using this Nambu–metriplectic bracket.

The second paper is devoted to a study of the Lorenz–1960 model. It was the aim of

Lorenz [84] to derive the maximum simplification of the atmospheric equations in a way that

the resulting system still accounts for nonlinear model interactions. He started with a Fourier

expansion of the barotropic vorticity equation on the torus and neglected all but three Fourier

modes. In the course of his derivations he made two observations that allow one to constrain

the number of modes necessary in the final model. We find that these two observations can be

interpreted from the symmetry point of view. This motivates us to re-derive the Lorenz–1960

model by a selection of modes that is based on point symmetries of the vorticity equation. We

start with the truncation of the vorticity equation to an eight component finite-mode model,

obtained by restricting the Fourier modes to take only the values −1, 0, 1, thereby setting to zero

the mean value. We use induced subgroups of the symmetry group of the vorticity equation in

the space of Fourier components to derive several low-dimensional models, possessing five, four

or three components. It is demonstrated that the three-component Lorenz–1960 model is really

the major nontrivial simplification compatible with point symmetries of the vorticity equation.

In the third paper, we investigate the relation between the Lorenz–1963 model and point

symmetries and the Nambu–metriplectic form of the Saltzman convection equations. It is shown

that the discrete Nambu form of the conservative part of the Lorenz–1963 model is not related

to the tri-bracket derived in the first paper of this part. Moreover, the selection of modes for this

model cannot be motivated using the same technique successfully applied to the Lorenz–1960

model. For this reason, we propose a new low-dimensional system that extends the Lorenz–1963

model by three additional modes. The selection of modes of this extended model is based on point

symmetries of the convection equations. It also inherits the appropriate tri-bracket structure

from the convection equations. The symmetric bracket for the dissipative six-component model

is formulated using a metric tensor. Hence it is shown that the extended Lorenz–1963 model has

a discrete Nambu–metriplectic representation and thus an analog geometric form as the original

Saltzman equations.
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Part I

Classical symmetry analysis
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Chapter 2

Symmetry analysis of barotropic

potential vorticity equation

Abstract Recently F. Huang [Commun. Theor. Phys. 42 (2004) 903] and X. Tang and P.K. Shu-

kla [Commun. Theor. Phys. 49 (2008) 229] investigated symmetry properties of the baro-

tropic potential vorticity equation without forcing and dissipation on the beta-plane. This

equation is governed by two dimensionless parameters, F and β, representing the ratio

of the characteristic length scale to the Rossby radius of deformation and the variation

of earth’ angular rotation, respectively. In the present paper it is shown that in the case

F 6= 0 there exists a well-defined point transformation to set β = 0. The classification

of one- and two-dimensional Lie subalgebras of the Lie symmetry algebra of the potential

vorticity equation is given for the parameter combination F 6= 0 and β = 0. Based upon

this classification, distinct classes of group-invariant solutions is obtained and extended to

the case β 6= 0.

2.1 Introduction

There is a long history in dynamic meteorology to use simplified models of the complete set of

hydro-thermodynamical equations to gain insides in the different processes characterising the

various structures and pattern occurring in the atmosphere. One of the most classical models

in atmospheric science is the barotropic (potential) vorticity equation. It has been successfully

used both for theoretical considerations [29, 139] and practical numerical weather predictions

[30] since it is capable of describing some prominent features of mid-latitude weather phenomena

such as the well-known Rossby waves and blocking regimes. In nondimensional form it reads [122]

∂ζ

∂t
− F ∂ψ

∂t
+ J(ψ, ζ) + β

∂ψ

∂x
= 0, ζ =

∂2ψ

∂x2
+
∂2ψ

∂y2
. (2.1)

Here ψ is the stream function, ζ the vorticity,

J(a, b) =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x

is the Jacobian and F and β represent the ratio of the characteristic length scale to the Rossby

radius of deformation and a parameter describing the variation of earth’ angular rotation, re-

spectively.
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2.2 The Lie symmetries

The symmetries of (2.1) have first been investigated in [21] and were applied to construct new

solutions from known ones. Later, they have been studied by [59] and [152], but without reference

to the group classification problem. This problem arises since different values of F and β lead to

different symmetry properties of (2.1), which in turn characterise different physical properties

of model (2.1). However, as shown in this paper, there are only three essential combinations

of the values of these two parameters, given by F = 0, β = 0; F = 0, β 6= 0 and F 6= 0. The

first combination leads to the usual vorticity form of Euler’s equation which is the issue of e.g.

[6]. This combination is of particular interest, since it gives rise to a new symmetry [13] (a

so-called potential symmetry) which is not present in the velocity form of Euler’s equation. The

second combination of parameters was discussed in [15, 63]. It is the usual barotropic vorticity

equation. The parameter β can be set to 1 by scaling and/or changing signs of variables. Note

that for both combinations the associated Lie invariance algebras are infinite dimensional.

Now we show that if F 6= 0, we can always set β = 0. (Then the nonvanishing parameter F

can be scaled to ±1.) For this purpose, we recompute the symmetries of (2.1) for the case

F 6= 0 and β arbitrary. This is done upon using the computer algebra packages MuLie [51] and

DESOLV [28]. For this combination, equation (2.1) admits the six-dimensional Lie symmetry

algebra aβ generated by the operators

D = t∂t −
β

F
t∂x −

(
ψ − β

F
y

)
∂ψ, vr = −y∂x +

(
x+

β

F
t

)(
∂y +

β

F
∂ψ

)
,

vt = ∂t, vx = ∂x, vy = ∂y, vψ = ∂ψ.

(2.2)

This algebra is not singular in β and consequently it also includes the case β = 0. Moreover,

computing the symmetries for the case β = 0 explicitly, we obtain the same algebra (2.2) with

β = 0. Hence

D = t∂t − ψ∂ψ, vr = −y∂x + x∂y,

vt = ∂t, vx = ∂x, vy = ∂y, vψ = ∂ψ,
(2.3)

are the generators of the Lie symmetry algebra a0. The physical importance of these generators

is the following: D generates simultaneous scaling in t and ψ, vr is the rotation operator in the

(x, y)-plane, vt, vx, vy and vψ are the infinitesimal generators of translations in t, x, y and ψ,

respectively. The nonzero commutation relations between basis elements (2.3) are exhausted by

[vt,D] = vt, [vψ,D] = −vψ, [vx,vr] = vy, [vy,vr] = −vx.

Therefore, the algebra a0 has a simple structure. It is a solvable Lie algebra and can be rep-

resented as the direct sum g−1
3.4 ⊕ e(2), where e(2) = 〈vx,vy,vr〉 is the Euclidean algebra in

the (x, y)-plane and g−1
3.4 = 〈vt,vψ,D〉 is a three-dimensional almost Abelian Lie algebra from

Mubarakzyanov’s classification of low dimensional Lie algebras [103].

It is straightforward to show that the Lie algebra (2.2) maps to the Lie algebra (2.3) under

the transformation given by

t̃ = t, x̃ = x+
β

F
t, ỹ = y, ψ̃ = ψ − β

F
y. (2.4)

This transformation also maps (2.1) to the same equation with β = 0. That is, (2.4) is an

equivalence transformation for the class of equations of the form (2.1) with F 6= 0. Hence the
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β-term can be neglected under symmetry analysis. Every solution of the equation with β = 0

can be extended to a solution with β 6= 0 by means of the transformation (2.4).

We also note that the maximal (infinite dimensional) Lie symmetry algebras in the cases

F = 0, β = 0 and F = 0, β 6= 0 are neither isomorphic to each other nor isomorphic to the

(finite dimensional) algebra a0. Consequently, it is not possible to find point transformations that

relate the corresponding PDEs to each other. All the transformations used for the reductions of

the parameters F and β belong to the equivalence group of class (2.1). The group classification

list for class (2.1) is therefore exhausted by the three inequivalent cases F = 0, β = 0; F = 0,

β = 1 and F = ±1, β = 0.

2.3 Classification of subalgebras

Classification of subgroups of Lie symmetry groups of differential equations is an essential part

in the study of these equations. This is since classification allows for an efficient computation of

group-invariant solutions, without the possibility of an occurrence of equivalent solutions. Clas-

sifying subgroups may further lead to the construction of simple ansätze for the corresponding

equivalence classes of reduced differential equations. Thereby, the classification also provides an

important step for further investigations of properties of these reduced equations.

The classification of subgroups of symmetry groups is usually done by the classification of the

associated Lie subalgebras with respect to the adjoint representation [115, 118]. The potential

vorticity equation (2.1) is a (2+1) model and thus Lie reductions up to an ordinary differential

equations require the classification of one- and two-dimensional subalgebras. An exhaustive

classification of subalgebras exists only for Lie algebras up to dimension four [121]. Thus we

need to classify subalgebras of a0. This problem is not difficult because the algebra a0 has a

simple solvable structure.

The adjoint representation of a Lie group on it’s Lie algebra is given as the Lie series

w(ε) = Ad(eεv)w0 :=

∞∑
n=0

εn

n!
{vn,w0}, (2.5)

with {·, ·} being defined recursively:

{v0,w0} := w0, {vn,w0} := (−1)n[v, {vn−1,w0}].

Alternatively, the adjoint representation can also be calculated by integrating the initial value

problem

dw(ε)

dε
= [w(ε),v], w(0) = w0.

For basis elements (2.3) of the algebra a0 we obtain the following nontrivial adjoint actions

Ad(eεvt)D = D − εvt, Ad(eεvψ)D = D + εvψ,

Ad(eεD)vt = eεvt, Ad(eεD)vψ = e−εvψ,

Ad(eεvx)vr = vr − εvy, Ad(eεvy)vr = vr + εvx,

Ad(eεvr)vx = vx cos ε+ vy sin ε, Ad(eεvr)vy = − vx sin ε+ vy cos ε.
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2.3.1 One-dimensional subalgebras

The classification of one-dimensional subalgebras of the whole symmetry algebra (2.3) is done

by an inductive approach [115]: We start with the most general infinitesimal generator,

v = a1D + a2vr + a3vt + a4vx + a5vy + a6vψ,

and simplify it as much as possible by means of adjoint actions. Depending on the respective

values of the coefficients ai, i = 1, . . . , 6, we find the following list of inequivalent one-dimensional

subalgebras of (2.3):

1. a1 6= 0, a2 6= 0:

〈D + avr〉.

2. a1 6= 0, a2 = 0, (a4, a5) 6= (0, 0) :

〈D + avx〉.

3. a1 = 0, a2 6= 0, a3 6= 0:

〈vr ± vt + avψ〉.

4. a1 = a3 = 0, a2 6= 0:

〈vr + cvψ〉.

5. a1 = a2 = 0, a3 6= 0, (a4, a5) 6= (0, 0) :

〈vt + avx + cvψ〉.

6. a1 = a2 = a3 = 0, (a4, a5) 6= (0, 0) :

〈vx + cvψ〉.

7. a1 = a2 = a3 = a4 = a5 = 0:

〈vψ〉.

(2.6)

where c ∈ {−1, 0, 1} and a, ai ∈ R. In case 5 we can additionally set a ∈ {−1, 0, 1} if c = 0.

2.3.2 Two-dimensional subalgebras

The classification procedure of two-dimensional subalgebras follows in essential the same way as

the one-dimensional case. The two most general linearly independent infinitesimal generators

v1 = a1
1D + a1

2vr + a1
3vt + a1

4vx + a1
5vy + a1

6vψ,

v2 = a2
1D + a2

2vr + a2
3vt + a2

4vx + a2
5vy + a2

6vψ,

are simultaneously subjected to the adjoint actions and nonsingular linear combining under

some assumptions on the coefficients aji , i = 1, . . . , 6, j = 1, 2. Moreover, the required closure

property of the subalgebra 〈v1,v2〉 with respect to the Lie bracket (i.e. [v1,v2] ∈ 〈v1,v2〉)
eventually places further restrictions on the coefficients. By applying this technique, we find a

set of inequivalent two-dimensional subalgebras of (2.3). For reason of brevity, we only list the

subalgebras without the corresponding conditions on the respective coefficients aji :

〈D,vr〉, 〈D + avr,vt〉, 〈D + avx,vt〉, 〈D + avx,vy〉,

〈D + avr,vψ〉, 〈D + avx,vψ〉, 〈vr + cvψ,vt + bvψ〉, 〈vr + cvt,vψ〉,

〈vt + avx + cvψ,vy + bvψ〉, 〈vt + avx,vψ〉, 〈vx + cvψ,vy + bvψ〉, 〈vx,vψ〉,

(2.7)

16



where c ∈ {−1, 0, 1} and a, b ∈ R. Moreover, in the case c = 0 we can scale the coefficient b

to obtain b ∈ {−1, 0, 1}. Additionally, if c = b = 0 in the ninth subalgebra then we can set

a ∈ {−1, 0, 1}.

2.4 Group-invariant solutions

Selected group-invariant solutions of (2.1) have been studied in [59] but without reference to

classes of inequivalent subalgebras and without noting that it is possible to set β = 0. Con-

sequently, some of the ansätze presented in [59], which lead to a reduction of the number of

independent variables of (2.1), are overly intricate. More precisely, they could be realised by

means of considering reduction using one of the inequivalent subalgebras (2.6) or (2.7) and

subsequently acting on the resulting invariant solutions by finite symmetry transformations.

We investigate potentially interesting group-invariant reductions upon using ansätze that are

based on the above classification of subalgebras. If possible, we relate them to the solutions

given in [59].

2.4.1 Reductions with one-dimensional subalgebras

Here we give the complete list of reduced equations of (2.1) with the parameters F 6= 0, β =

0 based on the classification of inequivalent subalgebras (2.6). In what follows v and w are

functions of p and q.

1. 〈D + avr〉. Suitable invariants of this subalgebra for reduction are

p = x cos(a ln t) + y sin(a ln t), q = −x sin(a ln t) + y cos(a ln t), v = tψ.

Using them as new variables, the vorticity equation (2.1) is reduced to:

w − a(qwp − pwq)− F (v − a(qvp − pvq)) + vqwp − vpwq = 0, w = vpp + vqq.

2. 〈D + avx〉. Invariants of this subalgebra are

p = x− a ln t, q = y, v = tψ,

which reduce (2.1) to

w + awp − F (v + avp)− vpwq + vqwp = 0, w = vpp + vqq.

3. 〈vr ± vt + avψ〉. Defining ε = ±1, we find the following invariants:

p = x cos εt+ y sin εt, q = −x sin εt+ y cos εt, v = ψ − εat.

In these variables, (2.1) reads

ε(qwp − pwq)− εF (qvp − pvq + a) + vpwq − vqwp = 0, w = vpp + vqq.

4. 〈vr + cvψ〉. Here we have the invariants

p =
√
x2 + y2, q = t, v = ψ + c arctan

x

y
.
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This gives the same ansatz as was used in [59] (Case 2) upon additionally applying transformation

(2.4). The corresponding reduced equation reads

wq − Fvq −
c

p
wp = 0, w = vpp +

1

p
vp.

5. 〈vt + avx + cvψ〉. Invariants of this subalgebra are

p = x− at, q = y, v = ψ − ct.

This is an ansatz for a traveling wave solution in x-direction, which includes the well-known

Rossby waves. In [59] a similar ansatz was combined with a traveling wave ansatz also in y-

direction (Case 3). However, as was indicated above, the additional consideration of waves in

y-direction is not necessary at this stage of reduction. The equation corresponding to the above

ansatz is

awp − F (avp − c)− vpwq + vqwp = 0, w = vpp + vqq.

6. 〈vx + cvψ〉. A suitable ansatz for the invariants of this subalgebra is provided by

p = x, q = y, v = ψ − ct.

In this case (2.1) is reduced to

Fc− vpwq + vqwp = 0, w = vpp + vqq.

7. 〈vψ〉. It is not possible to make an ansatz for ψ for this subalgebra in the framework of the

classical Lie approach. Hence, no reduction can be achieved through the gauging operator vψ.

2.4.2 Reductions with two-dimensional subalgebras

To give also an example for a reduction using a two-dimensional subalgebra, let us consider the

algebra 〈vt + avx + cvψ,vy + bvψ〉. In what follows v is a function of p. The invariants of this

algebra are

p = x− at, v = ψ − by − c

a
x, (2.8)

provided that a 6= 0. The corresponding reduced ODE of (2.1) then reads

(a+ b)vppp − Favp = 0,

with the general solution

v = v1 exp

(√
Fa

a+ b
p

)
+ v2 exp

(
−
√

Fa

a+ b
p

)
+ v3,

where vi = const, i = 1, 2, 3. Transforming back to the original variables, renaming the constants

vi and applying the transformation (2.4), we obtain the invariant solution

ψ = ψ3 +

(
b+

β

F

)
y +

c

a

(
x+

β

F
t

)
+ ψ1 exp

(√
Fa

a+ b

(
x+

β

F
t− at

))
+
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ψ2 exp

(
−
√

Fa

a+ b

(
x+

β

F
t− at

))

which for Fa/(a+ b) < 0 gives rise to a travelling wave solution.

For the singular case a = 0, we cannot use ansatz (2.8). Instead, we have the ansatz

p = x, v = ψ − ct− by,

and the reduced vorticity equation reads

Fc+ bvppp = 0,

which gives rise to a polynomial solution in the case b 6= 0. If b = 0, we get the condition that

c = 0 and the ansatz ψ = v(x) itself is the solution of (2.1).

2.5 Summary and further comments

In the sections above, we discussed distinct cases of reduction by using inequivalent Lie subal-

gebras. The main advantages of this systematic approach are the following:

• Simplification of equation (2.1) since we only have to consider the case F 6= 0, β = 0.

• Considering a minimal number of essential Lie subalgebras for reduction.

• Simplifying the ansatz for the reduced equations.

• Optimal preparation of the reduced equations for further investigations.

Upon using this approach, we have discussed all possible reductions by means of one-dimensional

Lie subalgebras. We have to note that it is not possible to use the subalgebra 〈vψ〉 for obtaining

group-invariant solutions, since in this case there is no way to make an ansatz for ψ. In principle,

the remaining two-dimensional Lie subalgebras can be used for reduction as well.

Moreover, the differential equations obtained by reduction could again be investigated by

means of symmetry techniques. In general, some of the symmetries of these reduced equations

will be induced by the symmetries of the original equation. However, sometimes there may be

additional symmetries that are not induced in this way [67, 115] and which are called hidden

symmetries [1]. They usually play an important role in the study of differential equations, as

they may allow to reduce equations further than initially expected.

We may also note that it is still possible to generalise some of the results of this paper.

By considering eqn. (2.1) as a system of two PDEs in the two dependent variables ψ and ζ,

it is possible to construct partially invariant solutions [118]. For this class of exact solutions,

one needs at least two dependent variables. For the first set of these dependent variables, it is

possible to introduce new invariant variables, for the second set we keep the old noninvariant

variables. The resulting reduced equations then also split in two sets of equations which have

to be solved one after another. For this purpose, we could e.g. use subalgebras containing the

operator vψ. In this case, it is still not possible to make an ansatz for ψ but it is possible to do

so for ζ. The resulting reduced system of differential equations may give rise to a much wider

class of exact solutions than pure group-invariant solutions. An investigation of this class of

solutions for the case F = 0, β 6= 0 will be given elsewhere.
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Chapter 3

Lie symmetries and exact solutions

of the barotropic vorticity equation

Abstract Lie group methods are used for the study of various issues related to symmetries and

exact solutions of the barotropic vorticity equation. The Lie symmetries of the barotropic

vorticity equations on the f - and β-planes, as well as on the sphere in rotating and rest

reference frames, are determined. A symmetry background for reducing the rotating ref-

erence frame to the rest frame is presented. The one- and two-dimensional inequivalent

subalgebras of the Lie invariance algebras of both equations are exhaustively classified

and then used to compute invariant solutions of the vorticity equations. This provides

large classes of exact solutions, which include both Rossby and Rossby–Haurwitz waves

as special cases. We also discuss the possibility of partial invariance for the β-plane equa-

tion, thereby further extending the family of its exact solutions. This is done in a more

systematic and complete way than previously available in literature.

3.1 Introduction

The governing equations of geophysical fluid dynamics are mainly nonlinear partial differential

equations (PDE). Since there is no general theory available for solving such equations, it is

known to be very difficult to systematically construct their exact solutions. In meteorology, this

problem is usually overcome by solving the governing equations numerically. However, as models

become more sophisticated, it may be difficult to directly evaluate the quality of these numerical

results. Moreover, it is dissatisfactory to rely solely on numerical modeling when studying the

physics of the atmosphere. It is thus to be expected that exact solutions can both enhance our

understanding of atmospheric processes and provide consistency tests for numerical models.

The classical method of reduction of PDEs by using its Lie symmetries [115, 118] and the

extension to partially invariant solutions [118] provides a manageable way to systematically

construct exact solutions. It is the goal of this paper to carry out a comprehensive symmetry

investigation of the barotropic vorticity equation both on the β-plane and on the sphere. Al-

though there are already a number of works on the β-plane equation [15, 21, 60, 63, 68, 69],

none of them gives a systematic and complete symmetry analysis. In Ref. [15] the classification

of inequivalent subalgebras is done only for the one-dimensional case. The symmetry properties

were used in Ref. [21] in order to obtain new solutions from the known ones. In a recent paper

[60], the procedure of group-invariant reduction is done without reference to the algebraic as-
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pects of the classification problem. Consequently, some of the reductions presented in Ref. [60]

are overly complicated, and hence in some cases, these authors were only able to obtain some

particular solutions (most notably of the well-known Rossby wave class). This reveals that the

vorticity equation has classes of completely integrable reduced PDEs, as shown in the present

paper. Finally, Refs. [68, 69] (see also Ref. [63, pp. 221–225]) also contain only a nonsystematic

list of some group-invariant solutions. To the best of our knowledge, the spherical equation has

not been investigated in light of its symmetries at all so far.

We divide this paper into two main parts: the first dealing with the symmetry analysis

of the equation on the β-plane and the second considering the spherical version. For both

equations, we determine the maximal Lie invariance algebras and classify their one- and two-

dimensional subalgebras. Based on this classification, we give a complete list of group-invariant

reduced equations and then demonstrate that Rossby (Rossby–Haurwitz) waves can be realized

as group-invariant solutions of the barotropic vorticity equation on the plane (the sphere). Also,

by means of algebraic inspection of the Lie symmetry algebras, it is shown that for the spherical

equation there is no need to consider rotation of the Earth. Finally, some examples for partially

invariant solutions will be given for the β-plane equation.

3.2 The β-plane equation

This section contains the classical symmetry analysis of the barotropic vorticity equation on the

β-plane (βBVE).

3.2.1 The model

Assuming the two-dimensional velocity field v to be nondivergent, it is possible to cast the Euler

equations of an ideal fluid in a rotating reference frame as the conservation law of absolute

vorticity η = ζ + f , where ζ = k · (∇ × v) is the vertical component of the vorticity vector

(relative vorticity) and f denotes the vertical Coriolis parameter, which depends only on y. In

what follows, we approximate f by its truncated Taylor series, f = f0 + df/dy|0 y =: f0 + βy,

which leads to the β-plane approximation [57]. The Euler equations can then be equivalently

written as the βBVE

ζt + ψxζy − ψyζx + βψx = 0, (3.1)

where we have used the shorthand notation ζt = ∂ζ/∂t, etc. The stream function ψ = ψ(t, x, y)

generates a nondivergent flow. It is related to the vorticity by means of the Laplacian,

ζ := ψxx + ψyy.

Rescaling allows us to set β = 1, but for physical reasons this is not desired here.

3.2.2 The symmetries

The barotropic vorticity equation can be considered as a submodel of the ideal Euler equations,

which have been thoroughly investigated in light of their symmetries (see, e.g., Refs. [6, 126]).

Nevertheless, it is instructive to consider the symmetries of the barotropic vorticity equation

separately to work out the peculiarities of large scale, two-dimensional fluid dynamics. It is

quite common for different models of incompressible fluids that they admit infinite dimensional
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maximal Lie invariance algebras of a special structure. Techniques for handling such infinite-

dimensional Lie algebras in order to solve hydrodynamic equations are given, e.g., in Ref. [41].

To the best of our knowledge, the symmetry algebra of the barotropic vorticity equation in the

regular case β 6= 0, as well as some exact solutions, was first computed in Refs. [68, 69] (see also

Refs. [21, 63]). The fact that the singular case β = 0 admits nontrivial symmetries has been

known for a long time [13]. The corresponding maximal Lie symmetry algebra was rigorously

calculated in Ref. [7] (see also Ref. [6]). It is significantly larger than for the regular case of β.

We recomputed the symmetry algebras for our purposes and checked them with the computer

algebra programs MuLie [51] and DESOLV [28]. In the singular case β = 0 corresponding to

dynamics on the f -plane, the vorticity equation admits the infinite dimensional Lie symmetry

algebra B∞0 with the basis generators

D1 = t∂t − ψ∂ψ D2 = 2ψ∂ψ + x∂x + y∂y

J = −y∂x + x∂y Jt = −ty∂x + tx∂y + 1
2(x2 + y2)∂ψ

∂t Z(g) = g(t)∂ψ

X (f) = f(t)∂x − f ′(t)y∂ψ Y(h) = h(t)∂y + h′(t)x∂ψ

where h, f and g run through the set of real-valued time-dependent functions. The shorthand

notation for partial derivatives, e.g., ∂t = ∂/∂t is used. The physical significance of these gen-

erators is as follows: D1 and D2 are scaling operators, ∂t generates time translations, and J and

Jt correspond to rotations and time-dependent rotations in the horizontal plane. The operators

Y(h) and X (f) are the infinitesimals of generalized transformations on a time-dependent mov-

ing coordinate system in the y- and x-directions, respectively. The generator Z(g) represents

gauging the stream function.

Likewise, in the case β 6= 0, eqn. (3.1) admits an infinite-dimensional Lie symmetry algebra

B∞1 , which is a subalgebra of B∞0 . The basis generators of B∞1 are

D = D1 −D2 = t∂t − x∂x − y∂y − 3ψ∂ψ, ∂t, Y(1) = ∂y, X (f), Z(g).

The physical importance of this algebra is obvious from the β = 0 case. As shown in the next

section, this remarkable difference between the cases of vanishing and nonvanishing β has no

counterpart in spherical coordinates.

For the sake of completeness, we mention that the vorticity equation admits the discrete sym-

metries (t, x, y, ψ) 7→ (−t,−x, y, ψ) and (t, x, y, ψ) 7→ (t, x,−y,−ψ) as well as their composition

and their compositions with continuous symmetries.

3.2.3 Classification of subalgebras

For an efficient and systematic computation of invariant solutions of PDEs, it is crucial to classify

their Lie symmetry subalgebras. This is done upon using the adjoint action of a Lie group on its

Lie algebra, which allows to determine the simplest representatives of equivalent subalgebras.

The adjoint action of exp(εv) on w0 is defined as the Lie series,

w(ε) = Ad(exp(εv))w0 :=
∞∑
n=0

εn

n!
{vn,w0},

where we introduced a shorthand notation for nested commutators: {v0,w0} := w0, {vn,w0} :=

(−1)n[v, {vn−1,w0}]. Alternatively, the adjoint representation can also be calculated by inte-
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grating the initial value problem

dw(ε)

dε
= [w(ε),v], w(0) = w0.

The nonidentical adjoint actions with basis elements of the algebra B∞1 are exhausted by the

following list:

Ad(eε∂t)D = D − ε∂t Ad(eεX (f))D = D + εX (tf ′ + f)

Ad(eε∂y)D = D + ε∂y Ad(eεZ(g))D = D + εZ(tg′ + 3g)

Ad(eεD)∂t = eε∂t Ad(eεZ(g))∂t = ∂t + εZ(g′)

Ad(eεD)∂y = e−ε∂y Ad(eεX (f))∂t = ∂t + εX (f ′)

Ad(eεX (f))∂y = ∂y − εZ(f ′) Ad(eε∂y)X (f) = X (f) + εZ(f ′)

Ad(eεD)X (f) = X (f̃), f̃ = e−εf(e−εt) Ad(eε∂t)X (f) = X (f̃), f̃ = f(t− ε)
Ad(eεD)Z(g) = Z(g̃), g̃ = e−3εg(e−εt) Ad(eε∂t)Z(g) = Z(g̃), g̃ = g(t− ε).

They are used subsequently to classify the one- and two-dimensional subalgebras of B∞1 .

The approach to the classification of one-dimensional subalgebras is fairly inductive: one takes

the most general form of an infinitesimal generator of B∞1 , v = aDD+at∂t+ay∂y+X (f)+Z(g),

and subsequently tries to simplify it using adjoint actions and scaling by a nonvanishing constant

multiplier [115]. This is done under additional assumptions on the constants aD, at, and ay and

the functions f(t) and g(t). Finally, the optimal set of conjugacy inequivalent one-dimensional

subalgebras of B∞1 reads

〈D〉, 〈∂t + b∂y〉, 〈∂y + X (f)〉, 〈X (f) + Z(g)〉, (3.2)

where b ∈ {−1, 0, 1}. By means of using the discrete symmetry (t, x, y, ψ) 7→ (t, x,−y,−ψ) we

can further assume b ∈ {0, 1}. Moreover, due to adjoint actions, there are additional equivalences

inside the third and fourth cases. In the third case, we can apply the adjoint actions Ad(eεD) to

rescale the argument t and the function f and Ad(eε∂t) to shift the argument t of the function f ,

respectively. In the fourth class, the additional equivalences are generated by Ad(eε∂t), Ad(eεD),

Ad(eε∂y) and scaling the basis elements. So, the subalgebras 〈X (f) +Z(g)〉 and 〈X (f̃) +Z(g̃)〉
are equivalent if and only if f̃(t) = af(eε2t+ ε1), g̃(t) = ag(eε2t+ ε1) + ε3f

′(eε2t+ ε1) for some

constants ε1, ε2, ε3, and a, where a 6= 0.

The procedure for the classification of two-dimensional subalgebras is quite the same as in the

one-dimensional case: one takes the most general form of two (linearly independent) infinitesimal

generators vi = aiDD+ait∂t+aiy∂y +X (f i)+Z(gi) with i = 1, 2 and tries to simultaneously cast

them in a simpler form. This can be done by taking their nondegenerate linear combinations

and acting on them by adjoint actions under different assumptions on the constants aiD, ait, and

aiy and/or functions f i and gi. Since the generators vi form a subalgebra, one additionally has

to ensure that the commutator of v1 and v2 lies in their span. This places further restrictions

on both the constants aiD, ait, and aiy and on the functions f i(t), gi(t).

Since the classification of two-dimensional subalgebras is somewhat lengthy, we only give the

final result here. The list of inequivalent algebras reads

〈D, ∂t〉 , 〈D, ∂y + X (a)〉 ,
〈
D, X (|t|a) + cZ(|t|a−2)

〉
,
〈
D, Z(|t|a−2)

〉
,

〈∂t, ∂y + X (a) + Z(b)〉 ,
〈
∂t + b∂y, X (eat) + Z((abt+ c)eat)

〉
,
〈
∂t + b∂y, Z(eat)

〉
,

23



〈
∂y + X (f1), X (1) + Z(g2)

〉
,
〈
∂y + X (f1), Z(g2)

〉
,〈

X (f1) + Z(g1), X (f2) + Z(g2)
〉
,

where f i = f i(t) and gi = gi(t), i = 1, 2, are arbitrary smooth functions and a, b and c

are constants. In the last subalgebra, the pairs of functions (f1, g1) and (f2, g2) have to be

linearly independent. Again, within of the above classes there are additional equivalences due

to adjoint actions and changes of the basis. In particular, we can set additional restrictions

for constants only in the fifth, sixth and seventh subalgebras: b ∈ {−1, 0, 1} (resp. b ∈ {0, 1} if

discrete symmetries also are taken into account) in all these subalgebras; in the sixth and seventh

subalgebras also a ∈ {−1, 0, 1} (resp. a ∈ {0, 1}) if b = 0; c = 0 if a 6= 0 and c ∈ {−1, 0, 1} (resp.

c ∈ {0, 1}) if a = b = 0.

Computing a complete set of inequivalent group-invariant solutions is based on the above

classification of subalgebras.

3.2.4 Group-invariant reduction with one-dimensional subalgebras

In what follows, we give the list of reduced equations obtained by imposing invariance under the

one-parameter groups associated with the Lie algebras (3.2). In all four cases, p and q denote

the new independent variables, while v = v(p, q) is the new dependent variable. In the last case,

an ansatz for ψ exists only for the values of t, where f 6= 0.

1 〈D〉 ψ = t−3v p = tx, q = ty

−w + pwp + qwq + vpwq − vqwp + βvp = 0, w := vpp + vqq

2 〈∂t + b∂y〉 ψ = v p = x, q = y − bt

−bwq + vpwq − vqwp + βvp = 0, w := vpp + vqq

3 〈∂y + X (f)〉 ψ = v − 1
2f
′y2 p = x− fy, q = t

(1 + f2)wq + 2ff ′w + βvp − f ′′ = 0, w := vpp

4 〈X (f) + Z(g)〉 ψ = v − f ′

f xy + g
f x p = y, q = t

wq +
(
g
f −

f ′

f p
)
wp + β

(
g
f −

f ′

f p
)

= 0, w := vpp

We now discuss some properties and/or explicit solutions derived from the different cases

considered above.

Case 1. The reduced equation admits the maximal Lie invariance algebra 〈∂p + q∂v, ∂v〉. The

basis operators ∂p + q∂v and ∂v are induced by the operators X (t−1) and Z(t−3) from B∞1 ,

respectively. Hence, there are no hidden symmetries related to this reduction.

Case 2. The reduced equation admits the maximal Lie invariance algebra 〈∂p, ∂q, ∂v〉 or 〈p∂p +

q∂q+3v∂v, ∂p, ∂q, ∂v〉 if b = 1 or b = 0, respectively. Any operator from this algebra is obviously

induced by an operator from B∞1 . For the basis operators, we have the following correspondence:

∂p ← X (1), ∂q ← ∂y, ∂v ← Z(1), p∂p + q∂q + 3v∂v ← −D. Again, we have no related hidden

symmetries.

As a result, further Lie reductions in both of the above cases give no new solutions in com-

parison to Lie reduction with respect to two-dimensional subalgebras.
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Case 3 admits an exhaustive description for its general solution. Integrating once with respect

to p and using a change of coordinates yields

ṽp̃q̃ + βṽ = 0, (3.3)

where

ṽ =
v

1 + f2
− f ′′

β
p+

h

β
+

((1 + f2)f ′′)′

β2
, q̃ =

∫
dq

1 + f2
, p̃ = p,

and h = h(q) is an arbitrary smooth function of q = t. Eqn. (3.3) is the one-dimensional Klein–

Gordon equation (presented in the light-cone variables). For a list of exact solutions of this

equation see, e.g. [125]. It is straightforward to recover the famous Rossby wave solution upon

using a harmonic ansatz for ṽ and choosing either f = 0 (one-dimensional Rossby waves) or

f = const (two-dimensional Rossby waves) [15].

Case 4 is completely integrable by quadratures. First, we determine w by solving the char-

acteristic system. Afterwards, we integrate twice with respect to p to determine v. Finally,

substituting the expression so obtained for v into the ansatz for ψ, we arrive at the correspond-

ing group-invariant solution

ψ =
1

f2
F (θ)− 1

6
βy3 + h1y + h0 − f ′

f
xy +

g

f
x,

where f , g, h1, and h0 are arbitrary smooth functions of t, F is an arbitrary smooth function

of θ = fy−
∫
g dt. The functions h1 and h0 can be set equal to 0 by symmetry transformations

generated by an operator of the form X (f) + Z(g).

3.2.5 Group-invariant reduction with two-dimensional subalgebras

Having considered reduction with one-dimensional subalgebras, it is not overly difficult to in-

vestigate reduction with two-dimensional subalgebras as well. Namely, the general solutions

of cases 3 and 4 from section 3.2.4 are completely described. That is, it is not necessary to

consider reduction with two-dimensional subalgebras containing the generators ∂y + X (f) and

X (f) + Z(g). Moreover, since all algebras containing Z(g) cannot be used for a classical Lie

reduction, the number of cases that need to be examined reduces to:

1 〈D, ∂t〉 ψ =
√

(x2 + y2)3 v(ϕ) ϕ = arctan y
x

v(w + β sinϕ)ϕ − 1
3vϕ(w + β sinϕ) = 0, w := vϕϕ + 9v

The first of the above equations implies the following functional relation between w and v:

w + β sinϕ = c0v
1
3 . If c0 = 0, the second equation can be easily integrated with respect to v.

This leads to the invariant solution

ψ = c1(x2 − 3y2)x+ c2(3x2 − y2)y − β

8
(x2 + y2)y

of (3.1). In the case c0 6= 0, we find particular solutions of the second equation which give rise

to the invariant solutions

ψ =
β

2
(x2 + y2)

3
2 sin3

(
1

3
arctan

y

x

)
, ψ = −β

2
(x2 + y2)

3
2 sin3

(
1

3
arctan

y

x
± π

3

)
.
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3.2.6 Partially invariant solutions

For a system with at least two dependent variables, it is possible to determine partially invariant

solutions [118]. The construction of partially invariant solutions has already been extensively

considered in hydrodynamics [6, 47, 52, 96, 126]. In this part, we compute some partially

invariant solutions for the βBVE. First of all, it is noted that any single equation can be split

into a system of multiple equations in various ways introducing a new dependent variable for

each additional equation desired. We consider the βBVE as the system of two PDEs

ζt + ψxζy − ψyζx + βψx = 0, ζ = ψxx + ψyy, (3.4)

where both ψ and ζ are treated as dependent variables. The splitting of eqn. (3.1) into system

(3.4) is quite natural since both ψ and ζ have an obvious physical importance. Of course, it

is not unique. Another natural splitting is given by the system in terms of the usual velocity

variables together with the condition of vanishing divergence. However, here we will not pursue

any other splittings further.

It is an important property of the chosen splitting that the maximal Lie invariance algebra

B∞1s of (3.4) is isomorphic to the algebra B∞1 . More precisely, every operator from B∞1s is a

prolongation of an operator from B∞1 . This is why for the construction of partially invariant

solutions we can use the lists of subalgebras obtained above.

As an example for a partially invariant solution, we use the subalgebra 〈X (1),Z(g)〉. Due

to the generator Z(g), we cannot make an ansatz for ψ. However, we can make an ansatz for

ζ and because of the generator ∂x, we have ψ = ψ(t, x, y) and ζ = ζ(t, y). Therefore, (3.4) is

reduced to ζt + ψx(ζy + β) = 0, ζ = ψxx + ψyy. Introducing the absolute vorticity η = ζ + βy

and setting ψ = Ψ(t, x, y) + ζ̃(t, y) with ζ̃yy = ζ, we find ηt + Ψxηy = 0, and Ψxx + Ψyy = 0. If

ηy = 0, we have ηt = 0 and, consequently, η = const. The stream function constructed in this

way then reads as

ψ = Ψ− 1

6
βy3 +

1

2
ηy2

where Ψ(t, x, y) is an arbitrary solution of the Laplace equation Ψxx + Ψyy = 0.

In case ηy 6= 0, we find that the stream function has the form

ψ =
1

(g1)2
F (ω)− 1

6
βy3 − g1

t y + g0
t

g1
x+ f1y + f0,

where ω = g1y + g0 and g1, g0, f1, and f0 are functions of t.

To present one more example of a partially invariant solution, we take the subalgebra

〈∂y,Z(g)〉. Similar to the previous case, we now have ζ = ζ(t, x) and ψ = ψ(t, x, y). Then,

(3.4) is reduced to ζt − ψyζx + βψx = 0 and ζ = ψxx + ψyy. Introducing ψ = φ(t, x, y) + σ(t, x),

σxx = ζ, this set of equations yields

φxx + φyy = 0, σxxt − σxxxφy + β(φx + σx) = 0. (3.5)

We now have to distinguish different cases for the integration of this system.

1. σxxx = 0. In this instance, the solution for the stream function reads as

ψ = − 1

β
(2χ1

tx+ χ2) + χ1y2 + χ3y,
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where χ1, χ2 and χ3 are smooth functions of t. The functions χ2 and χ3 can be set equal to 0

by symmetry transformations generated by an operator of the form X (f) + Z(g).

2. σxxx 6= 0. We set φ = H − β−1σxt − σ and substitute into the second equation of (3.5),

which yields a characteristic system for H. Solving this system, we find that H = H(t, η), where

η = σxx + βy is again the absolute vorticity. From the first equation of (3.5), we then derive

Hηη((σxxx)2 + β2) +Hησxxxy −
σxxxt
β
− σxx = 0. (3.6)

If we fix x in the above equation, we can write h2(t)Hηη + h1(t)Hη + h0(t) = 0. We now have to

distinguish whether there are two independent equations of this type or only one.

In case of two equations we have Hηη = 0 and consequently H = α(t)η + γ(t). Substituting

this into (3.6), solving the resulting PDE and transforming back to the original variables, we find

ψ = Σ(t, x)+α(t)βy, αΣxx−β−1Σxt+β−1δ(t)−Σ = 0. By means of symmetry transformations

generated by X (f) and Z(g) we can set α = δ = 0 and again arrive at the Klein-Gordon

equation. This illustrates the fact that in some cases the ansatz for a partially invariant solution

effectively reduces to a usual group-invariant reduction.

If we only have one independent equation in H, h2 6= 0, and the equation

Hηη((σxxx)2 + β2) +Hησxxxx −
σxxxt
β
− σxx = λ(h2(t)Hηη + h1(t)Hη + h0(t)),

where λ = λ(t, x), holds identically in H. Splitting this equation with respect to H leads to the

three equations

(σxxx)2 + β2 = λh2, σxxxx = λh1, −β−1σxxxt − σxx = λh0.

Since h2 6= 0, we can express λ from the first equation. Provided that h1 = 0, we integrate the

second equation to find σ = σ3(t)x3 + σ2(t)x2 + σ1(t)x+ σ0(t). Inserting this expression in the

third equation and splitting with respect to x then yields σ3 = 0, i.e., σxxx = 0, contradicting

the initial assumption for this case. For h1 6= 0, we integrate the second equation once with

respect to x and then substitute the resulting expression for σxx into the third equation. This

leads to a contradiction in the system constructed by splitting with respect to x, and hence no

solution is obtained also under the assumption h1 6= 0.

3.3 The spherical equation

3.3.1 The model

The barotropic vorticity equation on the sphere (sBVE) is given by (e.g. Ref. [124])

ζt +
1

R2
(ψλζµ − ψµζλ) +

2Ω

R2
ψλ = 0, ζ :=

1

R2

[
1

1− µ2
ψλλ +

(
(1− µ2)ψµ

)
µ

]
, (3.7)

where ψ is the (spherical) stream function and ζ the (spherical) vorticity. They are related

through the Laplacian on the sphere. Instead of using the latitude ϕ as an independent vari-

able, in practice, it is convenient to rather use µ = sinϕ. The value of µ ranges from −1 (South

Pole) to 1 (North Pole). By λ we denote the longitude, R is the mean radius of the Earth and

Ω the absolute value of the Earth’s angular rotation vector.
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3.3.2 The symmetries

We aim to start with (3.7) in a nonrotating reference frame (Ω = 0). Note in passing that it is

possible to scale the radius R of the Earth to 1 by including R in the stream function via setting

ψ̃ = ψ/R2.

The corresponding Lie symmetry algebra S∞0 is infinite dimensional and a suitable basis is

provided by

D = t∂t − ψ∂ψ, ∂t, Z(g) = g(t)∂ψ, J1 = ∂λ,

J2 = µ
sinλ√
1− µ2

∂λ +
√

1− µ2 cosλ∂µ, J3 = µ
cosλ√
1− µ2

∂λ −
√

1− µ2 sinλ∂µ.
(3.8)

As for the physical meaning of these basis elements, we find that D is the generator of scaling

in t and ψ and ∂t corresponds to time translations. The generators Ji, i = 1, 2, 3, correspond

to rotations in angular coordinates. This follows since they satisfy the commutation relations

of the Lie algebra so(3), [Ji, Jj ] =
∑3

k=1 εijkJk, where i, j = 1, 2, 3 and εijk is the Levi–Civita

symbol. Z(g) again represents gauging of the stream function.

The algebra S∞0 has the structure of so(3) ⊕ (g2 ∈ 〈Z(g)〉), where g2 = 〈D, ∂t〉 is the two-

dimensional non-Abelian algebra and 〈Z(g)〉 is an infinite-dimensional Abelian ideal in S∞0 .

Now turning to the rotating case (Ω 6= 0). Eqn. (3.7) admits the infinite-dimensional Lie

invariance algebra S∞Ω

D = t∂t − (ψ − Ωµ)∂ψ − Ωt∂λ, ∂t, Z(g) = g(t)∂ψ, J1 = ∂λ,

J2 = µ
sin(λ+ Ωt)√

1− µ2
∂λ +

cos(λ+ Ωt)√
1− µ2

(
(1− µ2)∂µ + Ω∂ψ

)
,

J3 = µ
cos(λ+ Ωt)√

1− µ2
∂λ −

sin(λ+ Ωt)√
1− µ2

(
(1− µ2)∂µ + Ω∂ψ

)
.

The physical interpretation of the basis elements is obvious from those of the case Ω = 0.

Moreover, straightforward calculation shows that both Lie symmetry algebras S∞0 and S∞Ω are

isomorphic and can be mapped to each other by means of the change in the coordinates,

t̃ = t, µ̃ = µ, λ̃ = λ+ Ωt, ψ̃ = ψ − Ωµ. (3.9)

Furthermore, it is possible to transform (3.7) into the corresponding equation in the rest frame

(Ω = 0) upon using (3.9). This recovers, in a systematic way, the transformation used by

Platzman [124] to reduce the spherical vorticity equation to a reference frame with zero angular

momentum.

Note that this mapping is possible due to the special form of the Laplacian in spherical

coordinates. In particular, it is impossible to obtain a similar result for the vorticity equation in

Cartesian coordinates since in this case the respective Lie symmetry algebras are nonisomorphic.

Consequently, no transformation can be found that maps the vorticity equation on the β-plane to

the vorticity equation on the f -plane. This indicates that the traditional β-plane approximation

significantly distorts the geometry of the more natural spherical vorticity dynamics.

Again there are two independent discrete symmetries, given by (t, λ, µ, ψ) 7→ (−t,−λ, µ, ψ)

and (t, λ, µ, ψ) 7→ (t, λ,−µ,−ψ), respectively.
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3.3.3 Classification of subalgebras

The classification of subalgebras of S∞0 is done in the same fashion as for the B∞1 . The noniden-

tical adjoint actions involving basis elements of the algebra S∞0 are exhausted by the following

list:

Ad(eε∂t)D = D − ε∂t Ad(eεJ1)J2 = J2 cos ε+ J3 sin ε

Ad(eεZ(g))D = D + εZ(tg′ + g) Ad(eεJ1)J3 = −J2 sin ε+ J3 cos ε

Ad(eεD)∂t = eε∂t Ad(eεJ2)J3 = J3 cos ε+ J1 sin ε

Ad(eεZ(g))∂t = ∂t + εZ(g′) Ad(eεJ2)J1 = −J3 sin ε+ J1 cos ε

Ad(eεD)Z(g) = Z(g̃), g̃ = e−εg(e−εt) Ad(eεJ3)J1 = J1 cos ε+ J2 sin ε

Ad(eε∂t)Z(g) = Z(g̃), g̃ = g(t− ε) Ad(eεJ3)J2 = −J1 sin ε + J2 cos ε.

Similar to the case of the βBVE, we start with the most general form of an infinitesimal

generator v = aDD + at∂t + a1J1 + a2J2 + a3J3 + Z(g). In the same manner, by acting with

the adjoint actions given above, we can determine the following list of conjugacy inequivalent

one-dimensional subalgebras of S∞0 :

〈D + aJ1〉, 〈∂t + aJ1〉, 〈J1 + Z(g)〉, 〈Z(g)〉, (3.10)

where a ∈ R and a ∈ {−1, 0, 1} for the first and second cases, respectively. Unlike the case of

the βBVE, there is no discrete symmetry allowing placement of additional restrictions on the

values of a. There are equivalence relations within the two last families of subalgebras, generated

by adjoint actions of the scaling transformations, time translations, and within the last family,

changes of algebra bases.

Using the same procedure as described in the second part of section 3.2.3 we find the following

list of conjugacy inequivalent two-dimensional subalgebras of (3.8):

〈D + aJ1, ∂t〉, 〈D, J1 + Z(at−1)〉, 〈D + aJ1, Z(|t|b)〉,
〈∂t, J1 + Z(c)〉, 〈∂t + cJ1, Z(ec̃t)〉, 〈J1 + Z(g1), Z(g2)〉, 〈Z(g1), Z(g2)〉,

where a, b ∈ R, c ∈ {−1, 0, 1}; c̃ ∈ {−1, 0, 1} if c = 0. There are additional equivalence

relations within the last two series of subalgebras, generated by adjoint actions of the scale

transformations, time translations and changes in the algebra bases.

3.3.4 Group-invariant reduction with one-dimensional subalgebras

Based on the above classification of one-dimensional algebras, below we present the correspond-

ing list of reduced differential equations obtained from the sBVE here. Again, p, q denote the

new independent variables, while v = v(p, q) is the new dependent variable.
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1 〈D + aJ1〉 ψ = t−1v p = λ− a ln t, q = µ

w + awp − vpwq + vqwp = 0, w := 1
1−q2 vpp + ((1− q2)vq)q

2 〈∂t + aJ1〉 ψ = v p = λ− at, q = µ

−(aq + v)qwp + (aq + v)pwq = 0, w := 1
1−q2 vpp + ((1− q2)vq)q

3 〈J1 + Z(g)〉 ψ = v + g(t)λ p = t, q = µ

wp + gwq = 0, w := ((1− q2)vq)q

4 〈Z(g)〉 No group-invariant reduction is possible in this case

All Lie symmetries of the reduced equations of Cases 1 and 2 are induced by Lie symmetries of

the sBVE. This is why further Lie reductions of these cases give no new solutions in comparison

to Lie reductions with respect to two-dimensional subalgebras.

We now give some examples for solutions obtained upon using the above ansätze:

Case 2 includes the well-known Rossby–Haurwitz wave solutions. To show this, we construct

a class of exact solutions upon using invariance of the sBVE under the algebra 〈∂t + aJ1〉. In

particular, the corresponding reduced vorticity equation implies that w = F , where F is a

function of v + aq. Hence, we have

1

1− q2
vpp + (1− q2)vqq − 2qvq = F. (3.11)

Eqn. (3.11) is, in general, a nonlinear Poisson equation in spherical coordinates. To obtain the

Rossby–Haurwitz wave solution from this equation, we set F = c(v+ aq), c = const, that is, we

make a homogeneous linear ansatz for F . Separation of the variables gives the ansatz

v(p, q) = AeimpPmn (q) +BeimpQmn (q)− acq

c+ 2
,

with A,B = const, where Pmn (q) and Qmn (q) are the associated Legendre functions of the first

and second kind, respectively, and the degree n is given by

n =
1

2
(
√

1− 4c− 1). (3.12)

For the sake of brevity, we now set B = 0. Reverting to the original variables and employing

transformation (3.9) to map the solution of the sBVE with vanishing rotation to a solution of

the sBVE with rotation, we find

ψ(t, λ, µ) = APmn (µ)eim(λ−(a−Ω)t) − acµ

c+ 2
+ Ωµ. (3.13)

To derive pure wave solutions, we require a = Ω(c + 2)/c, which, upon inserting in (3.13) and

considering (3.12), allows us to arrive at the well-known phase relation for a single Rossby–

Haurwitz wave (e.g. Refs. [50, 105, 124]):

cphase := a− Ω = − 2Ω

n(n+ 1)
. (3.14)

Since the integer constant m is arbitrary and only linear cases of eqn. (3.11) are considered,

we may extend the solution (3.13) by superposition of single solutions with m ranging from
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−n to n. This recovers—upon using (3.14)—the classical ansatz for the stream function of

Rossby–Haurwitz waves.

Moreover, note that the class of solutions that may be obtained upon employing symmetry

methods is again much wider than that obtained upon using the usual ansatz for the stream

function. In fact, it can be seen that Rossby–Haurwitz waves correspond to particular simple

solutions of the reduced spherical vorticity equation (3.11), but there is an infinite class of other

solutions invariant under the same generator ∂t + aJ1.

Case 3 is completely integrable by quadratures. The general solution for the stream function

reads

ψ = g(t)λ+ f(t) + h(t)arctanhµ+

∫ ∫
w(θ)dµ

1− µ2
dµ, θ := µ−

∫
g(t)dt.

3.3.5 Group-invariant reduction with two-dimensional subalgebras

As was discussed in section 3.2.5 it is, in general, not necessary to investigate reductions with

the complete set of two-dimensional inequivalent subalgebras. Namely, if some of the equations

obtained from one-dimensional reduction are completely integrable, we can avoid the compu-

tation of reduction with two-dimensional subalgebras if these algebras contain the generators

that enabled the complete integration in the first place. For the sBVE, case 3 is integrable and

case 4 does not allow to compute classical group-invariant solutions. Hence, we again have only

the reduction in one two-dimensional subalgebra, which is not trivial in view of the reductions

based on one-dimensional subalgebras: 〈D + aJ1, ∂t〉. Note, however, that it is not possible to

use this subalgebra in the case a = 0 for a classical Lie reduction since no proper ansatz for

ψ can be constructed. Rather, it can only be used for the construction of partially invariant

solutions. If a 6= 0, this subalgebra leads to invariant solutions that are obtainable as particular

cases of reduction with the algebra 〈∂t〉. The corresponding ansatz ψ = ebλv(µ) reduces the

sBVE to the equation vwµ− vµw = 0, where b = −1/a, w := b2(1−µ2)−1v+ ((1−µ2)vµ)µ. The

reduced equation implies the following linear constraint between v and w: w = Cv, where C is

an arbitrary constant, i.e., we have the equation

((1− µ2)vµ)µ +
b2

1− µ2
v = Cv

which is integrable in terms of Legendre functions.
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Chapter 4

Point symmetry group of the

barotropic vorticity equation

Abstract The complete point symmetry group of the barotropic vorticity equation on the β-

plane is computed using the direct method supplemented with two different techniques.

The first technique is based on the preservation of any megaideal of the maximal Lie

invariance algebra of a differential equation by the push-forwards of point symmetries of

the same equation. The second technique involves a priori knowledge on normalization

properties of a class of differential equations containing the equation under consideration.

Both of these techniques are briefly outlined.

4.1 Introduction

It is well known that it is much easier to determine the continuous part of the complete point

symmetry group of a differential equation than the entire group including discrete symmetries.

The computation of continuous (Lie) symmetries is possible using infinitesimal techniques, which

amounts to solving an overdetermined system of linear partial differential equations (referred to

as determining equations) for coefficients of vector fields generating one-parameter Lie symmetry

groups. Owing to the algorithmic nature of this problem, the automatic computation of Lie

symmetries is already implemented in a number of symbolic calculation packages, see, e.g.,

papers [28, 51, 138] for detail description of certain packages and reviews [26, 53].

The relative simplicity of finding Lie symmetries of differential equations is also a primary

reason why the overwhelming part of research on symmetries is devoted to symmetries of this

kind. See, e.g., the textbooks [22, 23, 97, 115, 118] for general theory and numerous examples and

additionally the works [6, 17, 18, 41, 96] for several applications of Lie methods in hydrodynamics

and meteorology.

As continuous symmetries, also discrete symmetries are of practical relevance in a number

of fields such as dynamical system theory, quantum mechanics, crystallography and solid state

physics. They can also be helpful in some issues related to Lie symmetries, e.g. allowing for a

simplification of optimal lists of inequivalent subalgebras, and due to enabling the construction

of new solutions of differential equations from known ones. It is not possible, in general, to

determine the whole point symmetry group in terms of finite transformations by usage of in-

finitesimal techniques. On the other hand, the direct computation of point symmetries based on

their definition boils down to solving a cumbersome nonlinear system of determining equations,
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which is difficult to be integrated. Similar determining equations also arise under calculations

of equivalence groups and sets of admissible transformations of classes of differential equations

by means of employing the direct method. In order to simplify the derivation of the deter-

mining equations, different special techniques have been developed involving, in particular, the

implicit representation of unknown functions, the combined splitting with respect to old and

new variables and the inverse expression of old derivative via new ones [127, 131, 134].

There exist two particular techniques that can be applied for a priori simplification of cal-

culations concerning the point symmetry groups of differential equations.

The first technique was presented in [61] for equations whose maximal Lie invariance algebras

are finite dimensional. It is based on the fact that the push-forwards of point symmetries of a

given system of differential equations to vector fields on the space of dependent and independent

variables are automorphisms of the maximal Lie invariance algebra of the same system. This

condition yields restrictions for those point transformations that can qualify as symmetries of

the system of differential equations under consideration. We will adopt this technique to the

infinite dimensional case using the notion of megaideals of Lie algebras, which are the most

invariant algebraic structures.

The second technique involves available information on the set of admissible transformations

of a class of differential equations [131], which contains the investigated equation.

In the present paper, we will demonstrate both of these techniques by computing the complete

point symmetry group of the barotropic vorticity equation on the β-plane. This is one of the

most classical models which are used in geophysical fluid dynamics. The techniques to be

employed are briefly described in Section 4.2. The actual computations using the method based

on the corresponding Lie invariance algebra and that involving a priori knowledge on admissible

transformations of a class of generalized vorticity equations are presented in Section 4.3 and 4.4,

respectively. A short summary concludes the paper.

4.2 Techniques of calculation

of complete point symmetry groups

Both the techniques described in this section should be considered merely as tools for deriving

preliminary restrictions on point symmetries. In either case, calculations must finally be carried

out within the framework of the direct approach.

4.2.1 Using megaideals of Lie invariance algebra

The most refined version of the technique involving Lie symmetries in the calculations of com-

plete point symmetry groups was applied in [61]. It is outlined as follows: Given a system of

differential equations L whose maximal Lie invariance algebra g is n-dimensional with a basis

{e1, . . . , en}, n <∞, one has to compute the entire automorphism group of g, Aut(g). Suppos-

ing that T is a transformation from the complete point symmetry group G of L, one has the

condition T∗ej =
∑n

i=1 eiaij for j = 1, . . . , n, where T∗ denotes the push-forward of vector fields

induced by T and (aij) is the matrix of an automorphism of g in the chosen basis. This condi-

tion implies constraints on the transformation T which are then taken into account in further

calculations with the direct method.

The method we propose here is different to those described in the previous paragraph. In

fact, it uses only the minimal information on the automorphism group Aut(g) in the form of
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a set of megaideals of g. Due to this, it is applicable also in the case when the maximal Lie

invariance algebra is infinite dimensional. The notion of megaideals was introduced in [128].

Definition 4.1. A megaideal i is a vector subspace of g that is invariant under any transforma-

tion from the automorphism group Aut(g) of g.

That is, we have Ti = i for a megaideal i of g, whenever T is a transformation from Aut(g).

Any megaideal of g is an ideal and characteristic ideal of g. Both the improper subalgebras of g

(the zero subspace and g itself) are megaideals of g. The following assertions are obvious.

Proposition 4.1. If i1 and i2 are megaideals of g then so are i1 + i2, i1 ∩ i2 and [i1, i2], i.e.,

sums, intersections and Lie products of megaideals are again megaideals.

Proposition 4.2. If i2 is a megaideal of i1 and i1 is a megaideal of g then i2 is a megaideal of

g, i.e., megaideals of megaideals are also megaideals.

Corollary 4.1. All elements of the derived, upper and lower central series of a Lie algebra are

its megaideals. In particular, the center and the derivative of a Lie algebra are its megaideals.

Corollary 4.2. The radical r and nil-radical n (i.e., the maximal solvable and nilpotent ideals,

respectively) of g as well as different Lie products, sums and intersections involving g, r and n

([g, r], [r, r], [g, n], [r, n], [n, n], etc.) are megaideals of g.

Suppose that g is finite dimensional and possesses a megaideal i which, without loss of gen-

erality, can be assumed to be spanned by the first k basis elements, i = 〈e1, . . . , ek〉. Then the

matrix (aij) of any automorphism of g has block structure, namely, aij = 0 for i > k. In other

words, in the finite dimensional case we take into account only the block structure of automor-

phism matrices. This is reasonable as the entire automorphism group Aut(g) (which should be

computed within the method from [61]) may be much wider than the group of automorphisms

of g induced by elements of the point symmetry group G of L. Moreover, it seems difficult to

find the entire group Aut(g) if the algebra g is infinite dimensional. At the same time, in view

of the above assertions it is easy to determine a set of megaideals for any Lie algebra.

4.2.2 Direct method and admissible transformations

The initial point of the second technique is to consider a given pth order system L0 of l differential

equations for m unknown functions u = (u1, . . . , um) of n independent variables x = (x1, . . . , xn)

as an element of a class L|S of similar systems Lθ: L(x, u(p), θ(x, u(p))) = 0 parameterized by

a tuple of pth order differential functions (arbitrary elements) θ = (θ1(x, u(p)), . . . , θ
k(x, u(p))).

Here u(p) denotes the set of all the derivatives of u with respect to x of order not greater than p,

including u as the derivatives of order zero. The class L|S is determined by two objects: the

tuple L = (L1, . . . , Ll) of l fixed functions depending on x, u(p) and θ and θ running through the

set S. Within the framework of symmetry analysis of differential equations, the set S is defined

as the set of solutions of an auxiliary system consisting of a subsystem S(x, u(p), θ(q)(x, u(p))) = 0

of differential equations with respect to θ and a non-vanish condition Σ(x, u(p), θ(q)(x, u(p))) 6= 0

with another differential function Σ of θ. In the auxiliary system, x and u(p) play the role

of independent variables and θ(q) stands for the set of all the partial derivatives of θ of order

not greater than q with respect to the variables x and u(p). In view of the purpose of our

consideration we should have that L0 = Lθ0 for some θ0 ∈ S.
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Following [131], for θ, θ̃ ∈ S we denote by T(θ, θ̃) the set of point transformations which map

the system Lθ to the system Lθ̃. The maximal point symmetry group Gθ of the system Lθ
coincides with T(θ, θ).

Definition 4.2. T(L|S) = {(θ, θ̃, ϕ) | θ, θ̃ ∈ S, ϕ ∈ T(θ, θ̃)} is called the set of admissible

transformations in L|S .

Sets of admissible transformations were first systematically described by Kingston and Sopho-

cleous for a class of generalized Burgers equations [73] and Winternitz and Gazeau for a class of

variable coefficient Korteweg–de Vries equations [161], in terms of form-preserving [73, 74, 75]

and allowed [161] transformations, respectively. The notion of admissible transformations can

be considered as a formalization of their approaches.

Any point symmetry transformation of an equation Lθ from the class L|S generates an ad-

missible transformation in this class. Therefore, it obviously satisfies all restrictions which hold

for admissible transformations [74]. For example, it is known for a long time that for any point

(and even contact) transformation connecting a pair of (1 + 1)-dimensional evolution equations

its component corresponding to t depends only on t, cf. [89]. The equations in the pair can also

coincide. As a result, the same restriction should be satisfied by any point or contact symmetry

transformation of every (1 + 1)-dimensional evolution equation.

The simplest description of admissible transformations is obtained for normalized classes of

differential equations. Roughly speaking, a class of (systems of) differential equations is called

normalized if any admissible transformation in this class is induced by a transformation from

its equivalence group. Different kinds of normalization can be defined depending on what kind

of equivalence group (point, contact, usual, generalized, extended, etc.) is considered. Thus,

the usual equivalence group G∼ of the class L|S consists of those point transformations in the

space of variables and arbitrary elements, which are projectable on the variable space and

preserve the whole class L|S . The class L|S is called normalized in the usual sense if the set

T(L|S) is generated by the usual equivalence group G∼. As a consequence, all generalizations

of the equivalence group within the framework of point transformations are trivial for this class.

See [131] for precise definitions and further explanations. If the class L|S is normalized in certain

sense with respect to point transformations, the point symmetry group Gθ0 of any equation Lθ0
from this class is contained in the projection of the corresponding equivalence group of L|S to

the space of independent and dependent variables (taken for the value θ = θ0 in the case when

the generalized equivalence group is considered).

As a rule, calculations of certain common restrictions on admissible transformations of the

entire normalized class or its normalized subclasses or point symmetry transformations of a

single equation from this class have the same level of complexity. For example, in order to

derive the restriction that the transformation component corresponding to t depends only on t,

we should carry out approximately the same operations, independently of considering the whole

class of (1 + 1)-dimensional evolution equations, any well-defined subclass from this class or

any single evolution equation. This is why it is worthwhile to first construct nested series of

normalized classes of differential equations by starting from a quite general, obviously normalized

class, imposing on each step additional auxiliary conditions on the arbitrary elements and then

studying the complete point symmetries of a single equation from the narrowest class of the

constructed series.

In the way outlined above we have already investigated hierarchies of normalized classes of

generalized nonlinear Schrödinger equations [131], (1 + 1)-dimensional linear evolution equa-
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tions [132], (1 + 1)-dimensional third-order evolution equations including variable-coefficient

Korteweg–de Vries and modified Korteweg–de Vries equations [133] and generalized vorticity

equations arising in the study of local parameterization schemes for the barotropic vorticity

equation [127].

If an equation does not belong to a class whose admissible transformations have been studied

earlier, one can try to map this equation using a point transformation to an equation from a

class for which constraints on its admissible transformations are known a priori. Then one can

either map the known constraints on admissible transformations back and then complete the

calculations of point symmetries of the initial equation using the direct method or calculate

the point symmetry group of the mapped equation using the direct method and then map this

group back. The example on the application of this trick to the barotropic vorticity equation in

presented in Section 4.4.

4.3 Calculations based on Lie invariance algebra

of the barotropic vorticity equation

The barotropic vorticity equation on the β-plane reads

ζt + ψxζy − ψyζx + βψx = 0, (4.1)

where ψ = ψ(t, x, y) is the stream function and ζ := ψxx + ψyy is the relative vorticity, which

is the vertical component of the vorticity vector. The barotropic vorticity equation in the

formulation (4.1) is valid in situations where the two-dimensional wind field can be regarded

as almost non-divergent and the motion in North–South direction is confined to a relatively

small region. It is then convenient to use a local Cartesian coordinate system. In such a

coordinate system, the effect of the sphericity of the Earth is conveniently taken into account by

approximating the normal component of the vorticity due to the rotation of the Earth, 2Ω sinϕ,

by its linear Taylor series expansion, where Ω is the angular rotation of the Earth and ϕ is

the geographic latitude. This linear approximation at some reference latitude ϕ0 is given by

2Ω sinϕ0 + βy, where β = 2Ω cosϕ/a and a is the radius of the Earth. This is the traditional

β-plane approximation, see [122] for further details. Then, taking the vertical component of the

curl of the two-dimensional ideal Euler equations and using the β-plane approximation leads to

Eq. (4.1).

It is straightforward to determine the maximal Lie invariance algebra g of Eq. (4.1) using

infinitesimal techniques:

g = 〈D, ∂t, ∂y,X (f),Z(g)〉,

where D = t∂t − x∂x − y∂y − 3ψ∂ψ, X (f) = f(t)∂x − ft(t)y∂ψ and Z(g) = g(t)∂ψ, and f and

g run through the space of smooth functions of t. (In fact, the precise interpretation of g as

a Lie algebra strongly depends on what space of smooth functions is chosen for f and g, cf.

Note A.1 in [41, p. 178].) This result was first obtained in [68] and is now easily accessible in

the handbook [63, p. 223]. See also [17] for related discussions and the exhaustive study of the

classical Lie reductions of Eq. (4.1).

The nonzero commutation relations of the algebra g in the above basis are exhausted by the

following ones:

[∂t,D] = ∂t, [∂y,D] = −∂y,
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[D,X (f)] = X (tft + f), [D,Z(g)] = Z(tgt + 3g),

[∂t,X (f)] = X (ft), [∂t,Z(g)] = Z(gt), [∂y,X (f)] = −Z(ft).

It is easy to see from the commutation relations that the Lie algebra g is solvable since

g′ = [g, g] = 〈∂t, ∂y,X (f),Z(g)〉,
g′′ = [g′, g′] = 〈X (f),Z(g)〉,
g′′′ = [g′′, g′′] = 0.

Therefore, the radical r of g coincides with the entire algebra g. The nil-radical of g is the ideal

n = 〈∂y,X (f),Z(g)〉.

Indeed, this ideal is a nilpotent subalgebra of g since

n(2) = n′ = [n, n] = 〈Z(g)〉, n(3) = [n, n′] = 0.

It can be extended to a larger ideal of g only with two sets of elements, {∂t} and {D, ∂t}. Both

resulting ideals are not nilpotent. In other words, n is the maximal nilpotent ideal.

Continuous point symmetries of Eq. (4.1) are determined from the elements of g by integration

of the associated Cauchy problems. It is obvious that Eq. (4.1) also possesses two discrete

symmetries, (t, x, y, ψ) 7→ (−t,−x, y, ψ) and (t, x, y, ψ) 7→ (t, x,−y,−ψ), which are independent

up to their composition and their compositions with continuous symmetries. The proof that the

above symmetries generate the entire point symmetry group was, however, outstanding.

Theorem 4.1. The complete point symmetry group of the barotropic vorticity equation on the

β-plane (4.1) is formed by the transformations

T : t̃ = T1t+ T0, x̃ =
1

T1
x+ f(t), ỹ =

ε

T1
y + Y0,

ψ̃ =
ε

(T1)3
ψ − ε

(T1)2
ft(t)y + g(t),

where T1 6= 0, ε = ±1 and f and g are arbitrary functions of t.

Proof. The discrete symmetries of the barotropic vorticity equation on the β-plane are computed

as described in section 4.2.1. The general form of a point transformation of the vorticity equation

is:

T : (t̃, x̃, ỹ, ψ̃) = (T,X, Y,Ψ),

where T , X, Y and Ψ are regarded as functions of t, x, y and ψ, whose joint Jacobian does not

vanish. To obtain the constrained form of T , we use the above four proper nested megaideals

of g, namely n′, g′′, n and g′, and g itself. Recall once more that the transformation T must

satisfy the conditions T∗n′ = n′, T∗g′′ = g′′, T∗n = n, T∗g′ = g′ and T∗g = g in order to qualify as

a point symmetry of the vorticity equation, where T∗ denotes the push-forward of T to vector

fields. In other words, we have

T∗Z(g) = g(Tψ∂t̃ +Xψ∂x̃ + Yψ∂ỹ + Ψψ∂ψ̃) = Z̃(g̃g), (4.2)

T∗X (f) = X̃ (f̃f ) + Z̃(g̃f ), (4.3)
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T∗∂t = Tt∂t̃ +Xt∂x̃ + Yt∂ỹ + Ψt∂ψ̃ = a1∂t̃ + a2∂ỹ + X̃ (f̃) + Z̃(g̃), (4.4)

T∗∂y = Ty∂t̃ +Xy∂x̃ + Yy∂ỹ + Ψy∂ψ̃ = b1∂ỹ + X̃ (f̃y) + Z̃(g̃y), (4.5)

T∗D = c1D̃ + c2∂t̃ + c3∂ỹ + X̃ (f̃D) + Z̃(g̃D), (4.6)

where all f̃ ’s and g̃’s are smooth functions of t̃ which are determined, as the constant parameters

a1, a2, b1, c1, c2 and c3, by T∗ and the operator from the corresponding left-hand side.

We will derive constraints on T∗, consequently equating coefficients of vector fields in condi-

tions (4.2)–(4.6) and taking into account constraints obtained on previous steps. Thus Eq. (4.2)

immediately implies Tψ = Xψ = Yψ = 0 (hence Ψψ 6= 0) and gΨψ = g̃g. Evaluating the last

equation for g = 1 and g = t and combining the results gives t = g̃t(T )/g̃1(T ), where g̃t = g̃g|g=t
and g̃1 = g̃g|g=1. As the derivative with respect to T in the right hand side of this equality does

not vanish, the condition T = T (t) must hold. This implies that Ψψ depends only on t.

As then T∗X (f) = fXx∂x̃ + fYx∂ỹ + (fΨx − ftyΨψ)∂ψ̃, it follows from Eq. (4.3) that Yx = 0

and

fXx = f̃f , fΨx − ftyΨψ = −f̃f
t̃
Y + g̃f .

Evaluating the first of the displayed equalities for f = 1, we derive that Xx = f̃1(T ) =: X1(t).

Therefore, f̃f (T ) = f(t)X1(t). The second equality then reads

fΨx − ftyΨψ = −(fX1)t
Tt

Y + g̃f .

Setting f = 1 and f = t in the last equality and combining the resulting equalities yields

yΨψ = (Tt)
−1X1Y + tg̃1 − g̃t, where g̃t = g̃f |f=t and g̃1 = g̃f |f=1. As X1 6= 0 this equation

implies that Y = Y1(t)y + Y0(t).

After analyzing Eq. (4.4), we find Tt = const, Yt = const, which leads to Y1 = const,

Xt = f̃(T ) and thus Xtx = 0, i.e., X1 = const. Finally, Eq. (4.4) also implies Ψt = −f̃t̃Y + g̃.

In a similar manner, upon taking into account the restrictions already derived so far, collecting

coefficients in Eq. (4.5) gives the constraint Xy = f̃y =: X2 = const since Xyt = 0. Moreover,

Ψy = g̃y, as f̃y
t̃

= 0.

The final restrictions on T based on the preservation of g are derivable from Eq. (4.6), where

T∗D = tTt∂t̃ + (tXt − xXx − yXy)∂x̃ + (tYt − yYy)∂ỹ
+ (tΨt − xΨx − yΨy − 3ψΨψ)∂ψ̃.

Collecting the coefficients of ∂t̃ and ∂ỹ, we obtain that c1 = 1 and Yt = 0. Similarly, equating

the coefficients of ∂ψ̃ and further splitting with respect to x implies that Ψx = 0.

The results obtained so far lead to the following constrained form of the general point sym-

metry transformation of the vorticity equation (4.1)

T = T1t+ T0, X = X1x+X2y + f(t), Y = Y1y + Y0,

Ψ = Ψ1ψ + Ψ2(t)y + Ψ4(t),
(4.7)

where T0, T1, X1, X2, Y0, Y1 and Ψ1 are arbitrary constants, T1X1Y1Ψ1 6= 0, and f(t), Ψ2(t) and

Ψ4(t) are arbitrary time-dependent functions. The form (4.7) takes into account all constraints

on point symmetries of (4.1), which follow from the preservation of the maximal Lie invariance

algebra g by the associated push-forward of vector fields.
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Now the direct method should be applied. We carry out a transformation of the form (4.7)

in the vorticity equation. For this aim, we calculate the transformation rules for the partial

derivative operators:

∂t̃ =
1

T1

(
∂t −

ft
X1

∂x

)
, ∂x̃ =

1

X1
∂x, ∂ỹ =

1

Y1

(
∂y −

X2

X1
∂x

)
.

Further restrictions on T can be imposed upon noting that the term ψtxy can only arise in

the expression for ψ̃t̃ỹỹ, which is

ψ̃t̃ỹỹ = − 2Ψ1

T1Y1

X2

X1
ψtxy + · · · .

This obviously implies that X2 = 0. In a similar fashion, the expression for ζ̃t̃ is

ζ̃t̃ =
Ψ1

T1

(
1

(X1)2
ζt +

(
1

(Y1)2
− 1

(X1)2

)
ψyyt

)
+ · · · ,

upon using ψxxt = ζt − ψyyt. Hence (X1)2 = (Y1)2 as there are no other terms with ψyyt
in the invariance condition. After taking into account these two more restrictions on T , it is

straightforward to expand the transformed version of the vorticity equation. This yields

Ψ1

T1(X1)2
ζt −

ftΨ1

T1(X1)3
ζx +

(Ψ1)2

(X1)3Y1
ψxζy −

(
Ψ1

Y1
ψy +

Ψ2

Y1

)
Ψ1

(X1)3
ζx

+ β
Ψ1

X1
ψx =

Ψ1

T1(X1)2
(ζt + ψxζy − ψyζx + βψx) .

The invariance condition is fulfilled provided that the constraints

Ψ2 = −Y1

T1
ft, X1 = T1(X1)2,

(Ψ1)2

(X1)3Y1
=

Ψ1

T1(X1)2
.

hold. This completes the proof of the theorem.

Corollary 4.3. The barotropic vorticity equation on the β-plane possesses only two independent

discrete point symmetries, which are given by

Γ1 : (t, x, y, ψ) 7→ (−t,−x, y, ψ), Γ2 : (t, x, y, ψ) 7→ (t, x,−y,−ψ).

They generate the group of discrete symmetry transformations of the barotropic vorticity equation

on the β-plane, which is isomorphic to Z2×Z2, where Z2 denotes the cyclic group of two elements.

4.4 Direct method and admissible transformations of classes of

generalized vorticity equations

The construction of the complete point symmetry group G of the barotropic vorticity equa-

tion (4.1) by means of using only the direct method involves cumbersome and sophisticated

calculations. As Eq. (4.1) is a third-order PDE in three independent variables, the system of de-

termining equations for transformations from G is an overdetermined nonlinear system of PDEs

in four independent variables, which should be solved by taking into account the nonsingularity

condition of the point transformations. This is an extremely challenging task. Fortunately, a
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hierarchy of normalized classes of generalized vorticity equations was recently constructed [127]

that allows us to strongly simplify the whole investigation. Eq. (4.1) belongs only to the nar-

rowest class of this hierarchy, which is quite wide and consists of equations of the general form

ζt = F (t, x, y, ψ, ψx, ψy, ζ, ζx, ζy, ζxx, ζxy, ζyy), ζ := ψxx + ψyy, (4.8)

where (Fζx , Fζy , Fζxx , Fζxy , Fζyy) 6= (0, 0, 0, 0, 0). The equivalence group G∼1 of this class is formed

by the transformations

t̃ = T (t), x̃ = Z1(t, x, y), ỹ = Z2(t, x, y), ψ̃ = Υ(t)ψ + Φ(t, x, y),

F̃ =
1

Tt

(
Υ

L
F +

(Υ

L

)
0
ζ +

(Φii

L

)
0
−
ZitZ

i
j

L

(
Υ

L
ζj +

(Υ

L

)
j
ζ +

(Φii

L

)
j

))
,

where T , Zi, Υ and Φ are arbitrary smooth functions of their arguments, satisfying the conditions

Z1
kZ

2
k = 0, Z1

kZ
1
k = Z2

kZ
2
k := L and TtΥL 6= 0. The subscripts 1 and 2 denote differentiation with

respect to x and y, respectively, the indices i and j run through the set {1, 2} and the summation

over repeated indices is understood. As Eq. (4.1) is an element of the class (4.8) and this class

is normalized, the point symmetry group G of Eq. (4.1) is contained in the projection Ĝ∼1 of the

equivalence group G∼1 of the class (4.8) to the variable space (t, x, y, ψ). At the same time, the

group G is much narrower than the group Ĝ∼1 , and in order to single out G from Ĝ∼1 we should

still derive and solve a quite cumbersome system of additional constraints. Instead of this we

use the trick described in the end of Section 4.2.2. Namely, by the transformation

ψ̌ = ψ +
β

6
y3, (4.9)

which identically acts on the independent variables and which is prolonged to the vorticity

according to the formula ζ̌ = ζ + βy, we map Eq. (4.1) to the equation

ζ̌t + ψ̌xζ̌y − ψ̌y ζ̌x = −β
2
y2ζ̌x. (4.10)

Eq. (4.10) belongs to the subclass of class (4.8) that is singled out by the constraints Fψ = 0,

Fζ = 0, Fψx = −ζy and Fψy = ζx, i.e., the class consisting of the equations of the form

ζt + ψxζy − ψyζx = H(t, x, y, ζx, ζy, ζxx, ζxy, ζyy), ζ := ψxx + ψyy, (4.11)

where H is an arbitrary smooth function of its arguments, which is assumed as an arbitrary

element instead of F = H−ψxζy+ψyζx. The class (4.11) also is a member of the above hierarchy

of normalized classes. Its equivalence group G∼2 is much narrower than G∼1 and is formed by

the transformations

t̃ = τ, x̃ = λ(xc− ys) + γ1, εỹ = λ(xs + yc) + γ2,

ψ̃ = ε
λ

τt

(
λψ +

λ

2
θt(x

2+y2)− γ1
t (xs+yc) + γ2

t (xc−ys)
)

+ δ +
σ

2
(x2+y2),

H̃ =
ε

τt2

(
H − λt

λ
(xζx + yζy) + 2θtt

)
− δy+σy

τtλ2
ζx +

δx+σx

τtλ2
ζy +

2

τt

( σ
λ2

)
t
,

where ε = ±1, c = cos θ, s = sin θ; τ , λ, θ, γi and σ are arbitrary smooth functions of t satisfying

the conditions λ > 0, τtt = 0 and τt 6= 0 and δ = δ(t, x, y) runs through the set of solutions of

the Laplace equation δxx + δyy = 0.
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In order to derive the additional constraints that are satisfied by the group parameters of

transformations from the point symmetry group G2 of Eq. (4.10), we substitute the values

H = −βy2ζx/2 and H̃ = −βỹ2ζ̃x̃/2 as well as expressions for the transformed variables and

derivatives via the initial ones into the transformation component for H and then make all

possible splitting in the obtained equality. As a result, we derive the additional constraints

θ = γ2
t = 0, λ =

1

τt
, σ =

εβγ2

2τt2
, δx = −σx, δy = σy +

εβ(γ2)2

2τt
.

After projecting transformations from G∼2 on the variable space (t, x, y, ψ), constraining the

group parameters using the above conditions and taking the adjoint action of the inverse of the

transformation (4.9), we obtain, up to re-denoting, the transformations from Theorem 4.1.

4.5 Conclusion

In this paper, we have computed the complete point symmetry group of the barotropic vorticity

equation on the β-plane. It is obvious that both of the techniques presented in this paper are

applicable to general systems of differential equations.

Despite of the apparent simplicity of the techniques employed above, there are a number of

features that should be discussed properly. In particular, the relation between discrete symme-

tries of a differential equation and discrete automorphisms of the corresponding maximal Lie

invariance algebra is neither injective nor surjective. This is why it can be misleading to restrict

the consideration to discrete automorphism when trying to finding discrete symmetries. This

and related issues will be investigated and discussed more thoroughly in a forthcoming work.
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Chapter 5

Lie symmetry analysis and exact

solutions of the quasi-geostrophic

two-layer problem

Abstract The quasi-geostrophic two-layer model is of superior interest in dynamic meteorol-

ogy since it is one of the easiest ways to study baroclinic processes in geophysical fluid

dynamics. The complete set of point symmetries of the two-layer equations is determined.

An optimal set of one- and two-dimensional inequivalent subalgebras of the maximum

Lie invariance algebra is constructed. On the basis of these subalgebras we exhaustively

carry out group-invariant reduction and compute various classes of exact solutions. Where

possible, reference to the physical meaning of the exact solutions is given.

5.1 Introduction

There is a long history in dynamic meteorology to use simplified models of the atmosphere rather

than the complete set of hydro-thermodynamical equations to study only selected phenomenon

instead of accounting for the whole variety of weather and climate at once. The greatest simpli-

fication which is still capable to qualitatively (and, under some conditions, also quantitatively)

describe the behavior of large-scale geophysical dynamics is the barotropic vorticity equation.

While this equation indeed allows one to explain the propagation of the mid-latitude Rossby

waves, it cannot be used to elucidate the occurrence of developing weather regimes. The reason

for this substantial lack is that the barotropic vorticity equation is a single equation valid only in

one atmospheric (pressure) layer. However, development in the atmosphere is usually associated

with the vertical structure of, e.g., the entropy field and hence a single-layer consideration is at

once limited.

Of course, the atmosphere is continuously stratified and hence it is in fact three-dimensional.

However, the main process of baroclinic instability, which is the dominant mechanism responsible

for the formation of mid-latitude weather systems can already be qualitatively understood by

considering only two coupled atmospheric layers. Moreover, the studies of layer models are the

basis for the more complicated investigation of the three-dimensional governing equations. For

this reason, many results for the two-layer model are available in dynamic meteorology, making

this model particularly interesting for a systematic mathematical investigation.
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The aim of this paper is to carry out a Lie symmetry analysis of the quasi-geostrophic

two-layer model. There already exists a number of papers dealing with symmetries and exact

solutions of the simpler barotropic vorticity equations [17, 18, 63, 68, 69] as well as the more

complicated Euler or Navier–Stokes equations (see, e.g., [6, 41, 96, 97, 126] and references

therein). At the same time, the intermediate two-layer model has not been considered in this

light so far.

The organization of this paper is the following: The model equations are presented in Sec-

tion 5.2, together with some of their known properties. Section 5.3 contains the results on Lie

symmetries of these equations. The theorem on the complete point symmetry group of the

two-layer model is proved in Section 5.4. A list of one- and two-dimensional inequivalent sub-

algebras of the corresponding maximal Lie invariance algebra is constructed in Sections 5.5. In

Sections 5.6 and 5.7 systems obtained under reduction upon using the constructed one- and

two-dimensional subalgebras are derived and investigated. Related boundary-value problems

are discussed in Section 5.8. Section 5.9 summarizes the most important results of this paper.

Finally, in the Appendix 5.10 we give a new symmetry interpretation of a method for finding

exact solutions of linear systems of PDEs.

5.2 The two-layer model

The first impulse to the investigation of baroclinic instability in the two-layer model was given

in [123]. Since two layers are considered, the model is capable of studying the interaction of

the barotropic mode and the first baroclinic mode, which is sufficient for describing the basic

mechanism of baroclinic instability. The model consists of two copies of the barotropic potential

vorticity, evaluated at two different atmospheric levels [122]:

∂Q1

∂t
+ {ψ1, Q1} = 0,

∂Q2

∂t
+ {ψ2, Q2} = 0,

(5.1a)

where ψ1 and ψ2 are the stream functions in the upper and lower layer,

{f, g} =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

is the usual Poisson bracket of the functions f and g with respect to the variables x and y and

Q1 = ∇2ψ1 + βy − F (ψ1 − ψ2),

Q2 = ∇2ψ2 + βy + F (ψ1 − ψ2),
(5.1b)

are the respective potential vorticities, with the constants β and F being the Rossby parameter

and internal rotational Froude number, respectively. For the purpose of simplicity, we set the

Froude numbers of the two layers to be equal, i.e. F1 = F2 = F , thereby assuming both layers

to be of equal depth. Moreover, we have assumed flat topography. For the configuration to be

stably stratified, the lower layer must be denser than the upper layer, i.e. ρ2 > ρ1.

Due to equivalence transformations of scaling and alternating signs in the class of equations

of form (5.1), it would be possible to set F ∈ {−1, 0, 1} and β ∈ {0, 1}. Since F and β are

positive meteorological quantities, it would imply that F = β = 1 but we will not use this

scaling below.
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5.3 Lie symmetries

In the case Fβ 6= 0, which is the single subject of the present paper, system (5.1) admits the

maximal Lie invariance algebra g generated by the following basis elements:

∂t, ∂y, X (f) = f(t)∂x−f ′(t)y(∂ψ1 +∂ψ2), F = ∂ψ1−∂ψ2 , Z(g) = g(t)(∂ψ1 +∂ψ2), (5.2)

where f and g run through the set of real-valued functions of t. For g to really be a Lie

algebra, additional restrictions on the smoothness of the parameter functions f and g should be

imposed [41].

Physically, these generators are exponentiated to give time and north–south translation sym-

metry, generalized Galilean transformations with respect to x, as well as shifts and gauging of

the stream functions.

The structure of the Lie symmetry algebra suggests the introduction of the new dependent

variables ψ+ = ψ1 + ψ2 and ψ− = ψ1 − ψ2. This change transforms the set of generators to

∂t, ∂y, X (f) = f(t)∂x − 2f ′(t)y∂ψ+ , F = 2∂ψ− , Z(g) = 2g(t)∂ψ+ .

From the meteorological point of view, the new variables have a sound physical meaning. Since

the two-dimensional wind fields at both the levels can be represented as the derivatives of the

respective stream functions, it follows that the component ψ+ gives rise to the mean of these

fields. This part is usually referred to as the barotropic part of the flow. In turn, derivatives

of ψ− give rise to the difference in the wind field between the two-layers. In meteorology, this

difference is called the thermal wind, which is a measure of the baroclinity of the fluid. Therefore,

these variables are commonly used in the investigation of baroclinic instability, e.g., in the study

of the linearized two-layer model [57]. However, from the group-theoretical point of view, their

usage is already suggested by the special form of Lie symmetry operators (5.2).

Using the variables ψ+ and ψ−, the model (5.1) is represented as

∂Q+

∂t
+

1

2

(
{ψ+, Q+}+ {ψ−, Q−}

)
= 0,

∂Q−

∂t
+

1

2

(
{ψ+, Q−}+ {ψ−, Q+}

)
= 0,

(5.3a)

where

Q+ = ∇2ψ+ + 2βy,

Q− = ∇2ψ− − 2Fψ−,
(5.3b)

are the barotropic and baroclinic potential vorticities, respectively. In the present paper, we

will use both the forms of the two-layer model, i.e. employing both the “layered variables” ψ1

and ψ2 and the “barotropic/baroclinic variables” ψ+ and ψ−. The precise usage depends on

whether we study linear or nonlinear submodels of the two-layer model.

5.4 Complete point symmetry group

The complete point symmetry group of a system of differential equations, which includes both

continuous and discrete symmetries, is conventionally calculated by the direct method. The

outlines of this method are quite simple. Supposing the most general form of a point trans-

formation in the associated space of independent and dependent variables, one expresses all
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involved derivatives of the new (transformed) dependent variables via the old variables, substi-

tutes the obtained expressions into the system written in terms of the transformed variables,

then excludes the derivatives which are assumed constrained due to the system (principal deriva-

tives) and splits with respect to the unconstrained (parametric) derivatives. As a result, one

obtains a system of determining equations for point symmetry transformations, which is non-

linear in contrast to a similar system arising by application of the infinitesimal Lie method

and, therefore, is much more complicated for solving. This is why different special techniques

(the implicit representation for unknown functions, the combined splitting with respect to old

and new variables, inverse expression of old derivative via new ones, etc.) are applied to the

derivation of determining equations and their a priori simplification.

Here we aim to use an approach similar as described in [61], which is based on the knowledge

of the Lie symmetries of a given differential equation. This method rests on the fact that any

point symmetry generates an automorphism of the maximal Lie invariance algebra. By factoring

out the continuous symmetries from the whole point symmetry group, the discrete symmetries

of the differential equation can be determined.

The computation of the complete point symmetry group can be considerably simplified by

noting that any automorphism of a Lie algebra g leaves invariant, by definition, all megaideals

of g [128]. Recall that a megaideal of g is a vector subspace of g which is invariant under any

transformation from the group of automorphisms of g. Therefore, by determining megaideals of

the maximal Lie invariance algebra of the given differential equation and imposing the invari-

ance condition of these megaideals under the push-forwards of vector fields associated with the

point symmetries allows to restrict the general form of possible point symmetries already before

transforming the differential equation itself. After taking into account these initial restrictions,

it is usually much simpler to proceed with the splitting of the variables in the transformed

differential equation as described in the first paragraph.

In this section, the approach just outlined is demonstrated for the two-layer equation in

barotropic/baroclinic variables.

Theorem 5.1. The point symmetry group G of system (5.3) consists of transformations of the

form

t̃ = ε1t+ T0, x̃ = ε1x+ f(t), ỹ = ε2y + Y0,

ψ̃− = ε3ψ
− + Ψ−0 , ψ̃+ = ε2ψ

+ − 2ε1ε2fty + g(t),

where εi = ±1, i = 1, 2, 3; T0, Y0,Ψ
−
0 ∈ R and f and g are arbitrary smooth functions of t.

Proof. Recall that the maximal Lie invariance algebra of system (5.3) is the infinite dimensional

algebra g = 〈∂t, ∂y,X (f),F ,Z(g)〉, where f and g run through the set of smooth functions of t.

It is a solvable algebra since g′ = 〈X (f),Z(g)〉 and hence g′′ = {0}. In other words, the radical r

of g coincides with the entire g. The algebra g has the nontrivial center z = 〈X (1),F ,Z(1)〉.
The nil-radical of g is the ideal n = 〈∂y,X (f),F ,Z(g)〉. Indeed, this ideal is a nilpotent

subalgebra of g since n(2) = n′ = [n, n] = 〈Z(g)〉 and n(3) = [n, n′] = 0. A unique ideal of g

properly containing n is the entire algebra g itself, which is not nilpotent. This means that n is

the maximal nilpotent ideal.

In the calculations of G, we use the following megaideals of g: the entire algebra g, the

derived algebra g′, the nil-radical n, its derivative n′, the center z and their proper intersections,

z ∩ g′ = 〈X (1),Z(1)〉 and z ∩ n′ = 〈Z(1)〉.
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For the general point transformation

T : (t̃, x̃, ỹ, ψ̃−, ψ̃+) = (T,X, Y,Ψ−,Ψ+),

where T , X, Y , Ψ−, Ψ+ are functions of t, x, y, ψ−, ψ+ with the Jacobian not equal to zero,

to be a point symmetry of system (5.3), the associated push-forward T∗ of vector fields must

be an automorphism of g. In particular, T∗g = g, T∗g′ = g′, T∗n = n, T∗n′ = n′, T∗z = z,

T∗(z ∩ g′) = z ∩ g′ and T∗(z ∩ n′) = z ∩ n′.

Investigating the restrictions on T imposed by the invariance of z ∩ n′ under T∗, we have

T∗Z(1) = 2(Tψ+∂t̃ +Xψ+∂x̃ + Yψ+∂ỹ + Ψ−
ψ+∂ψ̃− + Ψ+

ψ+∂ψ̃+) = Z̃(a),

where a = const. This equation implies that Tψ+ = Xψ+ = Yψ+ = Ψ−
ψ+ = 0, Ψ+

ψ+ = a = const,

and a 6= 0. Then, from the transformation of the elements of n′ we conclude

T∗Z(g) = 2ag∂ψ̃+ = Z̃(g̃g),

where g̃g is a smooth function of t̃ related to g. Comparing coefficients, we find that ag(t) =

g̃g(T ). As g is an arbitrary smooth function of t, we can set g = t to obtain 2at = g̃t(T ).

Because of a 6= 0 and hence g̃t
t̃
6= 0, this implies that T = T (t) and Tt 6= 0.

In a similar manner, the condition

T∗X (1) = X̃ (b1) + Z̃(b2),

with b1, b2 = const follows from the invariance of z ∩ g′ with respect to T∗. It is spit into the

equations Yx = Ψ−x = 0, Xx = b1 = const and Ψ+
x = 2b2 = const, where b1 6= 0. The invariance

of g′ implies the condition

T∗X (f) = X̃ (f̃f ) + Z(g̃f ),

where f̃f and g̃f are smooth functions of t̃ related to f . Comparing coefficients in the last

condition immediately gives the additional equations b1f = f̃f (T ) and b2f −afty = −f̃f
t̃

(T )Y +

g̃f (T ). Taking into account the equality f̃f
t̃

= b1ft/Tt, we obtain that Y = Y 1(t)y + Y 0(t),

where Y 1 = aTt/b1 6= 0 and the precise expression of Y 0 is not essential for this time.

The push-forward of the remaining basis operator F of the center z by T implies

T∗F = X̃ (c1) + c2F + Z̃(c3),

where again c1, c2, c3 = const. From this condition, we can conclude that Xψ− = c1 = const,

Ψ−
ψ− = c2 = const and Ψ+

ψ− = 2c3 = const.

It remains to investigate the restrictions imposed by the push-forward of the basis operators

∂t and ∂y. The operator ∂t does not lie in the above proper megaideals. Hence, its push-forward

can be represented only as a general element of g:

T∗∂t = d1∂t̃ + d2∂ỹ + d3F̃ + X̃ (f̃) + Z̃(g̃),

for real constants d1, d2, d3 and smooth functions f̃ and g̃ of t̃. It is then straightforward to find

Tt = d1 = const, Yt = d2 = const and thus Y 1 = const and Y 0 = d2t + d4, where d4 = const.

Moreover, Ψ−t = 2d3 = const, Xt = f̃(T ) is a function of t and Ψ+
t = −2f̃t̃(T )ỹ + g̃(T ).
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Since the operator ∂y belongs to the megaideal n, its push-forward by T should take the form

T∗∂y = e1∂ỹ + e2F + X̃ (f̃y) + Z̃(g̃y),

with e1, e2 = const and f̃y and g̃y again being smooth functions of t̃. Comparing coefficients

implies Y 1 = e1, Ψ−y = 2e2, Ψ+
y = −2f̃y

t̃
(T )ỹ+ 2g̃y(T ) and Xy = f̃y(T ), which is a function of t.

As Xty = 0, Xy = const holds. Therefore, f̃y
t̃

= 0 and Ψ+
y depends only on t.

Collecting all constraints obtained so far and re-denoting the involved values, we obtain the

representation of the point transformations inducing automorphisms of g:

T = T1t+ T0, X = X1x+X2y +X3ψ
− + f(t), Y = Y1y + Y2t+ Y0,

Ψ− = Ψ−1 ψ
− + Ψ−2 y + Ψ−3 t+ Ψ−0 ,

Ψ+ = Ψ+
1 ψ

+ + Ψ+
2 x+ Ψ+

3 ψ
− + ϕ(t)y + g(t),

(5.4)

where T0, T1, X1, X2, X3, Y0, Y1, Y2, Ψ−0 , . . . , Ψ−3 , Ψ+
1 , . . . , Ψ+

3 are constants, T1X1Y1Ψ−1 Ψ+
1 6= 0,

X1Y1 = Ψ+
1 T1 and ϕt = −2Y1ftt.

We now have to take into account that the transformation T is a point symmetry of sys-

tem (5.3). Therefore, we should find explicit expressions for the derivatives of ψ̃− and ψ̃+ with

respect to the new variables t̃, x̃, ỹ. In view of the representation (5.4), the transformation rules

for the partial derivative operators read

∂t̃ =
1

T1

(
Dt −

DtX

DxX
Dx −

Y2

Y1

(
Dy −

DyX

DxX
Dx

))
,

∂x̃ =
1

DxX
Dx, ∂ỹ =

1

Y1

(
Dy −

DyX

DxX
Dx

)
.

The derivative ψ+
txy can only arise in the expression for ψ̃+

t̃ỹỹ
:

ψ̃+
t̃ỹỹ

= − 2

T1Y 2
1

DyX

DxX
ψ+
txy + · · · .

Since in the first equation of (5.3) there is no term with ψ+
txy, we consequently have DyX = 0,

which implies X2 = X3 = 0. Using this result, the transformation rules for the partial derivative

operators are essentially simplified:

∂t̃ =
1

T1

(
∂t −

ft
X1

∂x −
Y2

Y1
∂y

)
, ∂x̃ =

1

X1
∂x, ∂ỹ =

1

Y1
∂y.

Upon the substitution ψ+
xx = ∇2ψ+ − ψ+

yy, we obtain

∇̃2ψ̃+
t̃

=
1

T1

(
1

X2
1

∇2ψ+
t +

(
1

Y 2
1

− 1

X2
1

)
ψ+
tyy

)
+ · · · .

Since there is no extra term ψ+
tyy in the first equation of (5.3), we have X2

1 = Y 2
1 =: σ 6= 0.

To plug the transformed variables into system (5.3), it is convenient to write down the

expressions for the transformed potential vorticities Q̃− and Q̃+:

Q̃+ =
Ψ+

1

σ
(Q+ − 2βy) +

Ψ+
3

σ
(Q− + 2Fψ−) + 2β(Y1x+ Y2t+ Y0),

Q̃− =
Ψ−1
σ

(Q− + 2Fψ−)− 2F (Ψ−1 ψ
− + Ψ−2 y + Ψ−3 t+ Ψ−0 ).
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The further restrictions on the transformation T can be found by splitting the resulting equations

with respect to the variables t, x, y, ψ±x , ψ±y , Q±x and Q±y .

We start with the restrictions imposed from the transformation of the second equation of

system (5.3). The term with ψ−x Q
−
y arises after the expansion of ψ̃+

x̃ Q̃
−
ỹ + ψ̃−x̃ Q̃

+
ỹ . As Ψ−1 6= 0,

the corresponding coefficient, which is equal to Ψ+
3 Ψ−1 /(σX1Y1), vanishes if and only if Ψ+

3 = 0.

A term with ψ−t is contained only in the expression for Q̃−
t̃

. The corresponding coefficient

2FT−1
1 Ψ−1 (σ−1 − 1) also must be equal to zero, i.e., σ = 1 and hence X1 = ε1 = ±1 and

Y1 = ε2 = ±1. Splitting in a similar way with respect to ψ+
x and ψ−y , we respectively find that

Ψ−2 = 0 and Y1 = Ψ+
1 . As we already know that Y 1 = Ψ+

1 T1/X1, this implies that T1 = X1 = ε1.

From these restrictions, we can conclude the following form of the transformations:

T = ε1t+ T0, X = ε1x+ f(t), Y = ε2y + Y2t+ Y0,

Ψ− = Ψ−1 ψ
− + Ψ−3 t+ Ψ−0 , Ψ+ = ε2ψ

+ + Ψ+
2 x+ ϕ(t)y + g(t),

Q̃− = Ψ−1 Q
− − 2F (Ψ−3 t+ Ψ−0 ), Q̃+ = ε2Q

+ + 2β(Y2t+ Y0).

Substituting these transformations into the second equation of system (5.3), we find

Ψ−1
ε1

(
Q−t −

ft
ε1
Q−x −

Y2

ε2
Q−y

)
− 2F

ε1
Ψ−3 +

1

2ε1ε2
(ε2ψ

+
x + Ψ+

2 )Ψ−1 Q
−
y − (ε2ψ

+
y + ϕ)Ψ−1 Q

−
x )

+
Ψ−1
2ε1

(ψ−x Q
+
y − ψ−y Q+

x ) =
Ψ−1
ε1

(
Q−t +

1

2
(ψ+

x Q
−
y − ψ+

y Ψ−1 Q
−
x ) +

1

2
(ψ−x Q

+
y − ψ−y Q+

x )

)
.

Splitting of this equation immediately gives Ψ−3 = 0, ϕ = −2ε−1
1 ε2ft and Y2 = 1

2Ψ+
2 .

In a similar fashion, plugging these transformations into the first equation of system (5.3) we

obtain

ε2

ε1

(
Q+
t −

ft
ε1
Q+
x −

Y2

ε2
Q+
y

)
+

2β

ε1
Y2 +

1

2ε1ε2
((ε2ψ

+
x + Ψ+

2 )ε2Q
+
y − (ε2ψ

+
y + ϕ)ε2Q

+
x )

+
(Ψ−1 )2

2ε1ε2
(ψ−x Q

−
y − ψ−y Q−x ) =

ε2

ε1

(
Q+
t +

1

2
(ψ+

x Q
+
y − ψ+

y Q
+
x ) +

1

2
(ψ−x Q

−
y − ψ−y Q−x )

)
.

The symmetry condition implies Ψ−1 = ε3 = ±1, Y2 = 0 and consequently Ψ+
2 = 0. This

completes the proof of the theorem.

Remark 5.1. The continuous transformations generated by elements of the center z and only

such transformations from the point symmetry group of system (5.3) induce the identical auto-

morphism of the algebra g.

Remark 5.2. Comparing the results presented in Theorem 5.1 and Section 5.3 implies that

besides Lie point symmetries system (5.3) admits discrete point symmetries. The group of

discrete symmetries is generated by the mirror symmetries (t, x, y, ψ1, ψ2) 7→ (−t,−x, y, ψ1, ψ2),

(t, x, y, ψ1, ψ2) 7→ (t, x,−y,−ψ1,−ψ2) and (t, x, y, ψ1, ψ2) 7→ (t, x, y, ψ2, ψ1). Under the change of

the “barotropic/baroclinic variables” (ψ+, ψ−) by the “layered variables” (ψ1, ψ2), these discrete

symmetries are changed to the transformations mapping (t, x, y, ψ+, ψ−) to (−t,−x, y, ψ+, ψ−),

(t, x,−y,−ψ+,−ψ−) and (t, x, y, ψ+,−ψ−), respectively. They exhaust the independent discrete

symmetries of system (5.3) up to mutual composing and composing with continuous symmetries.

In spite of the proof of this claim involves cumbersome calculations, the discrete symmetries are

not essential for further consideration and hence will be neglected.
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5.5 Inequivalent subalgebras

To classify the inequivalent subalgebras of the maximal Lie invariance algebra g of the sys-

tem (5.1) (resp. the system (5.3)), we need the adjoint representation of the corresponding

Lie group on g. See e.g. [41, 115, 118] for details of classification techniques. We list only the

nontrivial actions associated with basis elements:

Ad(eεZ(g))∂t = ∂t + εZ(g′), Ad(eε∂t)Z(g) = Z(g(t− ε)),

Ad(eεX (f))∂t = ∂t + εX (f ′), Ad(eε∂t)X (f) = X(f(t− ε)),

Ad(eεX (f))∂y = ∂y − εZ(f ′), Ad(eε∂y)X (f) = X (f) + εZ(f ′).

The classification of inequivalent one-dimensional subalgebras is straightforward. An optimal

set of such subalgebras reads

A1
1 = 〈∂t + a∂y + bF〉, A1

2 = 〈∂y + X (f) + bF〉, A1
3 = 〈X (f) + Z(g) + bF〉, (5.5)

where a, b ∈ R and f and g are arbitrary functions of t.

The classification of the two-dimensional subalgebras yields the following list:

A2
1 = 〈∂t + κF , ∂y + X (ν) + Z(µ) + ρF〉,
A2

2 = 〈∂t + ν∂y + κF ,X (eσt) + Z(νσteσt)〉, σ 6= 0

A2
−1 = 〈∂t + ν∂y + κF ,Z(eσt)〉,
A2

3 = 〈∂t + ν∂y + κF ,X (1) + Z(µ) + ρF〉,
A2
−2 = 〈∂t + ν∂y + κF ,Z(1) + ρF〉, A2

−3 = 〈∂t + ν∂y,F〉,
A2

4 = 〈∂y + X (f) + κF ,X (1) + Z(g) + ρF〉, κρ = 0,

A2
−4 = 〈∂y + X (f),Z(g) + F〉, A2

−5 = 〈∂y + X (f) + κF ,Z(g)〉,
A2
−6 = 〈X (f1) + Z(g1) + κF ,X (f2) + Z(g2) + ρF〉,

(5.6)

where a, b, κ, µ, ν, ρ, σ = const and f , f1, f2, g, g1 and g2 are arbitrary functions of t. In

the final subalgebra the tuples (f1, g1, κ) and (f2, g2, ρ) must be linearly independent for the

subalgebra to really be two-dimensional. By the same reason, the parameter function g is not

identically equal to zero in A2
−5.

In fact, the above subalgebras are not single subalgebras but rather represent parameterized

classes of subalgebras. This is why it would be beneficial to indicate the list of parameters in

the notation of the corresponding algebras, but for the sake of brevity we omit this whenever

possible. For the classes A2
4, A2

−4, A2
5, A2

−5 and A2
−6 the adjoint actions and linear combinations

of basis elements induce equivalence relations on the corresponding sets of parameters. For

example, the subalgebras A2
−4(f, g) and A2

−4(f̃ , g̃) are equivalent if and only if f̃(t) = f(t − ε)
and g̃(t) = g(t− ε) for some ε ∈ R.

5.6 Invariant reduction with one-dimensional subalgebras

We present the complete list of submodels obtained under reduction using the list (5.5). For

each submodel, we again determine their Lie symmetries, thereby seeking for hidden symmetries

of the initial model. For a general discussion of the problem of hidden symmetries, see e.g. [1].

Throughout this section v1, v2, v+ and v− will be assumed as functions of p and q.
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5.6.1 Subalgebra A1
1

A suitable ansatz for reduction of (5.1) under the first subalgebra of (5.5) is given by ψ1 = v1+bt,

ψ2 = v2 − bt, where p = x, q = y − at. The corresponding reduced equations read

aw1
q − Fa

(
v1
q − v2

q − 2
b

a

)
− v1

p(w
1
q + β − F (v1

q − v2
q )) + v1

q (w
1
p − F (v1

p − v2
p)) = 0,

aw2
q + Fa

(
v1
q − v2

q − 2
b

a

)
− v2

p(w
2
q + β + F (v1

q − v2
q )) + v2

q (w
2
p + F (v1

p − v2
p)) = 0,

where wi = vipp+viqq, i = 1, 2. Considering again the admitted Lie symmetries of this system, we

find that the symmetry algebra is g1 = 〈∂p, ∂q, ∂v1 , ∂v2〉. All operators from the algebra g1 are

induced by Lie symmetry operators of the original system (5.1) and hence there are no purely

hidden symmetries. This is why we do not have to further reduce the above system by using

the Lie method. The Lie reductions of the reduced system with respect to one-dimensional

subalgebras of g1 are equivalent to Lie reductions of system (5.1) with respect to one of the

listed two-dimensional subalgebras of g. The two-dimensional reductions of system (5.1) are

exhaustively discussed in section 5.7.

5.6.2 Subalgebra A1
2

Reduction using A1
2. An ansatz associated with this subalgebra reads ψ1 = v1 − 1

2f
′y2 + by

and ψ2 = v2− 1
2f
′y2− by, where p = x− f(t)y and q = t. It reduces system (5.1) to the system

(Hv1
pp)q − f ′′ − F (v1

q − v2
q )− bF (v1

p + v2
p)− bHv1

ppp + βv1
p = 0,

(Hv2
pp)q − f ′′ + F (v1

q − v2
q ) + bF (v1

p + v2
p) + bHv2

ppp + βv2
p = 0,

where it was convenient to introduce the new notation

H = 1 + f2.

To simplify this system, we use the above mentioned barotropic/baroclinic variables, which

is particularly obvious for this submodel, since it is a linear system of differential equations. By

introducing w = v1 + v2 and v = v1 − v2 we are able to rewrite the resulting system via:

(Hwpp)q − 2f ′′ − bHvppp + βwp = 0,

(Hvpp)q − 2Fvq − 2bFwp − 2bHwppp + βvp = 0.
(5.7)

Note that this system may be derived directly by means of reduction of (5.3) under the ansatz

ψ+ = w(p, q)− f ′y2 and ψ− = v(p, q) + 2by, where p and q are defined as above.

The resulting system is now simplified in a way similar as presented in [17]. Namely, we

integrate once the first equation with respect to p yielding

(Hwp)q − 2f ′′p− bHvpp + βw + h(q) = 0,

where h is an arbitrary function of q = t. Then we apply the transformations of the unknown

functions

w = ŵ − 2
(Hf ′′)′

β2
+

2f ′′p

β
− h

β
, v = v̂ − 2bf ′

β
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and obtain the following system:

(Hŵp)q + βŵ − bHv̂pp = 0,

(Hv̂pp)q − 2F v̂q + βv̂p − 2b(Hŵppp + Fŵp) = 0.
(5.8)

First of all, we determine Lie symmetries of this system. As system (5.8) in fact is a class

of systems parameterized by the arbitrary function f = f(q) and the arbitrary constant b, it

is necessary to solve a group classification problem [118, 129, 131]. That is, for the complete

description of Lie symmetries it is necessary to seek for possible extensions of the Lie invariance

algebras for special values of the parameters f and b, respectively. Recall that β and F are

constant parameters which can be set to 1, so it is not required to also take into account the

classification problem with respect to β and F .

Group classification of the reduced systems. Conventionally, the first step in the procedure

of group classification is the identification of the kernel Gker of the maximal Lie invariance groups

of equations from class (5.8), i.e. the group which is admitted for any value of f and b. The

Lie algebra gker corresponding to Gker can be obtained by solving the determining equations for

Lie symmetries under the assumption of arbitrariness of f and b. The part of the determining

equations not including f and b can be immediately integrated yielding

ξp = ap+ c, ξq = aq + d, ηv̂ = k1v̂ + g1(p, q), ηŵ = k2ŵ + g2(p, q),

which are the coefficients of the most general infinitesimal generator of Lie symmetries ξp∂p +

ξq∂q + ηv̂∂v̂ + ηŵ∂ŵ, where a, c, d, k1, k2 = const. The part of the determining equations

explicitly including the parameters of (5.8) (the classifying part) in turn is:

(aq + d)H ′ − 2aH = 0, (aq + d)H ′′ − aH ′ = 0,

aHH ′ + (aq + d)HH ′′ − (aq + d)H ′2 = 0, b(k1 − k2) = 0,

(Hg2
p)q + βg2 − bHg1

pp = 0,

(Hg1
pp)q − 2Fg1

q + βg1
p − 2b(Fg2

p +Hg2
ppp) = 0.

(5.9)

It is straightforward to recover system (5.8) in the two last equations of system (5.9). For the

general values of f and b splitting of the above system yields the conditions a = 0, d = 0 and

k1 = k2 and hence gives rise to the Lie invariance algebra ggen
f,b generated by the operators

∂p, I = v̂∂v̂ + ŵ∂ŵ, L(g1, g2) = g1(p, q)∂v̂ + g2(p, q)∂ŵ,

where functions g1 and g2 run through the set of solutions of the system (5.8) for the fixed

values f and b. The Lie symmetry operators I and L(g1, g2) arise due to linearity of (5.8).

To investigate the problem of induced symmetries of system (5.8), we need to consider the

same problem for system (5.7) at first. Up to linear combining, for general values of f and b the

Lie symmetry operators of (5.7) induced by operators from g are exhausted by the operators

∂p, 2∂v̂ and g(q)∂ŵ, which are induced by X (1), F and Z(g), respectively. Here g runs through

the set of smooth functions of q. It is obvious that the operator ∂y + X (f) + bF induces the

zero operator. Additionally, if f = const the operator ∂t induces ∂q. Under integration of the

first equation of system (5.7), Lie symmetry transformations generated by g(q)∂ŵ for any fixed

g become equivalence transformations of the resulting system. By the above transformation to

the unknown functions v̂ and ŵ, we gauge the function h arising under integration to zero and
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hence break the invariance of system (5.8) with respect to operators of the form g(q)∂ŵ. This

is why any operator from ggen
f,b lying in the complement of the linear span of the operators ∂p,

2∂v̂ and g(q)∂ŵ and, additionally, ∂q in the case of f = const is a hidden symmetry of the initial

system.

The kernel algebra gker of class (5.8) is generated only by the operators ∂p, I and L(1, 0). This

is because the set of generators L(g1, g2) is different for every representative of the class (5.8)

as the form of systems from the class depends on values of f and b. However, it is not feasible

to linearly combine solutions of different systems from the class (5.8) that contradicts belong-

ing of L(g1, g2) to gker for arbitrary values of g1 and g2. Therefore, under solving the group

classification problem for the class (5.8) it is natural to investigate extensions with respect to

ggen
f,b rather than with respect to gker. In other words, we should find all inequivalent values of

the arbitrary elements f and b for which ggen
f,b is not the maximal Lie invariance algebra of the

corresponding system of the form (5.8). Here the inequivalence is to be understood with respect

to the equivalence group of the class (5.8).

For this purpose, it is necessary to solve the classifying part (5.9) of the determining equations

by taking into account for which forms of f and b an extension of ggen
f,b is admitted. It is obvious

that for b = 0, the generator I from ggen
f,b splits into the two generators v̂∂v̂ and ŵ∂ŵ. This split-

ting of I corresponds to the decoupling of the two equations (5.8). As the remaining classifying

part of the determining equations is independent of b, the extensions possible for different values

of H are essentially not affected whether or not the two equations (5.8) are coupled. In case

of b = 0 we simply consider extensions with respect to ggen
f,0 = 〈∂p, v̂∂v̂, ŵ∂ŵ,L(g1, g2)〉 rather

than to ggen
f,b . It is crucial to remark that from the first three equations of system (5.9) only the

first equation is independent. The other two equations are its differential consequences. As the

investigation of extensions must be done up to equivalence, it would be necessary to compute

the equivalence group of the class (5.8). However, it is obvious that this class admits scalings

and shifts of q as equivalence transformations. For this reason, we only have to distinguish

between the cases a 6= 0 and a = 0. In the case a 6= 0, we can set a = 1 and d = 0 by dividing

the equation by a and shifting of q. As a result, we have H = κq2, i.e., f = ±
√

κq2 − 1. The

extension of ggen
f,b is then given by the basis element p∂p+ q∂q which is a hidden symmetry of the

initial system (5.3). If a = 0, we have f = const and gmax
f,b = ggen

f,b + 〈∂q〉. Recall that operator

∂q in this case is induced by the operator ∂t.

The uncoupled system (b = 0). We now proceed by studying the case b = 0, which leads to

a decoupling of system (5.8):

(Hŵp)q + βŵ = 0, (Hv̂pp)q − 2F v̂q + βv̂p = 0. (5.10)

The change of variables

p̄ = p, q̄ =

∫
dq

H(q)
, v̄ = H(q)v̂, w̄ = H(q)ŵ,

allows to transform this system to

w̄p̄q̄ + βw̄ = 0, v̄p̄p̄q̄ − 2F (H−1v̄)q̄ + βv̄p̄ = 0. (5.11)

Analog to [17], in the first equation we recover the Klein–Gordon equation in light-cone variables.

For this system, we only have one possibility for Lie reduction. Namely, we can reduce (5.10) by

using the subalgebra 〈∂p̄ + λ1v̄∂v̄ + λ2w̄∂w̄〉, where we take into account that for the decoupled
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case b = 0 the generator v̂∂v̂ + ŵ∂ŵ of (5.8) splits into the two single operators v̂∂v̂ and ŵ∂ŵ
(note that v̂∂v̂ = v̄∂v̄ and ŵ∂ŵ = w̄∂w̄). The ansatz for reduction reads v̄ = ṽ(q̄)eλ1p̄ and

w̄ = w̃(q̄)eλ2p̄. It leads to the following system of ordinary differential equations

λ2w̃q̄ + βw̃ = 0, λ2
1ṽq̄ − 2F (H−1ṽ)q̄ + βλ1ṽ = 0.

The integration of the resulting system, the substitution of the obtained solution to the ansatz

and the inverse change of variables yields

ŵ =
c1

H
exp

(
λ2p−

β

λ2

∫
dq

H

)
, v̂ =

c2

H
exp

(
λ1p+

∫
2HqF + βλ1H

2F − λ2
1H

dq

H

)
.

Recall that H = 1+f2. For the values f = −l/k, where the constants k and l are wave numbers

and λ1 = λ2 = ik, i2 = −1, this solution reduces to the well-known Rossby waves in the two-

layer model. The solution for the barotropic mode ŵ describes a single barotropic Rossby wave,

which is independent of the vertical structure of the two-layer setting. In turn, the solution

for v̂ describes the evolution of the first baroclinic mode and explicitly depends on the vertical

layer structure via the parameter dependency on F , which accounts for the density difference

between the layers. Note that for a more general choice of the function f , this solution allows

to derive series of wave solutions in a similar way as it was possible for the barotropic vorticity

equation [17]. However, for f 6= const there arises an additional term proportional to y2 in

the solution of ψ+, which may violate the boundary conditions. Although such a violation of

the boundaries does not exist for the solution of ψ−, the global (i.e. large-scale) realization of

generalized Rossby waves is at once limited due to this restriction.

The case b = 0 shows that the classical Rossby wave solution can be recovered in two steps:

Firstly reducing with respect to the operator ∂y +X (f)+ bF and secondly performing reduction

to a system of ordinary differential equations using a hidden symmetry of the submodel received

in the first step.

Reduction with respect to the additional symmetries for special values f(q) = const and

f(q) = ±
√
Cq2 − 1 will not be considered here, because for a decoupled system it is be better to

construct exact solutions of each equation separately and then compose them to a solution of the

entire system. In our particular case, the single Klein–Gordon equation has a wider maximal Lie

invariance algebra than system (5.11), given by 〈∂p̄, ∂q̄, p̄∂p̄−q̄∂q̄, w̄∂w̄, g(p̄, q̄)∂w̄〉, where g runs

through the set of solutions of the Klein–Gordon equation. That is, we have more possibilities

for finding exact solutions by Lie methods. Fortunately, it is not necessary to do this in view of

large classes of exact solutions already known for the Klein–Gordon equation [125].

For the split system (5.11), it remains to determine the Lie symmetries and perform Lie

reductions of the second equation,

v̄p̄p̄q̄ − 2F (Av̄)q̄ + βv̄p̄ = 0, (5.12)

where A = H−1. The determining equations for the coefficients of the Lie symmetry operator

Q = ξp̄∂p̄ + ξp̄∂p̄ + η∂v̄ of Eq. (5.12) not involving A can be integrated to give

ξp̄ = −ap̄+ c, ξq̄ = aq̄ + d, η = kv̄ + g(p̄, q̄).

The remaining classifying part of the determining equations reads

(aq̄ + d)Aq̄ − 2aA = 0, aAAq̄ − (aq̄ + d)A2
q̄ + (aq̄ + d)AAq̄q̄ = 0. (5.13)
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Again, the second equation is a differential consequence of the first equation. For general A,

splitting of (5.13) leads to the two essential Lie symmetry generators ∂p̄ and v̄∂v̄ together with

the linearity operator L(g), where g runs through the set of solutions of (5.12).

Then, upon again solving the group classification problem, we find that the general solution

of (5.13) is A = C(aq̄ + d)2, where C = const. Note that at least one of the constants a and d

must not be equal to zero to guarantee that (5.13) is really a system in A. We then distinguish

two cases. (i) a 6= 0. We can scale a = 1 and shift q to set d = 0 and obtain the additional

generator q̄∂q̄− p̄∂p̄. (ii) a = 0, d 6= 0. In this case we find the additional generator ∂q̄. The first

operator again is a hidden symmetry, while the second generator is induced by ∂t. Note that

the case of A = 0 would yield wider symmetry extensions but cannot be realized in the present

case since by definition A 6= 0.

We now consider the Lie reductions of Eq. (5.12). For general A, the only nontrivial possibility

for reduction is given by ∂p̄ + λv̄∂v̄, which was already considered above. The solution is

v̄ = c exp

(
λp̄−

∫
βλ− 2FAq̄
λ2 − 2FA

dq̄

)
,

which can be combined with arbitrary solutions of the Klein–Gordon equation to yield a solution

of the decoupled system (5.11). It remains to investigate the Lie reductions due to the two

extensions q̄∂q̄ − p̄∂p̄ and ∂q̄.

In the first case we set A = Cq2. The maximal Lie invariance algebra of this case is given

by 〈q̄∂q̄ − p̄∂p̄, ∂p̄, v̄∂v̄,L(g)〉. There is one nontrivial one-dimensional subalgebra of this alge-

bra, which reads 〈q̄∂q̄ − p̄∂p̄ + λv̄∂v̄〉. The ansatz for reduction is v̄ = ṽ(r)qλ, where r = p̄q̄.

Correspondingly, the reduced form of Eq. (5.12) is given by

rṽrrr + (λ+ 2)ṽrr + (β − 2CFr)ṽr − 2CF (λ+ 2)ṽ = 0.

For λ = −2, this equation has a solution in terms of Whittaker functions Mm,n(r), Wm,n(r),

which reads

ṽ = C1

∫
Mm,n(

√
8CFr) dr + C2

∫
Wm,n(

√
8CFr) dr + C3,

where m = β(8CF )−1/2 and n = 1/2. Moreover, for λ = −k, k ∈ N, this equation admits

polynomial solutions.

In the second case of extension, we have A = const. Then, the maximal Lie invariance algebra

is generated by 〈∂q̄, ∂p̄, v̄∂v̄,L(g)〉. Again, one nontrivial one-dimensional subalgebra can be used

to carry out Lie reduction, which is 〈∂q̄ + κ∂p̄ + λv̄∂v̄〉. An appropriate ansatz for reduction is

v̄ = ṽ(r)eλq̄, where r = p̄− κq̄. Plugging this ansatz into (5.12), we find

κṽrrr − λṽrr − (2AFκ+ β)ṽr + 2AFλṽ = 0.

This is a linear, third-order ordinary differential equation with constant coefficients and thus

can be solved by standard methods. In particular, as κ, λ and A are arbitrary constants, we

can determine them upon prescribing a solution of the associated characteristic equation. This

allows to generate wide classes of solutions with rather different type, such as e.g. periodic wave

solutions.

The coupled system (b 6= 0). For the coupled case b 6= 0 the Lie reduction of system (5.8) is

quite similar to the case b = 0. For the sake of completeness, we list here all the reduced models

that are possible for different values of H.
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For general H, the only possibility for reduction is due to the generator Q = ∂p + λI.

The corresponding reduction ansatz is v̂ = v̄(q)eλp, ŵ = w̄(q)eλp. Plugging the ansatz into

system (5.8), one obtains

λHw̄q + (λHq + β)w̄ − bλ2Hv̄ = 0,

(λ2H − 2F )v̄q + (λ2Hq + βλ)v̄ − 2bλ(λ2 + F )w̄ = 0.

For H = κq2, the additional reduction using Q = p∂p + q∂q + λI is possible. Utilizing the

ansatz v̂ = v̄(r)qλ, ŵ = w̄(r)qλ, where r = pq−1 leads to the system

(λ+ 2)w̄r − rw̄rr + βw̄ − bv̄rr = 0,

rv̂rrr − λv̂rr + 2F (λ− r)v̂r − βv̂r + 2b(Fŵr + ŵrrr) = 0.

For H = const we can also reduce (5.8) using Q = ∂q + κ∂p + λI. The ansatz for reduction

is v̂ = v̄(r)eλq, ŵ = w̄(r)eλq where r = p− κq. The resulting model is

H(κw̄rr − λw̄r)− βw̄ + bHv̄rr = 0,

H(κv̄rrr − λv̄rr)− (2Fκ+ β)v̄r + 2Fλv̄ + 2b(Hw̄rrr + Fw̄r) = 0.

5.6.3 Subalgebra A1
3

Reduction using A1
3. For this subalgebra, it is convenient to start with barotropic/baroclinic

variables from the beginning. Since in the case f = 0 no Lie reduction is possible, we assume

that f 6= 0. An appropriate ansatz for reduction then reads

ψ+ = v+ − 2
f ′y − g
f

x, ψ− = v− + 2
b

f
x,

where p = y, q = t. Plugging this ansatz into system (5.3) gives reduction to the system:

v+
ppq −

f ′p− g
f

(v+
ppp + 2β) +

b

f
v−ppp = 0,

v−ppq − 2Fv−q −
f ′p− g
f

(v−ppp − 2Fv−p ) +
b

f
(v+
ppp + 2Fv+

p + 2β) = 0,

(5.14a)

where it can be seen that the coupling between the barotropic and baroclinic parts is again

provided only due to the existence of generator F . To solve this system, we integrate the first

equation twice with respect to p to yield

v+
q −

f ′p− g
f

v+
p + 2

f ′

f
v+ +

b

f
v−p −

1

3

f ′

f
βp3 +

βg

f
p2 + h1(q)p+ h0(q) = 0, (5.14b)

where h1 and h0 are arbitrary smooth functions of q. By means of the change of unknown

functions

v+ = v̂+ + γ2p3 + γ1(q)p+ γ0(q), v− = v̂− + δ2(q)p2 + δ1(q)p+ δ0(q),

where

γ2 = −β
3
, δ2 = −bβf2

∫
1

f3
dq,
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γ1 = − 1

f

∫
(2bδ2 + fh1)dq, δ1 = −2f

∫
gδ2

f2
dq,

γ0 = − 1

f2

∫
f(gγ1 + bδ1 + fh0)dq, δ0 =

1

F

∫
bFγ1 − gFδ1 + fδ2

q

f
dq,

we are able to reduce system (5.14) to the corresponding homogeneous form:

v̂+
q −

f ′p− g
f

v̂+
p + 2

f ′

f
v̂+ +

b

f
v̂−p = 0,

v̂−ppq − 2F v̂−q −
f ′p− g
f

(v̂−ppp − 2F v̂−p ) +
b

f
(v̂+
ppp + 2F v̂+

p ) = 0.

(5.15)

This set of equations can be simplified further using the transformation

p̃ = f(q)p−
∫
g(q) dq, q̃ = q, ṽ+ = v̂+, ṽ− = v̂−.

In the new variables, system (5.15) becomes

(f2ṽ+)q̃ + b(f2ṽ−)p̃ = 0,

(f2ṽ−p̃p̃ − 2F ṽ−)q̃ + b(f2ṽ+
p̃p̃ + 2F ṽ+)p̃ = 0.

(5.16)

The first equation of (5.16) can be used to introduce a potential variable, via Vp̃ = f2ṽ+ and

Vq̃ = −bf2ṽ−. Upon introducing q̄ =
∫
f2dq̃, the second equation then becomes

f2(f2Vp̃p̃q̄)q̄ − 2Ff2Vq̄q̄ − b2
(
Vp̃p̃p̃p̃ +

2F

f2
Vp̃p̃

)
= 0. (5.17)

The decoupled system (b = 0). The general solution of the decoupled system (5.16) is

v̂+ =
ζ1(p̃)

f2
, v̂− = ζ2(p̃) + ϑ1(q)e

√
2Fp + ϑ2(q)e−

√
2Fp,

where ζ1 and ζ2 are arbitrary functions of p̃ = f(q)p −
∫
g(q) dq and ϑ1 and ϑ2 are arbitrary

functions of q.

The coupled system (b 6= 0). Since it is possible to obtain the general solution for the

decoupled case of system (5.16) it is not necessary to investigate further Lie reductions for

this case. We hence perform this reduction solely for the case of b 6= 0. For this reason, it is

necessary to solve the group classification problem for system (5.16) under the assumption that

b 6= 0. As system (5.16) is linear, the procedure of group classification is done as described

in the previous section. The general form of a Lie symmetry operator of system (5.16) is

ξp̃∂p̃ + ξq̃∂q̃ + η+∂ṽ+ + η−∂ṽ− , where the coefficients are functions of p̃, q̃, ṽ+ and ṽ−. The

solution of the determining equation gives

ξp̃ = ap̃+ c, ξq̃ = aq̃ + d, η+ = kṽ+ + g1(q̃, p̃), η− = kṽ− + g2(q̃, p̃).

Additionally there is the single classifying equation (aq + d)fq − af = 0 (up to its differential

consequences). The case of arbitrary f leads to a = d = 0. The maximal Lie invariance algebra

in this case reads

〈∂p̃, I = ṽ+∂ṽ+ + ṽ−∂ṽ− , L(g̃1, g̃2) = g1(p̃, q̃)∂ṽ+ + g2(p̃, q̃)∂ṽ−〉,
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where (g1, g2) run through the set of solutions of system (5.16). The possible inequivalent

extensions of this algebra are given by f = const and f = Cq. The first case leads to the

extension of the above invariance algebra by ∂q̃, the second case gives an extension by p̃∂p̃+ q̃∂q̃.

It was shown before that by introducing a potential variable, system (5.16) can be converted

into the single equation (5.17) in conserved form. Since such an equation can have additional

symmetries compared to the original system, we also perform group classification of (5.17) (again

under the assumption that b 6= 0). Solving the determining equations for the coefficients of a

Lie symmetry operator ξp̃∂p̃ + ξq̄∂q̄ + ηV ∂V of (5.17) gives

ξp̃ = ap̃+ c, ξq̄ = 3aq̄ + d, ηV = αV + g(p̃, q̄),

together with the classifying equation (3aq̄ + d)f ′ − af = 0. For arbitrary f , this imme-

diately implies that a = d = 0 and hence gives rise to the maximal Lie invariance algebra

〈∂p̃, V ∂V , g(p̃, q̄)∂V 〉, where g is an arbitrary solution of (5.17). There are two inequivalent

extensions of this algebra, depending on either a 6= 0, d = 0 or a = 0, d 6= 0. Since scalings

and shifts in q are equivalence transformations, we may first set a = 1/3, d = 0 with f = C 3
√
q̄.

The additional generator then reads p̃∂p̃ + 3q̄∂q̄. The second case of extension is given by a = 0,

d = 1 leading to f = const with the corresponding additional generator ∂q̃.

Comparing this result with the classification of system (5.16), we see that all Lie symmetries

of the potential equation (5.17) are induced by Lie symmetries of (5.16) (note the change of

the variable q̃ in the potential case). That is, for the reduced system (5.16) no purely potential

symmetries associated with the potential equation (5.17) exist.

Now that we have investigated all symmetry extensions for particular values of f(q), it remains

to present the corresponding Lie reductions of (5.16). The only feasible way for reduction for

general f is due to the operator ∂p̃ + λI. The ansatz for reduction then is ṽ+ = v̄+(q̃)eλp̃ and

ṽ− = v̄−(q̃)eλp̃. The system of reduced equation reads

uq̃ + bf2λv̄− = 0, (f2λ2v̄− − 2F v̄−)q̃ + bλ

(
λ2 +

2F

f2

)
u = 0,

where u = f2v̄+. The case of λ = 0 gives only a trivial solution and will not be considered here.

For λ 6= 0 it is possible to solve the first equation for v̄−. Plugging the corresponding expression

into the second equation, the following homogeneous second order ordinary differential equations

with variable coefficients for u is obtained

uq̃q̃ + ϑ1(q̃)uq̃ + ϑ0(q̃)u = 0, ϑ1 = − 2f ′

f(1− f2)
, ϑ0 =

b2λ2

1− f2

f2λ2 + 2F

λ2 − 2F
.

Two more Lie reductions are possible for the particular values f = C = const and f = Cq.

In the first case, the maximal Lie invariance algebra reads 〈∂q̃, ∂p̃, I,L(g̃1, g̃2)〉. We aim to

reduce (5.16) using the generator Q = ∂q̃+κ∂p̃+λI. The ansatz for reduction is ṽ+ = v̄+(r)eλq̃,

where r = p̃− κq̃ and ṽ− = v̄−(r)eλq̃. Plugging this ansatz into (5.16), we obtain

κv̄+
r − λv̄+ − bv̄−r = 0,

C2(κv̄−rrr − λv̄−rr)− 2F (κv̄−r − λv̄−)− b(C2v̄+
rrr + 2Fv+

r ) = 0.

This is a coupled system of third order ordinary differential equations with constant coefficients

and thus can be solved explicitly using standard techniques.
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In the second case, the maximal Lie invariance algebra is given by 〈q̃∂q̃+ p̃∂p̃, ∂p̃, I,L(g̃1, g̃2)〉.
One-dimensional reduction is feasible using the generator Q = q̃∂q̃+p̃∂p̃+λI. The corresponding

ansatz for reduction is ṽ+ = v̄+(r)qλ and ṽ− = v̄−(r)qλ, where r = pq−1. This ansatz leads to

the following reduction of system (5.16):

rv̄+
r − (λ+ 2)v̄+ − bv̄−r = 0,

rv̄−rrr − (2C2 + C(λ− 2))v̄−rr − 2F (rv̄−r − λv−)− b(C2v̄+
rrr + 2F v̄+

r ) = 0.

Remark 5.3. Substituting back the solutions of the reduced equations into the ansatz for

the original unknown functions ψ+ and ψ−, we find that all solutions have time-dependent

polynomial parts in x and y. Since this part is not compatible with typical boundaries of

the two-layer equations (as discussed in section 5.8), only solutions for the restricted case of

b = g = 0, f = const might give candidate solutions that could be realized in the framework of

geophysical fluid dynamics. However, since the solution of the decoupled case b = 0 for g = 0,

f = const is rather trivial, it is not too interesting from the physical point of view.

5.7 Invariant reduction with two-dimensional subalgebras

In this section we present the reduction of (5.1) or (5.3) using the optimal set of two-dimensional

inequivalent subalgebras. We note in the beginning of this part, that not all subalgebras give

rise to classical group-invariant reduction. Namely, all subalgebras of list (5.6) with negative

subscript cannot be used in this respect. This is due to the impossibility of constructing ansatzes

for the dependent variables in these cases. However, these algebras would be well-suited for the

construction of partially-invariant solutions, but we do not pursue this idea further in this paper.

5.7.1 Subalgebra A2
1

An ansatz for group-invariant reduction using this subalgebra is ψ1 = v1(p) + κt+ (µ+ ρ)y and

ψ2 = v2(p)− κt+ (µ− ρ)y, where p = x− νy. System (5.1) is reduced under this ansatz to

−(ρ+ µ)(1 + ν2)v1
ppp + Fµ(v1

p − v2
p)− Fρ(v1

p + v2
p)− 2Fκ+ βv1

p = 0,

(ρ− µ)(1 + ν2)v2
ppp − Fµ(v1

p − v2
p) + Fρ(v1

p + v2
p) + 2Fκ+ βv2

p = 0.
(5.18)

Integrating once with respect to p, the above system becomes an inhomogeneous system of two

second order linear ordinary differential equations with constants coefficients, provided we screen

out the singular cases of ρ = µ = 0, ρ = µ ≥ 0, ρ = µ < 0, ρ = −µ ≥ 0 and ρ = −µ < 0.

The solution of this system in the nonsingular case is straightforward but a bit lengthy and is

therefore omitted here. Hence, we will focus on the listed singular cases only.

Case ρ = µ = 0. The solution of this case is

v1 =
2Fκ

β
p+ c1, v2 = −2Fκ

β
p+ c2,

which in the original variables ψ1, ψ2 gives a solution linear in x, y and thus represents a constant

wind field in both layers.

Case ρ = µ ≥ 0. This case leads to the semi-coupled system

2µ(1 + ν2)v1
ppp + 2Fµv2

p + 2Fκ− βv1
p = 0, 2Fµv2

p + 2Fκ+ βv2
p = 0,
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which is integrated to yield

v1 = c1 exp

(√
β

2µ(1 + ν2)
p

)
+ c2 exp

(
−

√
β

2µ(1 + ν2)
p

)
+

2Fκp

2Fµ+ β
+ c3,

v2 = − 2Fκp

2Fµ+ β
+ c4.

In the original variables, this represents a simple exponential solution and is thus unphysical.

Case ρ = µ < 0. The general solution in this case is

v1 = c1 cos

(√
β

2|µ|(1 + ν2)
p

)
+ c2 sin

(√
β

2|µ|(1 + ν2)
p

)
− 2Fκp

2F |µ| − β
+ c3,

v2 =
2Fκp

2F |µ| − β
+ c4,

which in the original variables represents a single (stationary) Rossby-wave in the above layer

and a constant velocity field in the lower layer. This is a typical situation, in the study of

baroclinic instability: An initial disturbance in the middle of the troposphere may start to grow

while the lower part of the troposphere does not exhibit any peculiarities. It is not before the

upper Rossby-wave starts unstable growth, that the lower layer also begins to show some wave-

like disturbances, which subsequently may lead to the onset of cyclogenesis. Hence, the above

exact solution may characterize the situation at the onset of baroclinic instability, where due to

external forcing a Rossby wave in the upper layer is generated, while the wind field in the lower

layer is still unaffected.

The cases ρ = −µ ≥ 0 and ρ = −µ < 0 give the same solutions as in the two previous cases,

except for interchanging the two layers, i.e. v1 ↔ v2 and permuting the sign of the linear in p

term.

5.7.2 Subalgebra A2
2

It is convenient to use at once the quasi-geostrophic equations in terms of barotropic/baroclinic

variables to perform the reduction. The ansatz we choose is: ψ+ = v1(p) − 2σpx and ψ− =

v2(p) + 2κt, where p = y − νt. Using these variables, the resulting submodel of (5.1) is:

(ν + σp)v1
ppp + 2bβp = 0, (ν + σp)v2

ppp − 2F (ν + σp)v2
p + 4Fκ = 0,

which is a decoupled system of third order linear ODEs. The case of b = 0 is trivial and will

not be considered here. For b 6= 0 the general solution is

v1 =
ν

σ
β ln(ν + σp)

(
p2 + 2

ν

σ
p+

ν2

σ2

)
− 1

3
β

(
p3 +

9ν

2σ
p2 +

6ν2

σ2
p+

3ν3

2σ3

)
+ c1p

2 + c2p+ c3,

v2 =
κ

σ

(
2 ln(ν + σp) + Ei

(√
2F
σ (ν + σp)

)
e
√
2F
σ

(ν+σp) + Ei
(
−
√

2F
σ (ν + σp)

)
e−
√
2F
σ

(ν+σp)
)

+ c4e
√

2Fp + c5e
−
√

2Fp + c6,

where Ei(z) =
∫∞
z t−1e−tdt denotes the exponential integral. In terms of the ψ+/ψ− variables

this solution is the superposition of some polynomial with an exponential function in y-direction.

From the meteorological point of view, this solution does not seem to be relevant.
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5.7.3 Subalgebra A2
3

Using the barotropic/baroclinic variables, the ansatz for reduction under this subalgebra is

ψ+ = v1(p) + 2µx,ψ− = v2(p) + 2κt+ 2ρx, where p = y − νt. The reduced system then is

(ν − µ)v1
ppp − ρv2

ppp − 2βµ = 0,

(ν − µ)v2
ppp − ρv1

ppp − 2F (ν − µ)v2
p − 2Fρv1

p + 4Fκ− 2βρ = 0.

This system is now completely integrable. The case ρ = 0, µ 6= ν leads to a decoupled system of

equations which can be integrated easily. The same also holds in the case ρ 6= 0, ν = µ. Hence,

we focus on the case where ρ 6= 0 and ν, µ are arbitrary. The first equation can be integrated at

once three times, yielding the relation between v1 and v2, given by

v2 =
1

ρ

(
(ν − µ)v1 − 1

3
βµp3 + c1p

2 + c2p+ c3

)
,

where c1, c2 and c3 are arbitrary constants. Then, integrating once the second equation and

substituting the expression for v2 produces a second order ordinary differential equation with

constant coefficients, from which we determine v1:

v1 = A1 sin

√
γ2

γ1
p+A2 cos

√
γ2

γ1
p− 1

γ2

(
δ3p3 + δ2p2 + δ1p+ δ0

)
+

γ1

(γ2)2
(6δ3p+ 2δ2)

where

γ2 = −2F

(
1

ρ
(ν − µ)2 + ρ

)
, γ1 =

1

ρ
(ν − µ)2 − ρ,

δ3 =
2Fβµ

3ρ
(ν − µ), δ2 = −2c1F

ρ
(ν − µ),

δ1 = −2

(
βµ+ c2F

ρ
(ν − µ)− (2Fκ− βρ)

)
, δ0 =

2(c1 − c3F )

ρ
(ν − µ) + c4.

provided that γ2/γ1 > 0. In the particular case of ν = µ, which leads to a considerable

simplification of the above solution, this condition is verified. In the case of γ2/γ1 < 0 we

can find a solution in terms of exponential functions, which is not presented here. Plugging

this solution into the ansatz for the original unknown functions, the above solution gives the

combination of a traveling wave in y-direction with a third order time-dependent polynomial in

x and y. For usual fixed boundaries in north–south direction, this is an unphysical solution.

5.7.4 Subalgebra A2
4

An appropriate ansatz for this subalgebra is ψ+ = v1(p) − f ′y2 − 2g(fy − x), ψ− = v2(p) +

2κy−2ρ(fy−x), p = t, where we have again employed the barotropic/baroclinic variables. This

ansatz enables reduction of (5.3) to the system

f ′′ − βg = 0, v2
p + 2κg − βρ

F
= 0.

The general solution of this system is

v1 = θ(p), v2 = −2κ

β
f ′ +

βρ

F
p+ c,
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where θ is an arbitrary function of p and c is an arbitrary constant. The first equation of

the reduced system is the compatibility condition of the initial system (5.3) and the invariant

surface equation corresponding to subalgebra A2
4. It implies the constraint g = f ′′/β for the

parameter functions f and g, which is the necessary and sufficient condition for system (5.3) to

have solutions invariant with respect to the algebra A2
4. This solution has no obvious physical

importance in dynamic meteorology. The reason is that this is a simple polynomial solution

with time-dependent coefficients. We note that the function θ can be set to zero due to gauging

of the stream functions generated by Z(g).

5.8 Invariant reduction of boundary value problems

In this part, we aim to discuss admitted symmetries in the presence of boundaries. It is com-

monly assumed that group-invariant solutions may describe the behavior of a system that is far

away from boundaries and hence a consideration of restrictions imposed by boundaries is usually

omitted. However, as was shown e.g. in [55, 80], there may be situations where the system with-

out boundaries is not simply the limit of a system with very distant boundaries. Consequently,

consideration of boundaries may be necessary even for a conceptual understanding of the model

evolution. Moreover, as was noted in the two previous sections, some of the group-invariant

solutions corresponding to the optimal sets of inequivalent subalgebras give rise to unphysical

solutions due to a violation of boundaries. We now compute those symmetries that are admitted

by the boundaries and hence discuss which solutions could be compatible with the boundary

value problem.

In the atmospheric sciences, for equations on the β-plane commonly a channel flow is as-

sumed, which implies rigid boundaries in north–south direction. In east–west direction, one

usually assumes periodic boundaries or an infinitely extended domain. In this setting, imposed

conditions for the two-layer model are

∂ψi
∂x

= 0,
∂

∂t

1

2L

L∫
−L

∂ψi
∂y

dx = 0 for y ∈ {0, Y }. (5.19)

The second condition implies conservation of circulation at the boundaries. According to [23]

for a boundary value problem to be invariant, three conditions must be satisfied: (i) invariance

of the equation, (ii) invariance of the domain, (iii) invariance of the values on the boundaries.

The first condition was already established in Section 5.3, so it remains to verify (ii) and (iii).

Although it is possible to solve this problem on the stage of the Lie algebra using the infinitesimal

method [23], we find it more comfortable to work with the finite group transformations. The

most general form of a continuous symmetry transformation of (5.1) is given by

(t, x, y, ψ1, ψ2) 7→ (t+ ε1, x+ f, y + ε2, ψ1 − f ′y + g + ε3, ψ2 − f ′y + g − ε3).

This transformation has to preserve both the domain and the boundary values. We now discuss

the channel flow with three possibilities for boundaries in east–west direction.

Infinite-domain. If there are no sidewalls in east–west direction, that is L → ∞, the most

general symmetry preserving the boundary value problem is given by

(t, x, y, ψ1, ψ2) 7→ (t+ ε1, x+ h(t), y, ψ1 − h′(t)y + g + ε3, ψ2 − h′(t) + g − ε3).
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where h is an arbitrary function of t with h′′ = 0. Hence, we have h = ε4t + ε5, leading to the

important result that Galilean boosts preserve the boundary value problem.

Periodic boundaries. For periodic boundaries, we have ψi(t,−L, y) = ψi(t, L, y). Similar

calculations as above imply that the boundary-preserving symmetry group is the same as for an

infinite-domain.

This shows that the Rossby wave solution is admitted by the boundary value problem. This

may serve as a “symmetry explanation” for the prominent occurrence of this solution in geo-

physical fluid dynamics.

Limited domain. The model of the limited domain in east–west direction is very natural in

oceanography but can be also realized in the atmospheric sciences as flow in a mountainous

region. For the purpose of simplicity, we assume a rectangular domain. Besides (5.19), this

setting requires the additional conditions

∂ψi
∂y

= 0,
∂

∂t

1

Y

Y∫
0

∂ψi
∂x

dy = 0 for x ∈ {−L,L},

where L and Y denote the length and the width of the rectangle, respectively. Symmetries that

are compatible with this boundary value problem are

(t, x, y, ψ1, ψ2) 7→ (t+ ε1, x, y, ψ1 + g + ε3, ψ2 + g − ε3).

Hence, the only group-invariant solution that can be realized on this domain is a stationary

solution.

5.9 Conclusion

In this paper, we have considered the baroclinic two-layer model from the viewpoint of sym-

metries. Lie point symmetries and discrete mirror symmetries were given and the former were

classified with respect to the adjoint action. Using the optimal sets of inequivalent one- and

two-dimensional subalgebras we performed reduction in one and two variables. This completely

solved the classical Lie problem for the two-layer equations. The procedure lead to various

classes of exact solutions, some of which are well-known in the atmospheric sciences, including

barotropic and baroclinic Rossby waves. Finally, also the two-layer boundary value problem was

investigated in the light of admitted Lie symmetries. We have obtained an analog result as was

found in [135] (see also [118, pp. 379]) for the Navier–Stokes equations, namely that periodic

boundary conditions admit Galilean boosts as symmetry transformations.

Although there is still a large number of obviously unphysical solutions, the study of the

classical Lie problem is a necessary first step for the consideration of partially invariant solutions

and nonclassical symmetries, which we save for future investigations. In addition, these solutions

are of undeniable value when it comes to a numerical implementation of the two-layer equations,

which can employ several kinds of boundary conditions. In this case, the obtained solutions can

be used as benchmark tests to assess the quality of the numerical scheme involved by addressing

issues such as convergence rates and the reproduction of correct phase space velocities of wave-

like solutions. Moreover, the Lie symmetries determined in this paper can be used to compute

differential invariants, which can again be used to extend the set of exact solutions, e.g. by

construction of differentially invariant solutions [46].
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From the mathematical point of view it is interesting to note that in all cases of reduction

the coupling of the two reduced equations is due to the “baroclinic” operator F = ∂ψ1 −
∂ψ2 . Moreover, in all cases of reduction, the equation for the baroclinic part of the system is

structurally more complicated than those for the barotropic part. It should also be stressed that

in the second and in the third case of reduction in one variable, the resulting (1+1)-dimensional

systems of partial differential equations became linear. That is, the linear superposition principle

is available for these equations. This allows to generate wide sets of exact solutions by linearly

combining different solutions and substituting them back into the ansatz for the original unknown

functions. Furthermore, there exists a number of special techniques for such linear equations.

One more method for obtaining exact solutions of linear partial differential equations can be

found in appendix 5.10.

Since the two-layer model is only capable of resolving the barotropic mode and the first

baroclinic mode, it would be interesting to study symmetry properties of multi-layer models.

This would be a preliminary step on the way to the investigation of a continuously stratified

atmosphere. On the other hand, from the standpoint of application, a deeper investigation

of layer models may even be more important than the three-dimensional system of governing

equations. This is true since numerical utilization of these equations calls for some discretization,

hence naturally leading back to the model of a layered atmosphere. Therefore, the present

investigation of the two-layer model may not only be interesting for historical reasons.

5.10 Appendix: Extended Lie reduction of linear PDEs

Consider a linear partial differential equation L: Lu = 0 in the unknown function u of n in-

dependent variables x = (x1, . . . , xn), where L is the associated linear differential operator. In

what follows we use the summation convention for repeated indices. The indices i, j and k run

from 1 to n, the indices a and b run from 1 to m.

Suppose that the equation L possesses a nontrivial Lie symmetry operator Q0 of the form

Q0 = ξi(x)∂xi + η(x)u∂u, where ξiξi 6= 0. Then for an arbitrary constant λ the equation L
obviously possesses also the vector field Qλ = Q0 +λu∂u as a nontrivial Lie symmetry operator.

By Q̂λ we denote the differential operator acting on functions of x and associated with the

operator Qλ, i.e., Q̂λ = −ξi(x)∂xi + η(x) + λ. For any m ∈ N the differential function (Q̂λ)mu

is well known to be a characteristic of a generalized symmetry of L, and hence any associated

generalized ansatz reduces the equation L to a system of m linear differential equations in m new

unknown functions of n−1 new independent variables invariant with respect to the operator Qλ.

In order to construct an ansatz, we should integrate the partial differential equation (Q̂λ)mu = 0.

The general solution of this equation gives the ansatz

u = h(x)eλθ
m∑
a=1

ϕa(ω)
θm−a

(m− a)!
, (5.20)

where ω = (ω1(x), . . . , ωn−1(x)) is a tuple of functionally independent solutions of the equation

ξiuxi = 0, which are assumed to be invariant independent variables, θ = θ(x) is a particular

solution of the equation ξiuxi = 1, h = h(x) is a particular nonvanishing solution of the equation

ξiuxi = ηu and ϕa = ϕa(ω) play the role of new unknown functions.

In view of the Lie invariance with respect to the operator Q0, the equation L is mapped by
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the point transformation

x̃1 = ω1(x), . . . , x̃n−1 = ωn−1(x), x̃n = θ(x), ũ =
u

h(x)

to the equation L̃ũ = 0, where the coefficients of the operator L̃ do not depend on x̃n. In the

new variables (x̃, ũ) the ansatz (5.20) takes the form

ũ = eλx̃n
m∑
a=1

ϕa(x̃1, . . . , x̃n−1)
x̃m−an

(m− a)!
. (5.21)

After substituting the ansatz (5.21) into the transformed equation L̃ũ = 0, dividing the resulting

equation by eλx̃n and subsequently splitting with respect to different powers of the variable x̃n,

we obtain, at least for the general value of λ, the system R of m differential equations with

respect to the functions ϕa in n− 1 independent variables (x̃1, . . . , x̃n−1). In singular cases, for

certain values of λ some of the equations are identities. The same reduction is obtained by the

substitution of the ansatz (5.20) into the initial equation L.

If the basic field is real, we can consider complex values of λ, construct the corresponding

complex exact solution and then take its real and imagine parts in order to obtain real solutions.

The above consideration has a nice interpretation within the framework of Lie symmetries.

Introducing the new dependent va = (Q̂λ)m−au, instead of the single mth order linear partial

differential equation (Q̂λ)mu = 0 for finding a generalized ansatz, we obtain the system of m

first order linear partial differential equations

Q̂λv
1 = 0, Q̂λv

a = va−1, a = 2, . . . ,m.

As Qλ is a Lie symmetry operator of the equation L, each function va satisfies this equation.

To give the interpretation, we consider the system S of m copies of the initial equation L

Lv1 = 0, . . . , Lvm = 0.

This system obviously possesses the operators Q̄0 = ξi(x)∂xi + η(x)va∂va and vb∂va as its Lie

symmetry operators. Consider a linear combination of these operators, Q̄Λ = Q̄0 + Λabv
b∂va ,

which is also a Lie symmetry operator of the system S. Here and in what follows Λab are

constants. Up to the equivalence generated by adjoint action of the Lie symmetry group of S on

the corresponding Lie invariance algebra and due to the linear superposition principle, we can

assume without loss of generality that the matrix Λ = (Λab) is the single m ×m Jordan block

with an eigenvalue λ,

Λ = Jmλ =



λ 1 0 0 · · · 0

0 λ 1 0 · · · 0

0 0 λ 1 · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1

0 0 0 0 · · · λ


.

The invariant surface condition for the operator Q̄Λ with Λ = Jmλ consists of the equations

ξiv1 = (η + λ)v1, ξiva = (η + λ)va + va−1, a = 2, . . . ,m,
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and an ansatz constructed with this operator has the form

va = h(x)eλθ
a∑
b=1

ϕb(ω)
θa−b

(a− b)!
, (5.22)

where the notation from the ansatz (5.21) is used. According to the general theory of Lie reduc-

tion [115], the ansatz (5.22) necessarily reduces the system S to a system in the functions ϕa,

which obviously coincides with the system R obtained by reducing the single equation L using

the generalized ansatz (5.20).

If the equation L is considered over the real field and the eigenvalue λ is complex, it is not

necessary to pass to the associated real Jordan block. As above, we can find the corresponding

complex exact solution and then take its real and imagine parts in order to construct real

solutions. This additionally justifies the usage of complex values of λ in the real case.

Example. For the general value of A, the second equation of system (5.11) admits only one

independent nontrivial Lie symmetry operator, ∂p. Consider a system of m copies of this equa-

tion:

vappq − 2(Ava)q + vap = 0, (5.23)

where for simplicity we have omitted bars over the variables and scaled F = 1 and β = 1. This

system admits the Lie symmetry operator Q̄Λ = ∂p + Λabv
b∂va , where Λ = Jmλ . The invariant

surface condition associated with Q̄Λ reads

v1
p = λv1, vap = λva + va−1, a = 2, . . . ,m.

Its general solution provides us with an appropriate ansatz for Lie reduction:

va = exp(λp)
a∑
b=1

ϕb(ω)
pa−b

(a− b)!
,

where ω = q = t is the invariant independent variable. Substituting this ansatz into system (5.23)

yields the system of ordinary differential equations for ϕa

Lϕ1 = 0,

Lϕ2 + 2λϕ1
q + ϕ1 = 0,

Lϕk + 2λϕk−1
q + ϕk−1 + ϕk−2

q = 0, k = 3, . . . ,m,

where the operator L is given by L := (λ2 − 2A)∂q − 2Aq + λ.

The solution of the above system is:

ϕ1 = c1e
−ζ ,

ϕ2 = c2e
−ζ + e−ζ

∫
ϕ1 + 2λϕ1

q

2A− λ2
eζ dq,

ϕk = cke
−ζ + e−ζ

∫
ϕk−1 + 2λϕk−1

q + ϕk−2
q

2A− λ2
eζ dq, k = 3, . . . ,m,

where

ζ =

∫
2Aq − λ
2A− λ2

dq.

In the special cases A = const and A = C1(q+C0)2, where C0, C1 = const, we can make more

generalized reductions of the equation under consideration, which involves operators extending

the Lie invariance algebra of the general case, cf. Section 5.6.2.
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Chapter 6

Summary and conclusions

In this part of the thesis we have used Lie symmetries to obtain exact solutions of some models

utilized in the atmospheric sciences. This is maybe the most classical way to employ symmetries

of partial differential equations, namely by carrying out group-invariant reduction. The entire

procedure is in principle fairly algorithmic. The Lie symmetries of a differential equation are

computable by solving an overdetermined linear system of partial differential equations. Auto-

matic solving algorithms for such systems have been implemented in all major computer algebra

systems since the last twenty years [26, 28, 51, 138]. The determination of the invariants of

subalgebras of the maximal Lie invariance algebra and the subsequent reduction of the given

differential equation are also straightforward tasks. Provided the differential equation is simpli-

fied enough to be explicitly integrated, it is again quite artless to produce some exact solutions

of the initial differential equation.

However, owing to the principally rather algorithmic nature of Lie reduction, there exist a

seemingly endless list of papers with unsystematic, incomplete, superfluous or even incorrect

results, see, e.g., the list of commented papers in the review [133] to get an idea of the extend

of this problem only in the most recent years. Needless to say that systematically performing

group-invariant reduction is not that simple. The computation of the optimal lists of inequiv-

alent subalgebras can be an error-prone task for complicated Lie invariance algebras. In some

instances, this system might even be amenable to further simplifications taking into account

discrete symmetries, which in principle also should be computed rigorously. Moreover, it has to

be kept in mind that a list of subalgebras that might be optimal from the algebraic point of view,

might not be optimal from the point of view of the reduction procedure. The construction of an

appropriate ansatz for reduction is also in some sense an elaborate exercise. It can happen that a

seemingly complicated ansatz simplifies the resulting reduced differential equation considerably.

The construction of the “optimal” ansatz for reduction therefore sometimes involves several steps

of substitution into the equation followed by modifications of the ansatz. It can as well be the

case that the reduction using several (classes of) Lie subalgebras, which are essentially different

from the algebraic point of view, can be treated jointly by introducing parameters in the ansatz.

Different values of these parameters then correspond to the single (classes of) subalgebras that

are considered together. This can shorten the list of reduced differential equations and thus

allows for a more efficient presentation of essential submodels. Furthermore, for each of the re-

duced submodels, the Lie symmetries should again be computed since at this stage one may find

symmetries that are not induced by the symmetries of the original differential equations (hidden

symmetries). This was the case in a number of the reductions carried out in this part. These
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additional symmetries can be used for further Lie reductions and often help to extend the list of

exact solutions of a given model. This is especially true for the reduction of a nonlinear differ-

ential equation to a linear one as there always arise the hidden symmetries corresponding to the

linear superposition principle. While these symmetries for themselves cannot be used for further

reduction (but they can in combination with nontrivial symmetries as shown in Section 5.10),

they allow one to linearly combine arbitrary solutions of the reduced linear differential equation,

which might lead to rather different solutions of the original nonlinear differential equation.

Although group-invariant solutions are often the only ones that can be obtained systemat-

ically for a given differential equation, it can be frequently observed that a great majority of

these solutions has no obvious physical importance. It should also be noted that a number of

solutions computed in this part is unphysical or only of secondary interest. In our case, the

main problem arises with the specific boundaries in the atmospheric sciences, such as those

associated to a channel flow. They at once render it impossible to realize the various poly-

nomial solutions obtained before on the entire domain of the fluid. The problem with specific

boundaries can be avoided by investigating invariant boundary value problems as discussed, e.g.,

in the textbook [23] and applied to the baroclinic two-layer problem in Section 5.8. However,

we do not necessarily favor this approach. Firstly, it usually greatly restricts the number of

admitted symmetries and hence the possibility to carry out group-invariant reduction. Even if

solutions of differential equations might not be physically meaningful they are nevertheless of

pure mathematical value. In addition, they still can be used as benchmark tests for numerical

discretization schemes where all kinds of boundary conditions can be implemented. This can

be an essential monitoring in the development of such numerical codes. Secondly, it is not im-

possible that although some solution might violate the boundary conditions they could still be

locally realizable, i.e. far away from the boundaries. Atmospheric flow is extremely complex and

not all of its features are yet completely understood. With Rossby waves and Rossby–Haurwitz

waves we have re-derived two very important exact solutions of two-dimensional incompressible

geophysical fluid mechanics using symmetry methods. There is no argument, why these solu-

tions should be the only ones obtainable using the Lie symmetry approach. Indeed, there are

numerous examples of invariant and partially invariant solutions of physical interest in hydro-

dynamics, see e.g. the solutions discussed in the textbook [6]. It thus could be a potentially

interesting task to evaluate real atmospheric data, searching for specific pattern that resemble

some of the solutions derived in this part. Of course this is not a simple problem. It is left open

for now but might be investigated in some later study.

It should be stressed that the previous paragraph might appear overly negative. Indeed,

symmetry methods have already proved their importance in geophysical fluid dynamics for a

long time. In fact, various scaling laws can be obtained by symmetry reductions using scale

symmetries.1 In dynamic meteorology, it is notable to mention the logarithmic wind law in

the planetary boundary layer in this context. Other scaling laws have been recently derived

in [114] for specific problems of hydrodynamics using Lie symmetries. In contrast to the rather

intuitive finding of scaling laws and exact solutions, which prevailed in meteorology over almost

the past hundred years, the classical Lie symmetry method has the great benefit to provide a

unifying and exhaustive way for obtaining all the invariant solutions of a differential equation.

This systematic and universal nature of the Lie symmetry approach, together with its reported

1For a review on scaling laws in connection with Lie symmetries, see the sections on the Pi-Theorem in the

textbooks [23, 115].
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success in classical hydrodynamics is why we consider it indispensable to further apply symmetry

methods and extend their range of applicability in the atmospheric sciences. Two further fields

in this direction are presented in the second and in the third part of the thesis. Hopefully other

fields will follow in the future.
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Chapter 7

Supplementary material

In the thesis, we have presented several optimal lists of one- and two-dimensional inequivalent

subalgebras. While the computation of one-dimensional subalgebras is relatively straightforward

for the Lie algebras we considered in the thesis, the classification of two-dimensional subalge-

bras takes some greater effort. In order to easily allow a verification of the calculations in the

previous chapters, we subsequently present two examples of classifications of two-dimensional

subalgebras. We detail the computations of the respective optimal lists of the barotropic po-

tential vorticity equation and the barotropic vorticity equation on the β-plane. The first equa-

tion admits an finite-dimensional Lie invariance algebra while the second equation possesses an

infinite-dimensional Lie invariance algebra. Since the classification of subalgebras of the other

equations in this part works in a very similar manner, we omit the corresponding details here.

7.1 Optimal list of subalgebras of the barotropic potential vor-

ticity equation

The classification of inequivalent one-dimensional subalgebras of the barotropic potential vortic-

ity equation was already given in Section 2.3.1. Since in the thesis we aimed to at most reduce

the given partial differential equations in three independent variables to ordinary differential

equations, for the potential vorticity equation we in addition only have to construct the optimal

list of two-dimensional subalgebras.

The general strategy for the classification of higher-dimensional subalgebras is similar to the

classification of one-dimensional subalgebras as described in [115]. The additional restriction is

that the linear span of each resulting set of operators must be closed under commutation. Thus,

besides simplification by means of the adjoint actions, also closure of the Lie algebra structure

has to be assured.

The maximal Lie invariance algebra of the barotropic potential vorticity equation (2.1) reads

D = t∂t − ψ∂ψ, vr = −y∂x + x∂y, vt = ∂t, vx = ∂x, vy = ∂y, vψ = ∂ψ.

The nonzero commutation relations are

[vt,D] = vt, [vψ,D] = −vψ, [vx,vr] = vy, [vy,vr] = −vx.

The nonidentical adjoint actions involving basis elements are exhausted by the followings:

Ad(eεvt)D = D − εvt, Ad(eεvψ)D = D + εvψ,
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Ad(eεD)vt = eεvt, Ad(eεD)vψ = e−εvψ,

Ad(eεvx)vr = vr − εvy, Ad(eεvy)vr = vr + εvx,

Ad(eεvr)vx = vx cos ε+ vy sin ε, Ad(eεvr)vy = − vx sin ε+ vy cos ε.

The starting point of our investigations are two linearly independent copies of the most general

infinitesimal generator,

v1 = a1
DD + a1

rvr + a1
tvt + a1

xvx + a1
yvy + a1

ψvψ,

v2 = a2
DD + a2

rvr + a2
tvt + a2

xvx + a2
yvy + a2

ψvψ,
(7.1)

where aiµ ∈ R, i = 1, 2 and µ ∈ {D, r, t, x, y, ψ}. The final purpose of the classification is a list

of inequivalent subalgebras that are maximally simplified due to an application of the above

adjoint actions.

Remark 7.1. In the classification of subalgebras, it is necessary to determine an appropriate

ordering of the single basis elements according to their importance for the algebra. The ordering

of operators was already suggested in Section 2.3.1, but without giving a precise explanations

for the choice made. In the present case, the ordering is suggested by the solvable structure of

the maximal Lie invariance algebra (2.3). The presence of the operator D in a subalgebra allows

to apply a number of adjoint actions which lead to simplifications in the respective algebra

(compare with the list of one-dimensional inequivalent subalgebras in Section 2.3.1 and with the

two-dimensional inequivalent subalgebras in Section 2.3.2 and below). Similar arguments also

hold for the operator vr. This justifies their respective ranks as the most principal operators.

Moreover, for the present purpose we aim to use the inequivalent subalgebras solely for the

sake of classical Lie reduction. Since reductions using algebras involving either vD or vt have a

similar degree of complexity, we rank vt as the third operator and before vx and vy. Another

argument is the following: In the classification of subalgebras it is necessary to make vanishing

and non-vanishing assumptions on the coefficients of basis elements of the maximal Lie invariance

algebra. These assumptions should be preserved under any adjoint action used in the course of

classification. However, due to the adjoint action Ad(eεvr), vanishing or non-vanishing conditions

on aix and aiy are not preserved. This is why it is beneficial to rank vx and vy rather in the

end of v. Finally, although from the algebraic point of view the operators vt and vψ have equal

importance, from the point of view of reduction, the operator vt is more important. This is

true, since the single operator vψ cannot be used for the purpose of Lie reduction. This is also

the reason why we list vx and vy before vψ.

In the subsequent part, we aim to use the following notation to shorten the resulting expres-

sions in the cases arising under classification of two-dimensional subalgebras,

Aµ1···µn :=

(
a1
µ1 · · · a1

µn

a2
µ1 · · · a2

µn

)
, (7.2)

where µi ∈ {D, r, t, x, y, ψ} and n < 6, is the 2 × n matrix consisting of the coefficients of

the respective basis elements in the generators v1 and v2. Correspondingly, the right-hand

side in vanishing conditions of the form Aµ1···µn = 0 should be understand as a zero matrix of

appropriate dimension.
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1. AD 6= 0. This is the first main assumption with which we start. Depending on the ranks of

the matrices AD···µn and ADµn+1 , we obtain several inequivalent cases of two-dimensional

subalgebras that are exhaustively presented below.

(a) detADr 6= 0. In this case, by a change of the basis we can set ADr = I, where I is the

identity matrix. By applying the adjoint actions Ad(eεvt), Ad(eεvψ), Ad(eεvx) and

Ad(eεvy), the two generators in (7.1) are simplified to1

v1 = D + a1
xvx + a1

yvy,

v2 = vr + a2
tvt + a2

ψvψ.

It is now necessary to assure closure of the algebra generated by v1 and v2. That is,

we must have [v1,v2] = av1 + bv2, where a, b ∈ R. Commuting the two vector fields

we obtain

[v1,v2] = −a2
tvt + a2

ψvψ + a1
xvy − a1

yvx = av1 + bv2.

This relation holds true only in case of a = b = 0, from which we conclude a2
t = a2

ψ =

a1
x = a1

y = 0. Hence, the representative of the class of equivalent subalgebras with

the assumption that detADr 6= 0 is 〈D,vr〉.
(b) detADr = 0, detADt 6= 0. These assumptions allow us to set ADt = I upon changing

the basis. Applying the adjoint action Ad(eεvψ) to the resulting generators v1 and

v2 in (7.1), we obtain

v1 = D + a1
rvr + a1

xvx + a1
yvy,

v2 = vt + a2
xvx + a2

yvy + a2
ψvψ.

(7.3)

It follows from (7.3) and the condition that [v1,v2] ∈ 〈v1,v2〉 that the commutation

relation must be [v1,v2] = −v2. Once more, two cases must be distinguished.

i. a1
r 6= 0. By using the adjoint actions Ad(eεvx) and Ad(eεvy), the operators (7.3)

are simplified to

v1 = D + a1
rvr,

v2 = vt + a2
xvx + a2

yvy + a2
ψvψ.

Commuting these two basis operators, we obtain

[v1,v2] = −vt + a2
ψvψ − a1

ra
2
xvy + a1

ra
2
yvx = −v2,

which holds provided that a2
ψ = a2

x = a2
y = 0. The resulting subalgebra is

〈D + a1
rvr,vt〉.

ii. a1
r = 0. We can use the adjoint action Ad(eεvr) to set a1

y = 0. Commutation of

the resulting operators (7.3) yields

[v1,v2] = −vt + a2
ψvψ = −v2,

from which we conclude a2
x = a2

y = a2
ψ = 0. The corresponding subalgebra then

reads 〈D + a1
xvx,vt〉.

1In principle, the coefficients of the basis elements in these two generators are not the same as before applying

the adjoint actions. To not overly confuse notation we have nevertheless decided to always use the same symbols

for these coefficients in the course of the calculations.

71



(c) rank(ADrt) = 1, rank(ADxy) = 2. Using changes of basis and adjoint action Ad(eεvr)

we can obtain ADx = I and a2
y = 0. By acting on the resulting operators with the

adjoint actions Ad(eεvt) and Ad(eεvψ) this simplifies (7.1) to

v1 = D + a1
rvr + a1

yvy,

v2 = vx + a2
ψvψ.

Commutation of these basis elements gives

[v1,v2] = −a2
ψvψ − a1

rvy = av1 + bv2,

and thus a1
r = a2

ψ = 0. The associated two-dimensional Lie subalgebra is 〈D +

a1
yvy,vx〉.

(d) rank(ADrtxy) = 1, detADψ 6= 0. In this case we can assume that ADψ = I by linearly

combining v1 and v2. Further simplification is possible by applying the adjoint

operator Ad(eεvt), which allows to set a1
t = 0. The simplified generators then are

v1 = D + a1
rvr + a1

xvx + a1
yvy,

v2 = vψ.
(7.4)

Again, splitting into two cases is necessary.

i. a1
r 6= 0. In this case, we can act on (7.4) by Ad(eεvx) and Ad(eεvy), which allows

us to set a1
x = a1

y = 0. Commutation places no further restriction on a1
r and

hence the resulting subalgebra is 〈D + a1
rvr,vψ〉.

ii. a1
r = 0. We can set a1

y = 0 upon acting on by the adjoint action Ad(eεvr).

Commuting the resulting generators yields zero and hence does not restrict a1
x.

The associated subalgebra reads 〈D + a1
xvx,vψ〉.

2. AD = 0, Ar 6= 0. There follow three different inequivalent subalgebras from these assump-

tions.

(a) detArt 6= 0. By changing the basis and applying the adjoint actions Ad(eεvx) and

Ad(eεvy) we arrive at

v1 = vr + a1
ψvψ,

v2 = vt + a2
xvx + a2

yvy + a2
ψvψ.

Taking the commutator of v1 and v2 gives

[v1,v2] = −a2
xvy + a2

yvx ∈ 〈v1,v2〉,

and thus a2
x = a2

y = 0. By means of the adjoint operator Ad(eεD) we can scale a1
ψ ∈

{−1, 0, 1}, or in the case of a1
ψ = 0 we can scale a2

ψ ∈ {−1, 0, 1}. The corresponding

subalgebra hence is 〈vr + a1
ψvψ,vt + a2

ψvψ〉, with scalings of a1
ψ and a2

ψ, respectively,

as described before.

(b) detArt = 0, rank(Arxy) = 2. The restriction that [v1,v2] ∈ 〈v1,v2〉 is not satisfied

for this case. The initial assumptions therefore lead to a contradiction.
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(c) rank(Artxy) = 1, detArψ 6= 0. Changing the basis and using the adjoint actions

Ad(eεvx) and Ad(eεvy) we obtain

v1 = vr + a1
tvt,

v2 = vψ,

which form an Abelian subalgebra. Acting on these generators by Ad(eεD) we get

the subalgebra 〈vr + a1
tvt,vψ〉, where a1

t ∈ {−1, 0, 1}.

3. AD = Ar = 0, At 6= 0. The splitting into two subcases is once more necessary.

(a) rank(Atxy) = 2. Simultaneously changing the basis and using the adjoint action

Ad(eεvr), we obtain

v1 = vt + a1
yvy + a1

ψvψ,

v2 = vx + a2
ψvψ.

Since this subalgebra is again Abelian, commuting v1 and v2 places no restrictions on

the coefficients a1
y, a

1
ψ and a2

ψ. However, using Ad(eεD) we can scale a1
ψ ∈ {−1, 0, 1},

or, in case of a1
ψ = 0, we can scale a2

ψ ∈ {−1, 0, 1} or a1
y ∈ {−1, 0, 1}. The resulting

subalgebra is 〈vt + a1
yvy + a1

ψvψ,vx + a2
ψvψ〉.

(b) rank(Atxy) = 1, detAtψ 6= 0. Changing the basis and acting on v1 and v2 by Ad(eεvr)

results in

v1 = vt + a1
xvx,

v2 = vψ.

Due to the vanishing commutator of v1 and v2, no further restrictions are placed on

a1
x. The resulting algebra therefore is 〈vt + a1

xvx,vψ〉. The action of Ad(eεD) again

allows scalings a1
x ∈ {−1, 0, 1}.

4. AD = Ar = At = 0, Axy 6= 0. For a complete consideration of this case, splitting into two

subcases is needed.

(a) detAxy 6= 0. Changing the basis, commuting v1 and v2 and finally employing

Ad(eεD), we obtain the subalgebra 〈vx + a1
ψvψ,vy + a2

ψvψ〉, where a1
ψ ∈ {−1, 0, 1},

or, a2
ψ ∈ {−1, 0, 1} in the case of a1

ψ = 0.

(b) detAxy = 0, detAxψ 6= 0. Again changing the basis and using Ad(eεvr), we recover

the subalgebra 〈vx,vψ〉.

This yields all the inequivalent two-dimensional subalgebras of the maximal Lie invariance al-

gebra of the barotropic potential vorticity equation listed in Section 2.3.2.
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7.2 Optimal list of subalgebras of the barotropic vorticity equa-

tion on the β-plane

The classification of an optimal list of one-dimensional subalgebras was already presented in our

master thesis [15]. It hence again only remains to detail the calculations of the two-dimensional

inequivalent subalgebras. We once more present the maximal Lie invariance algebra of the

vorticity equation on the β-plane:

D = t∂t − x∂x − y∂y − 3ψ∂ψ, ∂t, ∂y, X (f) = f(t)∂x − f ′(t)y∂ψ, Z(g) = g(t)∂ψ.

To perform classification up to equivalence, we again need the nonidentical adjoint actions:

Ad(eε∂t)D = D − ε∂t, Ad(eεX (f))D = D + εX (tf ′ + f),

Ad(eε∂y)D = D + ε∂y, Ad(eεZ(g))D = D + εZ(tg′ + 3g),

Ad(eεD)∂t = eε∂t, Ad(eεZ(g))∂t = ∂t + εZ(g′),

Ad(eεD)∂y = e−ε∂y, Ad(eεX (f))∂t = ∂t + εX (f ′),

Ad(eεX (f))∂y = ∂y − εZ(f ′), Ad(eε∂y)X (f) = X (f) + εZ(f ′),

Ad(eεD)X (f) = X (f̃), f̃ = e−εf(e−εt), Ad(eε∂t)X (f) = X (f̃), f̃ = f(t− ε),
Ad(eεD)Z(g) = Z(g̃), g̃ = e−3εg(e−εt), Ad(eε∂t)Z(g) = Z(g̃), g̃ = g(t− ε).

As before, we start with two linearly independent infinitesimal generators of the most general

form

v1 = a1
DD + a1

t∂t + a1
y∂y + X (f1) + Z(g1),

v2 = a2
DD + a2

t∂t + a2
y∂y + X (f2) + Z(g2),

(7.5)

where aiµ, i = 1, 2 and µ ∈ {D, t, y} are arbitrary real-valued constants and f i, gi, i = 1, 2 are

arbitrary time-dependent functions.

Remark 7.2. The ordering of vector fields in v1 and v2 chosen above can again be explained

with the solvable structure of the maximal Lie invariance algebra of the barotropic vorticity

equation. The operator D acts on all other operators and is thus the most principal one (for

using adjoint actions). The ordering of the remaining operators can be justified with a similar

argument. This is well-agreed with the elements of the derived series, g′, g′′ and g′′′, given in

Section 4.3. For the sake of Lie reduction, Z(g) is the least important operator, as it can only

be used to derive partially invariant solutions using the splitting of the vorticity equation as

discussed in Section 3.2.6.

The classification procedure is similar to those in the previous section. In particular, we aim

to use the matrix notation (7.2). The main difference is that we now have to deal with infinite-

dimensional Lie algebras. However, as is shown below, the main strategy of classification does

not change substantially.

1. AD 6= 0. We now investigate the different inequivalent subalgebras corresponding to this

initial assumption. As in the section before, it is necessary to consider a couple of subcases.

(a) detADt 6= 0. The change of basis allows us to put ADt = I. Applying the adjoint

actions Ad(eε∂y), Ad(eεX (f)) and Ad(eεZ(g)), the set of operators (7.5) is simplified to

v1 = D + X (f1) + Z(g1),
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v2 = ∂t + a2
y∂y.

Commuting v1 and v2 leads to

[v1,v2] = −∂t + a2
y∂y −X (f1

t )−Z(g1
t ) + a2

yZ(f1
t ) ∈ 〈v1,v2〉.

This forms a genuine Lie subalgebra if and only if a2
y = 0, f1 = const and g1 = const.

Since f1 and g1 are constants, we can act on the resulting algebra by Ad(eεX (f))

and Ad(eεZ(g)) where f and g are suitable chosen constants allowing to set f1 =

g1 = 0. Note that acting on the algebra by such operators has no effect on v2 and

correspondingly does not complicate its form. Accordingly, the resulting subalgebra

is 〈D, ∂t〉.

(b) detADt = 0, detADy 6= 0. Up to a change of the basis, it is possible to cast the

associated operators v1 and v2 into the form with ADy = I. The adjoint actions

Ad(eε∂t), Ad(eεX (f)) and Ad(eεZ(g)) simplify the corresponding version of (7.5) to

v1 = D,
v2 = ∂y + X (f2) + Z(g2).

The commutation of v1 and v2 yields

[v1,v2] = ∂y + X (tf2
t + f2) + Z(tg2

t + 3g2) = av1 + bv2.

From these two equalities, we can conclude that a = 0, b = 1 and therefore f2
t = 0

or f2 = c = const. In addition, g2 must be a solution of the differential equation

tg2
t + 2g2 = 0, which is solved by g2 ∝ t−2. By using the adjoint action Ad(eεX (f))

with f ∝ t−1 we can obtain g2 = 0. Moreover, this adjoint action acts identically on

v1. The subalgebra following from these assumptions thus is 〈D, ∂y + X (c)〉.

(c) rank(ADty) = 1, the tuples (a1
D, f

1) and (a2
D, f

2) are linearly independent. Since the

last tuples are linearly independent it is possible to cast them into the form (1, f1)

and (0, f2), respectively, where f2 6= 0. The adjoint actions Ad(eε∂t), Ad(eε∂y),

Ad(eεX (f)) and Ad(eεZ(g)) then lead to the following simplifications of (7.5):

v1 = D,
v2 = X (f2) + Z(g2).

Under commutation we find

[v1,v2] = X (tf2
t + f2) + Z(tg2 + 3g2) ∈ 〈v1,v2〉.

It first of all follows that [v1,v2] ∈ 〈v2〉. Furthermore, this commutation relation

places restrictions on f2 and g2 as they have to satisfy the ordinary differential equa-

tions tf2
t + f2 = (a + 1)f2 and tg2

t + 3g2 = (a + 1)g2, where a = const. Solving

these differential equations leads to the third algebra from the list of two-dimensional

subalgebras in Section 3.2.3, 〈D,X (|t|a) + cZ(|t|a−2)〉.

(d) rank (ADty) = 1, the tuples (a1
D, f

1) and (a2
D, f

2) are linearly dependent, the tuples

(a1
D, g

1) and (a2
D, g

2) are linearly independent. This is the final case to be treated

under the initial assumption AD 6= 0. The triples (aiD, f
i, gi), i=1,2, can then be

75



brought into the form a1
D = 1, a2

D = 0, f2 = 0 and g2 6= 0. Using the adjoint actions

Ad(eε∂t), Ad(eε∂y), Ad(eεX (f)) and Ad(eεZ(g)) we obtain

v1 = D,
v2 = Z(g2).

The commutation relation places the same restriction on g2 as before, so that we get

the subalgebra 〈D,Z(|t|a−2)〉.

2. AD = 0, At 6= 0. The subcases listed subsequently serve as an exhaustive investigation of

the subalgebras following from these assumptions.

(a) detAty 6= 0. This case implies that it is possible to set Aty = I. Moreover, the

adjoint actions Ad(eεX (f)) and Ad(eεZ(g)) allow to simplify the generators in the

corresponding form of (7.5) to

v1 = ∂t,

v2 = ∂y + X (f2) + Z(g2).

Taking the commutator gives

[v1,v2] = X (f2
t ) + Z(g2

t ),

which belongs to the linear span of v1 and v2 provided that f2 = a = const and g2 =

b = const. The associated two-dimensional subalgebra then is 〈∂t, ∂y +X (a) +Z(b)〉.
(b) detAty = 0, the tuples (a1

t , f
1) and (a2

t , f
2) are linearly independent. By linearly

combining v1 and v2 we can set a1
t = 1, a2

t = a2
y = 0. Again, the adjoint actions

Ad(eεX (f)) and Ad(eεZ(g)) permit some simplification of the generator v1 in (7.5).

We find

v1 = ∂t + a1
y∂y,

v2 = X (f2) + Z(g2).

As the commutation of v1 and v2 should belong to their linear span we have

[v1,v2] = X (f2
t ) + Z(g2

t )− a1
yZ(f2

t ) = aX (f2) + aZ(g2).

That is, the functions f2 and g2 satisfy the system of differential equations f2
t = af2

and g2
t = ag2 + a1

yf
2
t . Solving this system leads to the subalgebra 〈∂t + b∂y,X (eat) +

Z((abt+ c)eat)〉, up to re-denoting a1
y = b.

(c) The triples (a1
t , a

1
y, f

1) and (a2
t , a

2
y, f

2) are linearly dependent, the tuples (a1
t , g

1) and

(a2
t , g

2) are linearly independent. This case implies that we can a1
t = 1, a2

t = a2
y = 0

and f2 = 0. The simplification using Ad(eεX (f)) and Ad(eεZ(g)) is analog as before

and therefore leads to

v1 = ∂t + a1
y∂y,

v2 = Z(g2).

The restriction imposed by [v1,v2] implies that g2 ∝ eat and by once more re-denoting

a1
y = b we recover the subalgebra 〈∂t + b∂y,Z(eat)〉.
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3. AD = At = 0, Ay 6= 0. There follow two inequivalent classes of two-dimensional subalge-

bras from these assumptions.

(a) The tuples (a1
y, f

1) and (a2
y, f

2) are linearly independent. By recombining, we can

set them to be (1, f1) and (0, f2), respectively, where f2 6= 0. The adjoint action

Ad(eεX (f)) allows to cancel the operator Z(g1) in the first generator. The remaining

nonzero parts of v1 and v2 in (7.5) read

v1 = ∂y + X (f1),

v2 = X (f2) + Z(g2).

Under commutation we obtain

[v1,v2] = −Z(f2
t ),

from which we conclude that f2 = const. By rescaling v2 we can assume that f2 = 1.

The corresponding subalgebra is 〈∂y + X (f1),X (1) + Z(g2)〉.

(b) The tuples (a1
y, f

1) and (a2
y, f

2) are linearly dependent, the tuples (a1
y, g

1) and (a2
y, g

2)

are linearly independent. This case leads to the subalgebra 〈∂y +X (f1),Z(g2)〉 using

a change of the basis and the adjoint action Ad(eεX (f)).

4. AD = At = Ay = 0. For each tuple of linearly independent functions (f1, g1) and (f2, g2)

the final subalgebra reads 〈X (f1) + Z(g1),X (f2) + Z(g2)〉.

This is the complete classification of two-dimensional inequivalent subalgebras of the barotropic

vorticity equation on the β-plane presented in Section 3.2.3.

Remark 7.3. All but the subalgebra 〈D, ∂t〉 in the above classification represent classes of sub-

algebras rather than single subalgebras. It was already indicated in Section 3.2.3 that changes of

the basis and adjoint actions can generate additional equivalences inside the single elements of

optimal lists of inequivalent subalgebras. This is also the case for the two-dimensional inequiv-

alent subalgebras of the maximal Lie invariance algebra of the barotropic vorticity equation.
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Part II

Symmetries and parameterization

schemes
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Chapter 8

Symmetry preserving

parameterization schemes

Abstract General methods for the design of physical parameterization schemes that preserve

prescribed invariance properties of averaged differential equations are proposed. These

methods are based on techniques of group classification and provide means to determine

expressions for unclosed terms arising in the course of averaging of nonlinear differential

equations. For equations where no prescribed form of the unknown terms is given, symme-

try subgroups of the original differential equations are used to determine suitable differen-

tial invariants that can be used to construct closure schemes for the averaged differential

equations. This can be seen as an application of inverse group classification. For equations

where a general functional relation between the known and unknown terms can be estab-

lished, the direct group classification problem for classes of differential equations is solved.

This includes the computation of the equivalence algebra and the set of admissible transfor-

mations. Ansatzes based on inequivalent subalgebras of the equivalence algebra are used to

specify restricted forms of the given functional relation leading to closed equations with dif-

ferent symmetry properties. For classes that are normalized, this approach yields the entire

set of possible invariant parameterization schemes. The different methods are exemplified

with the barotropic vorticity equation. Parameterizations of the eddy vorticity flux in the

averaged vorticity equation are constructed using differential invariants. A general class

of parameterizations is proposed for which the equivalence algebra and the set of admis-

sible transformations is determined. This class is shown to be normalized. The kernels of

symmetry groups of two restricted classes of equations are computed. For these classes, pa-

rameterizations leading to equations admitting up to five-dimensional symmetry group ex-

tensions are constructed. The physical importance of these parameterizations is discussed.

8.1 Introduction

The problem of parameterization is one of the most important issues in modern dynamic me-

teorology and climate research [66, 148]. As even the most accurate present days numerical

models are not capable to resolve all small scale features of the atmosphere, there is a necessity

for finding ways to incorporate these unresolved processes in terms of the resolved ones. This

technique is referred to as parameterization. The physical processes being parameterized in

numerical weather and climate prediction models can be quite different, including e.g. cumulus
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convection, momentum, heat and moisture fluxes, gravity wave drag and vegetation effects. The

general problem of parameterization is intimately linked to the design of closure schemes for av-

eraged (or filtered) nonlinear equations. By averaging, a nonlinear differential equation becomes

unclosed, that is, there arise additional terms for which no prognostic or diagnostic equation

exist. These terms must hence be re-expressed in a physically reasonable way to be included in

the averaged equations.

It has been noted in [150] that every parameterization scheme ought to retain some basic

properties of the unresolved terms, which must be expressed by the resolved quantities. These

properties include, just to mention a few, correct dimensionality, tensorial properties, invariance

under changes of the coordinate system and invariance with respect to Galilean transformations.

While the formulation of a parameterization scheme with correct dimensions is in general a

straightforward task, not all parameterization schemes that have been used in practice are

indeed Galilean invariant. An example for this finding is given by the classical Kuo convection

scheme [78, 79]. In this scheme, it is assumed that the vertically integrated time-change of

the water vapor at a point locally balances a fraction of the observed precipitation rate [38,

pp. 528]. This also implies that the moisture convergence is proportional to the precipitation

rate. However, while the precipitation rate is clearly a Galilean invariant quantity, the moisture

convergence depends on the motion of the observer [70]. That is, the Kuo scheme does not

properly account for pure symmetry constraints, which is a potential source of unphysical effects

in the results of a numerical model integration.

The latter finding is the main motivation for the present investigations. Galilean invariance

is an important example for a Lie symmetry, but it is by no means the only invariance character-

istic that might be of importance in the course of the parameterization process. This is why it

is reasonable to focus on parameterization schemes that also preserve other symmetries. This is

not an academic task. Almost all real-world processes exhibit miscellaneous symmetry charac-

teristics. These characteristics are reflected in the symmetry properties of differential equations

and correspondingly should also be reflected in case where these processes cannot be explicitly

modeled by differential equations, i.e. in the course of parameterizations. What is hence desir-

able is a constructive method for the design of symmetry-preserving parameterization schemes.

It is the aim of this paper to demonstrate that techniques from group classification do provide

such constructive methods. In particular, we state the following proposition:

The problem of finding invariant parameterizations is a group classification problem.

The implications following from the above proposition form the core of the present study. It

appears that this issue was first opened in [112], dealing with the problem of turbulence closure of

the averaged Navier–Stokes equations. We aim to build on this approach and extend it in several

directions. As the equations of hydrodynamics and geophysical fluid dynamics usually possess

wide symmetry groups [6, 17, 20, 41, 63], the design of symmetry-preserving parameterizations

will in general lead to a great variety of different classes of invariant schemes.

Needless to say that the parameterization problem is too comprehensive both in theory and

applications to be treated exhaustively in a single paper. Therefore, it is crucial to restrict to a

setting that allows to demonstrate the basic ideas of invariant parameterizations without overly

complicating the presentation by physical or technical details. This is the reason for illustrating

the invariant parameterization procedure with the rather elementary barotropic vorticity equa-

tion. For the sake of simplicity, we moreover solely focus on local closure schemes in the present
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study. That is, the quantities to be parameterized at each point are substituted with known

quantities defined at the same respective point [150]. This renders it possible to thoroughly use

differential equations and hence it will not be necessary to pass to integro-differential equations,

as would be the case for nonlocal closure schemes. On the other hand, this restriction at once

excludes a number of processes with essential nonlocal nature, such as e.g. atmospheric con-

vection. Nevertheless, there are several processes that can be adequately described within the

framework of the present paper, most notably different kinds of turbulent transport phenomena.

The organization of this paper is the following: Section 8.2 discusses different possibilities

for the usage of symmetry transformations in the parameterization procedure, most noteworthy

the application of techniques of direct and inverse group classification. We restate some basic

results from the theory of group classification and relate them to the parameterization problem.

Section 8.3 is devoted to the construction of several parameterization schemes for the eddy

vorticity flux of the two-dimensional vorticity equation. Parameterization schemes admitting

subalgebras of the maximal Lie invariance algebra of the vorticity equation are constructed

using the techniques introduced in Section 8.2. A short discussion of the results of this paper is

presented in Section 8.4. In Appendix 8.5 details on the classification of the equivalence algebra

presented in Section 8.3 can be found.

8.2 The general idea

Throughout this paper, the notation we adopt follows closely that presented in the textbook [115].

Let there be given a system of differential equations

∆l(x, u(n)) = 0, l = 1, . . . ,m, (8.1)

where x = (x1, . . . , xp) denote the independent variables and the tuple u(n) includes all dependent

variables u = (u1, . . . , uq) as well as all derivatives of u with respect to x up to order n. Hereafter,

subscripts of functions denote differentiation with respect to the corresponding variables.

Both numerical representations of (8.1) as well as real-time measurements are not able to

capture the instantaneous value of u, but rather only provide some mean values. That is, to

employ (8.1) in practice usually requires an averaging or filter procedure. For this purpose, u is

separated according to

u = ū+ u′,

where ū and u′ refer to the averaged and the deviation quantities, respectively. The precise form

of the averaging or filter method used determines additional calculation rules, e.g., ab = āb̄+a′b′

for the classical Reynolds averaging. At the present stage it is not essential to already commit

oneself to a definite averaging method. For nonlinear system (8.1) averaging usually gives

expressions

∆̃l(x, ū(n), w) = 0, l = 1, . . . ,m, (8.2)

where ∆̃l are smooth functions of their arguments whose explicit form is precisely determined

by the form of ∆l and the chosen averaging rule. The tuple w = (w1, . . . , wk) includes all

averaged nonlinear combinations of terms, which cannot be obtained by means of the quantities

ū(n). These combinations typically include such expressions as u′u′, u′ū, u′u′x, etc., referred to
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as subgrid scale terms. Stated in another way, system (8.2) contains more unknown quantities

than equations. To solve system (8.2), suitable assumptions on w have to be made. An adequate

choice for these assumptions is the problem of parameterization.

The most straightforward way to tackle this issue is to directly express the unclosed terms w

as functions of the variables x and ū(r) for some r which can be greater than n. In other words,

system (8.2) is closed via

∆̃l(x, ū(n), f(x, ū(r))) = 0, l = 1, . . . ,m, (8.3)

using the relation ws = fs(x, ū(r)), s = 1, . . . , k. The purpose of this paper is to discuss different

paradigms for the choice of the functions f = (f1, . . . , fk) within the symmetry approach, where

k is the number of unclosed terms which are necessary to be parameterized. In other words, we

should carry out, in different ways, group analysis of the class (8.3) with the arbitrary elements

running through a set of differential functions. To simplify notation, we will omit bars over the

dependent variables in systems where parameterization of w is already applied.

Remark. In the theory of group classification, any class of differential equations is considered

in a jet space of a fixed order. That is, both the explicit part of the expression of the general

equation from the class and the arbitrary elements can be assumed to depend on derivatives up

to the same order. In contrast to this, for the construction of parameterization schemes it is

beneficial to allow for varying the orders of arbitrary elements while the order of the explicitly

resolved terms is fixed. This is why we preserve different notations for the orders of derivatives

in the explicit part of the expression of the general equation and in the arbitrary elements of

the class (8.3).

8.2.1 Parameterization via inverse group classification

Parameterizations based on Lie symmetries appear to have been first investigated for the Navier–

Stokes equations. It was gradually realized that the consideration of symmetries plays a key role

in the construction of subgrid scale models for the Navier–Stokes equations to allow for realistic

simulations of flow evolution. See [112, 113] for a further discussions on this subject. The

approach involving symmetries for the design of local closure schemes, was later extended in [136,

137] in order to also incorporate the second law of thermodynamics into the consideration.

For an arbitrary system of differential equations, this approach can be sketched as follows:

First, determine the group of Lie point symmetries of the model to be investigated. For common

models of hydro-thermodynamics these computations were already carried out and results can be

found in collections like [63]. Subsequently, determine the differential invariants of this group. If

the left hand side of system (8.2) is formulated in terms of these invariants by an adequate choice

of the function f , it is guaranteed that the parameterized system will admit the same group

of point symmetries as the unfiltered system. Usually the above procedure leads to classes of

differential equations rather than to a single model. That is, among all models constructed this

way it is be possible to select those which also satisfy other desired physical and mathematical

properties.

The procedure outlined above can be viewed as a special application of techniques of in-

verse group classification. Inverse group classification starts with a prescribed symmetry group

and aims to determine the entire class of differential equations admitting the given group as

a symmetry group [118]. Thus, in [112, 113, 136, 137] it is assumed that the closure scheme
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for the subgrid scale terms leads to classes of differential equations admitting the complete Lie

symmetry group of the Navier–Stokes equations. From the mathematical point of view, this

assumption is justified as filtering (or averaging) of the Navier–Stokes equations introduces a

turbulent friction term among the viscous friction term that already appears in the unfiltered

equations. That is, filtering does not principally perturbs the structure of the Navier–Stokes

equations. However, this assumption may not be as well justified if a model is chosen, where fil-

tering leads to terms of forms not already included in the unfiltered model. In such cases, it may

be more straightforward to solve the parameterization problem by inverse group classification

only with respect to particular subgroups of the symmetry group of the initial model.

The approach of inverse group classification usually relies on the notion of differential invari-

ants [115, 118]. Differential invariants are defined as the invariants of the prolonged action of a

given symmetry group. They can be determined either with the infinitesimal method [46, 118]

or with the technique of moving frames [31, 40, 116]. In the present paper we will use the former

method which is briefly described here for this reason.

Let X be the p-dimensional space of independent and U be the q-dimensional space of de-

pendent variables. The Lie group G acts locally on the space X × U , with g denoting the

associated Lie algebra of infinitesimal generators. (The whole consideration is assumed local).

Each element of g is of the form Q = ξi(x, u)∂xi + ϕa(x, u)∂ua . In this section the indices i and

j run from 1 to p while the indices a and b run from 1 to q, and the summation convention over

repeated indices is used. The space X ×U(r) is the rth prolongation of the space X ×U , which

is the space endowed with coordinates xi and uaα, |α| := α1 + · · · + αp < r, where uaα stands

for the variable corresponding to the derivative ∂|α|ua/∂xα1
1 . . . ∂x

αp
p , and α = (α1, . . . , αp) is an

arbitrary multiindex, αi ∈ N ∪ {0}. The action of G can be extended to an action on X × U(r)

and so the elements of g can be prolonged via

Q(r) = Q+
∑
α>0

ϕaα∂uaα , ϕaα := Dα1
1 · · ·D

αp
p (ϕa − ξiuαi ) + ξiuaα+δi

. (8.4)

Here Di = Dxi denotes the operator of total differentiation with respect to the variable xi, i.e.

Di = ∂xi +uaα+δi
∂uaα , where δi is the multiindex whose ith entry equals 1 and whose other entries

are zero. More details can be found in the textbooks [115, 117, 118].

A differential function f (i.e., a smooth function from X × U(r) to R for some r) is called an

(rth order) differential invariant of the point transformation group G if for any transformation

g : (x, u) 7→ (x̃, ũ) from G we have that f(x̃, ũ(r)) = f(x, u(r)). The function f is a differential

invariant of the Lie group G if and only if the equality Q(r)f = 0 holds for any Q ∈ g.

An operator δiDi, where δi are differential functions, is called an operator of invariant dif-

ferentiation for the group G if the result δiDif of its action to any differential invariant f of G

also is a differential invariant of G.

The Fundamental Basis Theorem states that any finite-dimensional Lie group (or, more

generally, any Lie pseudo-group satisfying certain condition) acting on X ×U possesses exactly

p operators of invariant differentiation, which are independent up to linear combining with

coefficients depending on differential invariants, and a finite basis of differential invariants, i.e.,

a finite set of differential invariants such that any differential invariant of the group can be

obtained from basis invariants by a finite number of functional operations and actions by the

chosen independent operators of invariant differentiation.

For a finite-dimensional Lie group G, the characteristic property of operators of invariant

differentiation is that each of them commutes with every infinitely prolonged operator from the
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corresponding Lie algebra g, i.e., [Q(∞), h
iDi] = 0 for any Q ∈ g. In this case the basis set of

p operators of invariant differentiation can be found by solving, with respect to the differential

functions hi = hi(x, u(r)), the system of first-order quasi-linear partial differential equations

Q(r)h
i = hjDjξ

i,

where Q runs through a basis of the corresponding Lie algebra g and r equals the minimum

order for which the rank of the prolonged basis operators of g coincides with its dimension.

Eventually, it may be convenient to determine hi in the implicit form Ωj(h1, . . . , hp, x, u(r)) = 0,

where det(Ωj
hi

) 6= 0 and Ωj satisfy the associated system of homogeneous equations(
Q(r) + (hi

′
Di′ξ

i)∂λi
)

Ωj = 0.

A systematic approach to parameterization via inverse group classification hence consists of

determining the basis differential invariants of a group together with the list of operators of

invariant differentiation. Subsequently, there are infinitely many parameterizations that can be

constructed, which admit the given group as a symmetry group.

8.2.2 Parameterization via direct group classification

The main assumption in the approach presented in [112, 137] is that a realistic subgrid scale

model for the Navier–Stokes equations should admit the symmetry group of the original equa-

tions. However, this assumption is rather restrictive in more general situations. While it is true

that a filtered model should be a realistic approximation of the unfiltered equations, parameter-

ization schemes also have to take into account physical processes for which we may not have a

precise understanding yet. That is, one eventually has to face the problem to deal with processes

for which we may not even have a differential equation. This particularly means that a fixed set

of symmetries (as for the Navier–Stokes equations) may not be obtainable.

On the other hand, symmetries do provide a useful guiding principle for the selection of

physical models. As nature tends to prefer states with a high degree of symmetry, a general

procedure for the derivation of symmetry-preserving parameterization schemes seems reason-

able. The only crucial remark is, that we may not know in advance, which symmetries are most

essential for capturing the characteristics of the underlying physical processes. For such prob-

lems, application of inverse group classification techniques is at once limited. Rather, it may be

beneficial to derive parameterization schemes admitting different symmetry groups and subse-

quently test these various schemes to select among them those which best describe the processes

under consideration. That is, instead of expressing the tuple w in system (8.2) using differential

invariants of a symmetry group of the unfiltered equations (or another convenient symmetry

group) from the beginning, we investigate symmetries of system (8.3) for different realizations

of the functions f which are eventually required to satisfy some prescribed conditions. This way,

we could be interested in special classes of parameterizations, such as, e.g., time- or spatially

independent ones. This naturally leads back to the usual problem of direct group classification:

Let there be given a class of differential equations, parameterized by arbitrary functions. First

determine the symmetries admitted for all choices of these functions, leading to the kernel of

symmetry groups of the class under consideration. Subsequently, investigate for which special

values of these parameter-functions there are extensions of the kernel group [118, 131].

To systematically carry out direct group classification, it is necessary to determine the equiv-

alence group of the class, i.e. the group of transformations mapping an equation from the
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class (8.3) to an equation from the same class. Classification of extensions of the kernel group

is then done up to equivalence imposed by the equivalence group of the class (8.3).

The continuous part of the equivalence group can be found using infinitesimal methods in

much the same way as Lie symmetries can be found using the infinitesimal invariance criterion.

This firstly yields the equivalence algebra, the elements of which can then be integrated to give

the continuous equivalence group. See [118, 131] for more details on this subject.

We now formalize the method reviewed in the previous paragraphs. Let there be given a

class of differential equations of the form (8.3), ∆̃l(x, ū(n), f(x, ū(r))) = 0, l = 1, . . . ,m. The

arbitrary elements f usually satisfy an auxiliary system of equations S(x, u(r), f(ρ)(x, u(r))) = 0,

S = (S1, . . . , Ss), and an inequality Σ(x, u(r), f(ρ)(x, u(r))) = 0, where f(ρ) denotes the collection

of f and all derivatives of f with respect to the variables x and u(r) up to order ρ. The

conditions S = 0 and Σ 6= 0 restrict the generality of f and hence allow the design of specialized

parameterizations. We denote the solution set of the auxiliary system by S, the system of

form (8.3) corresponding to an f ∈ S by Lf and the entire class of such system by L|S .

The set of all point transformations that map a system Lf to a system Lf̃ , where both

f, f̃ ∈ S is denoted by T(f, f̃) and is referred to as the set of admissible transformations from

the system Lf to the system Lf̃ . The collection of all point transformations relating at least

two systems from the class L|S gives rise to the set of admissible transformations of L|S .

Definition 8.1. The set of admissible transformations of the class L|S is the set

T(L|S) = {(f, f̃ , ϕ) | f, f̃ ∈ S, ϕ ∈ T(f, f̃)}.

That is, an admissible transformation is a triple, consisting of the initial system (with ar-

bitrary elements f), the target system (with arbitrary elements f̃) and a mapping ϕ between

these two systems.

The usual equivalence group G∼ = G∼(L|S) of the class L|S is defined in a rigorous way in

terms of admissible transformations. Namely, any element Φ from G∼ is a point transformation

in the space of (x, u(r), f), which is projectable on the space of (x, u(r′)) for any 0 ≤ r′ ≤ r, so

that the projection is the r′th order prolongation of Φ|(x,u), the projection of Φ on the variables

(x, u), and for any arbitrary elements f ∈ S we have that Φf ∈ S and Φ|(x,u) ∈ T(f,Φf). The

admissible transformations of the form (f,Φf,Φ|(x,u)), where f ∈ S and Φ ∈ G∼, are called

induced by transformations from the equivalence group G∼. Needless to say, that in general not

all admissible transformations are induced by elements from the equivalence group. Different

generalizations of the notion of usual equivalence groups exist in the literature [95, 131]. By g∼

we denote the algebra associated with the equivalence group G∼ and call it the equivalence

algebra of the class L|S .

After clarifying the notion of admissible transformations and equivalence groups, we move on

with the description of a common technique in the course of group analysis of differential equa-

tions, namely the algebraic method. Within this method one at first should classify inequivalent

subalgebras of the corresponding equivalence algebra and then solve the inverse group classifi-

cation problem for each of the subalgebras obtained. This procedure usually yields most of the

cases of extensions and therefore leads to preliminary group classification (see, e.g., [64, 65, 156]

for applications of this technique to various classes of differential equations).

The algebraic method rests on the following two propositions [36]:

Proposition 8.1. Let a be a subalgebra of the equivalence algebra g∼ of the class L|S , a ⊂ g∼,

and let f0(x, u(r)) ∈ S be a value of the tuple of arbitrary elements f for which the algebraic
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equation f = f0(x, u(r)) is invariant with respect to a. Then the differential equation L|f0 is

invariant with respect to the projection of a to the space of variables (x, u).

Proposition 8.2. Let ai be a subalgebra of the equivalence algebra g∼ and let Si be the subset of

S that consists of all arbitrary elements for which the corresponding equations admit projections

of ai to the space (x, u) as Lie invariance algebras, i = 1, 2. Then the subalgebras a1 and a2

are equivalent with respect to the adjoint action of G∼ if and only if the subsets S1 and S2 are

mapped to each other by transformations from G∼.

The result of preliminary group classification is a list of inequivalent (with respect to the

equivalence group) members Lf of the class L|S , admitting symmetry extension of the kernel of

symmetry algebras using subalgebras of the equivalence algebra.

Although the algebraic method is a straightforward tool to derive cases of symmetry exten-

sions for classes of differential equations with arbitrary elements, there remains the important

question when it gives complete group classification, i.e., preliminary and complete group clas-

sification coincide. This question is of importance also for the problem of parameterization,

as only complete group classification will lead to an exhaustive description of all possible pa-

rameterization schemes feasible for some class of differential equations. The answer is that the

class under consideration should satisfy the following property: The span of maximal Lie invari-

ance algebras of all equations from the class is contained in the projection of the corresponding

equivalence algebra to the space of independent and dependent variables, 〈gf | f ∈ S〉 ⊂ Pg∼.

The above property is satisfied by all normalized classes of differential equations [131].

Definition 8.2. The class of equations L|S is normalized if ∀ (f, f̃ , ϕ) ∈ T(LS),∃Φ ∈ G∼ : f̃ =

Φf and ϕ = Φ|(x,u).

Additionally, if the class of equations L|S is normalized then the group classification of equa-

tions from this class up to G∼-equivalence coincides with the group classification using the

general point transformation equivalence. Due to this fact we have no additional equivalences

between cases obtained under the classification up to G∼-equivalence. As a result, solving the

group classification problem for normalized classes of differential equations is especially conve-

nient and effective.

In turn, depending on normalization properties of the given class (or their lacking), different

strategies of group classification should be applied [131]. For a normalized class, the group clas-

sification problem is reduced, within the infinitesimal approach, to classification of subalgebras

of its equivalence algebra. A class that is not normalized can eventually be embedded into a

normalized class which is not necessarily minimal among the normalized superclasses. One more

way to treat a non-normalized class is to partition it into a family of normalized subclasses and

to subsequently classify each subclass separately. If a partition into normalized subclasses is

difficult to construct due to the complicated structure of the set of admissible transformations,

conditional equivalence groups and additional equivalence transformations may be involved in

the group classification. In the case when the class is parameterized by constant arbitrary ele-

ments or arbitrary elements depending only on one or two arguments, one can apply the direct

method of group classification based on compatibility analysis and integration of the determining

equations for Lie symmetries up to G∼-equivalence [118].
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8.3 Symmetry preserving parameterizations

for vorticity equation

The inviscid barotropic vorticity equations in Cartesian coordinates reads

ζt + {ψ, ζ} = 0 (8.5)

where {a, b} = axby−aybx denotes the usual Poisson bracket with respect the variables x and y.

The vorticity ζ and the stream function ψ are related through the Laplacian, i.e. ζ = ∇2ψ.

The two-dimensional wind field v = (u, v, 0)T is reconstructed from the stream function via the

relation v = k×∇ψ, where k is the vertical unit vector.

The maximal Lie invariance algebra g0 of the equation (8.5) is generated by the operators

D1 = t∂t − ψ∂ψ, ∂t, D2 = x∂x + y∂y + 2ψ∂ψ,

J = −y∂x + x∂y, Jt = −ty∂x + tx∂y + 1
2(x2 + y2)∂ψ,

X (γ1) = γ1(t)∂x − γ1
t (t)y∂ψ, Y(γ2) = γ2(t)∂y + γ2

t (t)x∂ψ, Z(χ) = χ(t)∂ψ,

(8.6)

where γ1, γ2 and χ run through the set of smooth functions of t. See, e.g. [6, 17] for further

discussions.

Reynolds averaging the above equation leads to

ζ̄t + {ψ̄, ζ̄} = ∇ · (v′ζ ′). (8.7)

The term v′ζ ′ = (u′ζ ′, u′ζ ′, 0)T is the horizontal eddy vorticity flux. Its divergence provides

a source term for the averaged vorticity equation. The presence of this source term destroys

several of the properties of (8.5), such as, e.g., possessing conservation laws. In this paper we

aim to find parameterizations of this flux term, which admit certain symmetries.

A simple choice for a parameterization of the eddy vorticity flux is given by the down-gradient

ansatz

v′ζ ′ = −K∇ζ,

where the eddy viscosity coefficient K still needs to be specified. Physically, this ansatz ac-

counts for the necessity of the vorticity flux to be directed down-scale, as enstrophy (integrated

squared vorticity) is continuously dissipated at small scales. Moreover, this ansatz will lead to a

uniform distribution of the mean vorticity field, provided there is no external forcing that coun-

teracts this tendency [91]. The simplest form of the parameter K is apparently K = K(x, y),

i.e. the eddy viscosity coefficient is only a function of space. More advanced ansatzes for K

assume dependence on ζ ′2, which is the eddy enstrophy [91] (see also the discussion in the re-

cent paper [92]). This way, the strength of the eddy vorticity flux depends on the intensity of

two-dimensional turbulence, which gives a more realistic model for the behavior of the fluid.

There also exist a number of other parameterization schemes that can be applied to the vortic-

ity equation, such as methods based on statistical mechanics [76] or the anticipated potential

vorticity method [140, 158].

In the present framework, we exclusively focus on first order closure schemes. This is why

we are only able to parameterize the eddy vorticity flux using the independent and dependent

variables, as well as all derivatives of the dependent variables. This obviously excludes the

more sophisticated and recent parameterization ansatzes of geophysical fluid dynamics from the
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present study. On the other hand, the basic method of invariant parameterization can already

be demonstrated for this rather simple model. Indeed, symmetries of the vorticity equation

employing the down-gradient ansatz or related parameterizations are investigated below using

both inverse and direct group classification. Physically more advanced examples for parame-

terizations can be constructed following the methods outlined in Section 8.2 and exemplified

subsequently.

8.3.1 Parameterization via inverse group classification

This is the technique by [112, 137] applied to the inviscid vorticity equation. In view of the

description of Section 8.2.1 this approach consists of singling out subgroups (subalgebras) of

the maximal Lie invariance group (algebra) of the vorticity equation and computation of the

associated differential invariants (via a basis of differential invariants and operators of invariant

differentiation). These differential invariants can then be used to construct different parameter-

izations of the eddy vorticity flux.

It is important to note that singling out subgroups of the maximal Lie invariance group of

the vorticity equation is a meteorological way of group classification. This is why it is neces-

sary to have a basic understanding of the processes to be parameterized before the selection

of a particular group is done (otherwise, we would have to face the problem of how to com-

bine these invariants to physically meaningful parameterizations). For the vorticity equation,

we demonstrate the basic mechanisms of parameterizations via inverse group classification by

singling out subgroups that allow to include the down-gradient ansatz of the previous section.

This choice is of course not unique as there exist various other possibilities for parameterizations

of the eddy vorticity flux. However, this choice allows us to demonstrate several of the issues of

parameterization via inverse group classification.

Invariance under the whole symmetry group. The most general case where invariance of

the parameterization under the whole symmetry group of the vorticity equation is desired can be

neglected for physical reasons. This is since it is impossible to realized, e.g. the down-gradient

ansatz described in the previous section within this framework. It can easily be checked that

the corresponding vorticity equation with parameterized eddy vorticity flux only admits one

scaling operator for any physically meaningful ansatz for K. In contrast to the example of the

Navier–Stokes equations discussed in [112], the vorticity equation hence does not allow physical

parameterizations leading to a closed model invariant under the same symmetry group as the

original vorticity equation. This is why it is beneficial to single out several subgroups of the

maximal Lie invariance group and consider the invariant parameterization problem only with

respect to these subgroups.

Explicit spatial dependency. If the two-dimensional fluid is anisotropic and inhomogeneous

the only subalgebra of (8.6) that can be admitted is

∂t, Z(χ) = χ(t)∂ψ.

Operators of invariant differentiation are Dt,Dx and Dy. A basis of invariants is formed by x,

y, ψx and ψy. If we express the right hand side of (8.7) in terms of differential invariants of the

above subalgebra, a possible representation reads

ζt + {ψ, ζ} = K(x, y)∇2ζ.
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Hence we assembled our parameterization using the (differential) invariants x, y, D3
xψx = ψxxxx,

D2
yDxψx = ψxxyy and D3

yψy = ψyyyy. This boils down to the usual gradient ansatz for the eddy

flux term, where the eddy viscosity K explicitly depends on the position in the space. Note,

however, that this ansatz is only one possibility which is feasible within this class of models.

Rotationally invariant fluid. In case the two-dimensional fluid is isotropic, the resulting

parameterized system should also admit rotations. Hence, we seek for differential invariants of

the subalgebra

J = −y∂x + x∂y, Jt = −ty∂x + tx∂y + 1
2(x2 + y2)∂ψ, ∂t, Z(χ) = χ(t)∂ψ.

The invariant differentiation operators are xDx + yDy, −yDx +xDy and Dt−ψyDx +ψxDy and

a basis of invariants consists of x2 + y2 and ψ2
x + ψ2

y . Within this class

ζt + {ψ, ζ} = K(r)∇2ζ,

where r =
√
x2 + y2 is realizable as a symmetry preserving parameterization.

In the same fashion it would be possible to derive classes of parameterizations that preserve,

e.g. (generalized) Galilean symmetry or a scaling symmetry but we do not derive them in this

paper.

8.3.2 Equivalence algebras of classes of generalized vorticity equations

In order to demonstrate different possible techniques, we present the details of the calculation

of the usual equivalence algebra g∼1 for the class of equations

ζt + {ψ, ζ} = Dif
i(t, x, y, ζx, ζy) = f ii + f iζjζij , ζ := ψii, (8.8)

where for convenience we introduce another notation for the independent variables, t = z0,

x = z1 and y = z2, and omit bars over the dependent variables. Throughout the section the

indices i, j and k range from 1 to 2, while the indices κ, λ, µ and ν run from 0 to 2. The

summation over repeated indices is understood. A numerical subscript of a function denotes the

differentiation with respect to the corresponding variable zµ.

In fact, the equivalence algebra of class (8.8) can be easily obtained from the much more

general results on admissible transformations, presented in Section 8.3.3. At the same time,

calculations using the direct method applied for finding admissible transformations are too com-

plicated and lead to solving nonlinear overdetermined systems of partial differential equations.

This is why the infinitesimal approach is wider applied and realized within symbolic calculation

systems. The usage of the infinitesimal approach for the construction of the equivalence algebra

of (8.8) has specific features richly deserving to be demonstrated here.
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Theorem 8.1. The equivalence algebra g∼1 of class (8.8) is generated by the operators

D̃1 = t∂t − ψ∂ψ − ζx∂ζx − ζy∂ζy − 2f1∂f1 − 2f2∂f2 , ∂t,

D̃2 = x∂x + y∂y + 2ψ∂ψ − ζx∂ζx − ζy∂ζy + f1∂f1 + f2∂f2 ,

J̃(β) = βx∂y − βy∂x +
βt
2

(x2 + y2)∂ψ + β(ζx∂ζy − ζy∂ζx)

+ (βttx− βf2)∂f1 + (βtty + βf1)∂f2 ,

X̃ (γ1) = γ1∂x − γ1
t y∂ψ, Ỹ(γ2) = γ2∂y + γ2

t x∂ψ,

R̃(σ) =
σ

2
(x2 + y2)(∂ψ + ζy∂f1 − ζx∂f2) + σtx∂f1 + σty∂f2 ,

H̃(δ) = δ(∂ψ + ζy∂f1 − ζx∂f2), G̃(ρ) = ρx∂f2 − ρy∂f1 , Z̃(χ) = χ∂ψ,

(8.9)

where β, γi, σ and χ are arbitrary smooth functions of t solely, δ = δ(t, x, y) is an arbitrary

solution of the Laplace equation δxx + δyy = 0 and ρ = ρ(t, x, y) is an arbitrary smooth function

of its arguments.

Remark. Although the coefficients of ∂ζx and ∂ζy can be obtained by standard prolongation

from the coefficients associated with the equation variables, it is necessary to include the corre-

sponding terms in the representation of the basis elements (8.9) in order to guarantee that they

commute in a proper way.

Remark. The operators G̃(ρ) and H̃(χ) − Z̃(χ) arise due to the total divergence expression

of the right hand side of the first equation in (8.8), leading to the gauge freedom in rewriting

the right hand side of the class (8.8). They do not generate transformations of the independent

and dependent variables and hence form the gauge equivalence subalgebra of the equivalence

algebra (8.9) [131]. The parameter-function ρ is defined up to summand depending on t.

Proof. As coordinates in the underlying fourth-order jet space J(4), we choose the variables

zµ, ψ, ψµ, ψµν , µ 6 ν, ψλµν , λ 6 µ 6 ν, (µ, ν) 6= (2, 2), ζµ,

ψκλµν , κ 6 λ 6 µ 6 ν, (µ, ν) 6= (2, 2), ζµν , µ 6 ν.

(Variables of the jet space and related values are defined by their notation up to permutation of

indices.) The variable ζ0 of the jet space is assumed principal, i.e., it is expressed via the other

coordinate variables (called the parametric ones) in view of equation (8.8). Under calculation we

also carry out the substitutions ψ22µ = ζµ−ψ11µ. To avoid repetition of the above conditions for

indices, in what follows we assume that the index tuples (µ, ν), (λ, µ, ν) and (κ, λ, µ, ν) satisfy

these conditions by default.

Due to the special form of the arbitrary elements f i, we have to augment equation (8.8) with

the following auxiliary system for f i:

f iψ = f iψµ = f iψµν = f iψλµν = f iζ0 = f iψκλµν = f iζµν = 0. (8.10)

As we compute the usual equivalence algebra rather than the generalized one [95] and the

arbitrary elements f i do not depend on fourth order derivatives of ψ, the elements of the algebra

are assumed to be vector fields in the joint space of the variables of J(3) and the arbitrary elements

f i, which are projectable to both the spaces (t, x, y, ψ) and J(3). In other words, the algebra

consists of vector fields of the general form

Q = ξµ∂µ + η∂ψ + ηµ∂ψµ + ηµν∂ψµν + ηλµν∂ψλµν + θµ∂ζµ + ϕi∂f i ,
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where ξµ = ξµ(t, x, y, ψ), η = η(t, x, y, ψ), the coefficients corresponding to derivatives of ψ are

obtained by the standard prolongation (8.4) from ξµ and η, the coefficients θν are obtained by the

standard prolongation from ξµ and θ = ηii, and the coefficients ϕi depends on all the variables

of J(3) and the arbitrary elements f j . As a result, each element from the equivalence algebra

is determined by its coefficients ξµ, η and ϕi. To act on the equations (8.8) and (8.10) by the

operator Q, we should additionally prolong it to the variables ψκλµν and ζµν in the conventional

way and to the derivatives of f , assuming all the variables of J(3) as usual ones:

Q̄ = Q+ ηκλµν∂ψκλµν + θµν∂ζµν

+ ϕiµ∂f iµ + ϕiψ∂f iψ
+ ϕiψµ∂f iψµ

+ ϕiψµν∂f iψµν
+ ϕiψλµν∂f iψλµν

+ ϕiζµ∂f iζµ
.

First we consider the infinitesimal invariance conditions associated with equations (8.10).

The invariance condition for the equation f iψ = 0 is

ϕiψ
∣∣
Eq. (8.10)

= ϕiψ − ξ
µ
ψf

i
µ − θkψf iζk = 0.

Splitting with respect to derivatives of f i in the latter equation implies that ϕiψ = 0, ξµψ = 0,

θiψ = 0. As θi = DjDjDi(η − ξµψµ) + ξµψµjji, we additionally derive the simple determining

equation ηψψ = 0.

In a similar way, the invariance conditions for the equations f iψµ = 0, f iψµν = 0, f iψλµν = 0

and f iζ0 = 0 can be presented in the form

ϕiψµ
∣∣
Eq. (8.10)

= ϕiψµ − θ
k
ψµf

i
ζk

= 0,

ϕiψµν
∣∣
Eq. (8.10)

= ϕiψµν − θ
k
ψµνf

i
ζk

= 0,

ϕiψλµν
∣∣
Eq. (8.10)

= ϕiψλµν − θ
k
ψλµν

f iζk = 0,

ϕiζ0
∣∣
Eq. (8.10)

= ϕiζ0 − θ
k
ζ0f

i
ζk

= 0,

which is split into ϕiψµ = 0, θkψµ = 0; ϕiψµν = 0, θkψµν = 0; ϕiψλµν = 0, θkψλµν = 0; and ϕiζ0 = 0,

θkζ0 = 0, respectively. The equations θkψµ = 0, θkψλµν = 0 and θkζ0 = 0 provide no essential

restrictions on the coefficients ξµ, η and ϕi. From the equation θkψλµν = 0 we derive that ξ0
j = 0,

ξ1
2 + ξ2

1 = 0 and ξ1
1 − ξ2

2 = 0. Hence

θ = ηjj = ηjj + 2ηjψψj + ηψψjj − 2ξijψij = ηjj + 2ηjψψj + (ηψ − 2ξ1
1)ζ.

It remains to solve the determining equations following from the invariance condition for

equation (8.8). The invariance condition reads

θ0 + η1ζ2 + ψ1θ
2 − η2ζ1 + ψ2θ

1 = ϕii + ϕiζjζji + f iζjθ
ji,

or explicitly

ηjjt + ηjjψψt + 2ηtjψψj + 2ηjψψtj + (ηtψ − 2ξ1
t1)ζ

+(ηψ − 2ξ1
1 − ξ0

t )(f ii + f iζjζij − ψ1ζ2 + ψ2ζ1)− ξitζi
+(η1 + ηψψ1 − ξi1ψi)ζ2 + ψ1(ηjj2 + ηjjψψ2 + 2η2jψψj + 2ηjψψ2i + (ηψ − 2ξ1

1)ζ2 − ξi2ζi)
−(η2 + ηψψ2 − ξi2ψi)ζ1 − ψ2(ηjj1 + ηjjψψ1 + 2η1jψψj + 2ηjψψ1j + (ηψ − 2ξ1

1)ζ1 − ξi1ζi)

= ϕii + ϕifjf
j
i − ξ

j
i f

i
j − θki f iζk + ζij(ϕ

i
ζj

+ ϕifkf
k
ζj
− θkζjf

i
ζk

) + f iζjθ
ij .
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Collecting the coefficients of ψtj gives ηjψ = 0. This implies that θψ = 0. Similarly, the

coefficients of ψiζj lead to the equation ηijj = 0 and ηψ − 2ξ1
1 + ξ0

t = 0. As ξ0
i = 0 and ηiψ = 0,

the second equation together with the relations ξ1
1 = ξ2

2 and ξ1
2 + ξ2

1 = 0 implies that ξijk = 0.

Then, the coefficient of ζ gives ξ0
tt = 0 and the coefficients of f ij lead to ϕ1

f2 = ξ1
2 , ϕ2

f1 = ξ2
1 and

ϕ1
f1 = ϕ2

f2 = ξ1
1 − 2ξ0

t . In view of the determining equations that we have already derived, the

terms involving f iζj are identically canceled. Note that the coefficients of f iζjζkl simultaneously

lead to the same set of equations as the coefficients of f ij .

The remaining part of the invariance condition is ηjjt − ξitζi + η1ζ2 − η2ζ1 = ϕii + ζijϕ
i
ζj

.

Splitting with respect to ζij in this relation gives ϕ1
ζ1

= ϕ2
ζ2

= 0, ϕ1
ζ2

+ ϕ2
ζ1

= 0 and

ϕii = ηjjt − ξitζi + η1ζ2 − η2ζ1.

Acting on the last equation by the operator ∂j∂ζj , we obtain ξiit = 0. Further splitting with

respect to ζ1 and ζ2 is not possible since ϕj may depend on them.

Finally, the reduced system of determining equations reads

ξ0
ψ = ξ0

i = ξ0
tt = 0, ξiψ = ξijk = 0, ξiit = 0, ξ1

1 = ξ2
2 , ξ1

2 + ξ2
1 = 0,

ηψψ = 0, ηψ = 2ξ1
1 − ξ0

t , ηijj = 0,

ϕiψ = 0, ϕiψµ = 0, ϕiψµν = 0, ϕiψλµν = 0, ϕiζ0 = 0,

ϕ1
f2 = ξ1

2 , ϕ2
f1 = ξ2

1 , ϕ1
f1 = ϕ2

f2 = ξ1
1 − 2ξ0

t ,

ϕ1
ζ1 = ϕ2

ζ2 = 0, ϕ1
ζ2 + ϕ2

ζ1 = 0, ϕii = ηjjt − ξitζi + η1ζ2 − η2ζ1.

The solution of this system provides the principal coefficients of the operators from the equiva-

lence algebra of the class (8.8):

ξ0 = c1t+ c0, ξ1 = c2x− βy + γ1, ξ2 = βx+ c2y + γ2,

η = (2c2 − c1)ψ + δ − γ1
t y + γ2

t x+
βt
2

(x2 + y2) +
σ

2
(x2 + y2) + χ,

ϕ1 = (c2 − 2c1)f1 − βf2 + δζy +
σ

2
(x2 + y2)ζy + βttx+ σtx− ρy,

ϕ2 = βf1 + (c2 − 2c1)f2 − δζx −
σ

2
(x2 + y2)ζx + βtty + σty + ρx,

(8.11)

where β, γi, σ and χ are real-valued smooth functions of t only, c0, c1 and c2 are arbitrary

constants, ρ is an arbitrary function of t, x and y and δ = δ(t, x, y) is an arbitrary solution of

the Laplace equation δjj = 0.

Splitting with respect to parametric values in (8.11), we obtain the coefficients of the basis

operators (8.9) of the algebra g∼1 . Recall that the coefficients ηµ, ηµν , ηλµν and θν are calculated

from ξµ and η via the standard procedure of prolongation and the coefficients ϕi do not depend

on ψµ, ψµν , ψλµν , and ζ0. Therefore, both the operators from g∼1 and their commutators are

completely determined by the coefficients of ∂µ, ∂ψ, ∂ζi and ∂fj . This is why in (8.9) and similar

formulas we omit the other terms for sake of brevity.

Remark. The auxiliary system for the arbitrary elements is an important component of the

definition of a class of differential equations. Its choice is usually guided by some prior knowl-

edge about the processes to be parameterized. We have decided to assume that the arbitrary

elements f1 and f2 depend also on t, keeping in mind two more, purely mathematical, reasons.

The first reason is that the projection of the corresponding equivalence algebra on the space
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(t, x, y, ψ) contains the maximal Lie invariance algebra g0 of the vorticity equation (8.5) which

is the initial point of the entire consideration. The basis operators (8.6) of g0 are obtained

from (8.9) by

D1 = PD̃1, ∂t = P∂t, D2 = PD̃2, J = PJ̃(1), Jt = PJ̃(t),

X (γ1) = PX̃ (γ1), Y(γ2) = PỸ(γ2), Z(χ) = PZ̃(χ),

where P denotes the projection operator on the space (t, x, y, ψ). (Though the expressions

for the operator ∂t (resp. X̃ (γ1), Ỹ(γ2) or Z̃(χ)) and its projection formally coincide, they in

fact determine vector fields on different spaces.) The second reason is that the class (8.8) is

normalized, cf. Section 8.3.3. This in particular implies that the maximal Lie invariance algebra

of any equation from the class (8.8) is contained in the projection of the equivalence algebra g∼1
of this class.

We also calculate the equivalence algebras of two subclasses of the class (8.8).

The first subclass corresponds to parameterizations not depending on time explicitly and,

therefore, is singled out from the class (8.8) by the further auxiliary equation

f it = 0,

which has no influence on splitting of the invariance conditions for the equations (8.8) and (8.10)

and gives the additional determining equations ϕit = ξit = θit = 0. These determining equations

imply that β, γi and σ are constant, δ is a function only of x and y and ρ can be assumed as a

function only of x and y. Therefore, the equivalence algebra of this subclass is

〈D̃1, ∂t, D̃2, J̃(1), X̃ (1), Ỹ(1), R̃(1), H̃(δ), G̃(ρ), Z̃(χ)〉,

where the parameter-function δ = δ(x, y) runs through the set of solutions of the Laplace

equation δxx + δyy = 0 and ρ = ρ(x, y) is an arbitrary function of its arguments.

The second subclass is associated with spatially independent parameterizations. Hence we

additionally set

f ij = 0.

It has to be noted that after attaching this condition we cannot split with respect to f ij as we

did in the course of solving the determining equations. However, precisely the same conditions

obtained from splitting with respect to f ij can also be obtained from splitting with respect to

f iζj . Hence the condition f ij = 0 only leads to the additional restriction ϕij = 0 and, therefore,

we find that δi = 0, σ = 0, βtt = 0 and ρij = 0. Without loss of generality we can set ρ = ρi(t)zi,

where ρi are arbitrary smooth functions of t. As a result, the equivalence algebra g∼2 of the

second subclass is generated by the operators

D̃1, ∂t, D̃2, J̃(1), J̃(t), X̃ (γ1), Ỹ(γ2), H̃(δ), G̃(ρ1x+ ρ2y), Z̃(χ),

where γi, ρi, δ and χ are arbitrary smooth functions of t.

The intersection of the above subclasses corresponds to the set of parameterizations indepen-

dent of both t and (x, y) and is singled out from the class (8.8) by the joint auxiliary system

f it = f ij = 0.
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Its equivalence algebra is the intersection of the equivalence algebras of the above subclasses

and, therefore, equals

〈D̃1, ∂t, D̃2, J̃(1), X̃ (1), Ỹ(1), H̃(1), G̃(ρ1x+ ρ2y), Z̃(χ)〉,

where ρ1, ρ2 and χ are arbitrary smooth functions of t.

8.3.3 Normalized classes of generalized vorticity equations

In the course of computing the set of admissible transformations of a class of differential

equations, it is often convenient to construct a hierarchy of normalized superclasses for this

class [131, 133]. This is why here we also start with the quite general class of differential equa-

tions

ζt − F (t, x, y, ψ, ψx, ψy, ζ, ζx, ζy, ζxx, ζxy, ζyy) = 0, ζ := ψii, (8.12)

where (Fζx , Fζy , Fζxx , Fζxy , Fζyy) 6= (0, 0, 0, 0, 0), to assure that the generalized vorticity equations

of the form (8.8) belong to this class. We use notations and agreements from the previous section.

In particular, z = (z0, z1, z2) = (t, x, y), the indices i, j and k again run through {1, 2}, while

the indices κ, λ, µ and ν range from 0 to 2.

Admissible transformations are determined using the direct method in terms of finite trans-

formations. Namely, we aim to exhaustively describe point transformations of the form

T : z̃µ = Zµ(z, ψ), ψ̃ = Ψ(z, ψ), where J =
∂(Z0, Z1, Z2,Ψ)

∂(z0, z1, z2, ψ)
6= 0,

which map an equation from class (8.12) to an equation from the same class. We express deriva-

tives of the “old” dependent variable ψ with respect to the “old” independent variables z via

derivatives of the “new” dependent variable ψ̃ with respect to the “new” independent variables z̃.

The latter derivatives will be marked by tilde over ψ. Thus, the derivative of ψ̃ with respect

to z̃µ is briefly denoted by ψ̃µ, etc. Then we substitute the expressions for derivatives into the

equation ζt − F = 0, exclude the new principal derivative ψ̃022 using the transformed equation

ψ̃022 = −ψ̃011 + F̃ , split with respect to parametric variables whenever this is possible and solve

the obtained determining equations for Zµ and Ψ supplemented with the inequality J 6= 0,

considering all arising cases for values of the arbitrary element F and simultaneously finding the

expression for F̃ via F , Zµ and Ψ.

The first order derivatives ψµ are expressed in the following manner:

ψµ = −
Ψµ − ψ̃νZνµ
Ψψ − ψ̃νZνψ

= −Vµ
Vψ
,

where we have introduced the notation V = V (z, ψ, z̃) := Ψ(z, ψ) − ψ̃ν(z̃)Zν(z, ψ) which is

assumed as a function of the old dependent and independent variables and the new independent

variables, so that Vµ = Ψµ − ψ̃νZνµ and Vψ = Ψψ − ψ̃νZνψ. We will not try to express the old

variables via the new variables by inverting the transformation. This is a conventional trick

within the direct method, which essentially simplifies the whole consideration. In what follows

we will also use three more abbreviations similar to Vµ:

Uµν := Zµν Vψ − Z
µ
ψVν , Wµν := UµiUνjFζij , Pµ := Uµ0 − UµiFζi .
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Higher order derivatives are expressible in an analogous way. The Laplacian of ψ, e.g., reads

ψii = V −3
ψ (UµiUνiψ̃µν − V 2

ψVii + 2ViVψViψ − V 2
i Vψψ).

For the class (8.12) considered here, we need the derivatives of the Laplacian up to second order.

The highest derivatives required are of the form

ψiijk = V −5
ψ UµiUνiUκjUλkψ̃µνκλ + . . . ,

where the tail contains only derivatives of ψ̃ up to order three.

Denote by G the left hand side of the equation obtained by substituting all the expressions for

derivatives into (8.12). For the transformation T to be admissible, the condition Gψ̃µνκλ = 0 has

to be satisfied for any tuple of the subscripts (µ, ν, κ, λ) in which at least one of the subscripts

equals 0. Under varying the subscripts, this condition leads to the following system:

Gψ̃0000
= 0: U0kU0kW 00 = 0,

Gψ̃000i
= 0: U0kU0kW 0i + U0kU ikW 00 = 0,

Gψ̃00ij
= 0: U0kU0kW ij + 2U0kU ikW 0j + 2U0kU jkW 0i + U ikU jkW 00 = 0.

Suppose that U0kU0k 6= 0. Then the above equations imply that Wµν := UµiUνjFζij = 0. If

rank(Uµi) < 2 then for any µ and ν

Uµ1Uν2 − Uµ2Uν1 =

(
∂(Zµ, Zν ,Ψ)

∂(z1, z2, ψ)
− ψ̃κ

∂(Zµ, Zν , Zκ)

∂(z1, z2, ψ)

)
Vψ = 0

and after splitting with respect to ψ̃λ we obtain that

∂(Zµ, Zν ,Ψ)

∂(z1, z2, ψ)
=
∂(Zµ, Zν , Zκ)

∂(z1, z2, ψ)
= 0 or Zκψ = Ψψ = 0,

but this contradicts the transformation nondegeneracy condition J 6= 0. Hence rank(Uµi) = 2

and, therefore, the equation UµiUνjFζij = 0 sequentially implies that UνjFζij = 0 and Fζij = 0.

Then, the necessary conditions Gψ̃000
= 0 and Gψ̃00i

= 0 for admissible transformations are

respectively equivalent to the equations U0kU0kP 0 = 0 and U0kU0kP i + 2U0kU ikP 0 = 0 which

jointly gives in view of the condition U0kU0k 6= 0 that Pµ = 0. Thus, we should have det(Uµν) =

0. At the same time,

det(Uµν) = Vψ
2
(
|Z0
ν , Z

1
ν , Z

2
ν |Vψ − |Vν , Z1

ν , Z
2
ν |Z0

ψ − |Z0
ν , Vν , Z

2
ν |Z1

ψ − |Z0
ν , Z

1
ν , Vν |Z2

ψ

)
= Vψ

2∂(Z0, Z1, Z2, V )

∂(z0, z1, z2, ψ)
= Vψ

2J 6= 0

that leads to a contradiction. Therefore, the supposition U0kU0k 6= 0 is not true, i.e., U0kU0k = 0

and hence U0k = 0. Substituting the expressions for U0k and V into the last equation and

splitting with respect to ψ̃µ, we derive the equations

Z0
kZ

µ
ψ = Z0

ψZ
µ
k , Z0

kΨψ = Z0
ψΨk.

The tuples (Zµ1 ,Ψ1), (Zµ2 ,Ψ2) and (Zµψ,Ψψ) are not proportional since J 6= 0. This is why we

finally obtain the first subset of determining equations Z0
k = Z0

ψ = 0. It follows from them that

Z0
0 6= 0 (otherwise J = 0) and expressions for “old” derivatives with respect to only x and y
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contain “new” derivatives only of the same type. In other words, derivatives of ψ̃ involving

differentiation with respect to t̃ appear only in the expressions for ψ0aa and we can simply split

with respect to them via collecting their coefficients.

Equating the coefficients of ψ̃012 leads, in view of the condition Z0
0 6= 0, to the equation

U1kU2k = 0, i.e.,(
Z1
kΨψ − Z1

ψΨk + (Z1
ψZ

2
k − Z1

kZ
2
ψ)ψ̃2

)(
Z2
kΨψ − Z2

ψΨk − (Z1
ψZ

2
k − Z1

kZ
2
ψ)ψ̃1

)
= 0. (8.13)

We split equation (8.13) with respect to ψ̃1 and ψ̃2. Collecting the coefficients of ψ̃1ψ̃2 gives

the equation (Z1
ψZ

2
k − Z1

kZ
2
ψ)(Z1

ψZ
2
k − Z1

kZ
2
ψ) = 0, or equivalently Z1

ψZ
2
k − Z1

kZ
2
ψ = 0. As

rank(Zi1, Z
i
2, Z

i
ψ) = 2, this implies that Ziψ = 0 and, therefore, Ψψ 6= 0. Consequently, equa-

tion (8.13) is reduced to Z1
kZ

2
k = 0.

The derivative ψ̃022 is assumed principal, ψ̃022 = −ψ̃011 + F̃ . Hence another third order

derivative of the above type appropriate for splitting is only ψ̃011. The corresponding equation

Z1
kZ

1
k = Z2

kZ
2
k := L joint with the equation Z1

kZ
2
k = 0 implies that the functions Z1 and Z2

satisfy the Cauchy–Riemann system Z1
1 = εZ2

2 , Z1
2 = −εZ2

1 , where ε = ±1, and hence Zikk = 0.

Note that L 6= 0 since J 6= 0.

Analogously, collecting the coefficients of ψ̃0i and further splitting with respect to ψ̃j lead to

the equations ZikZ
j
kΨψψ = 0 and ZikΨkψ = 0. Therefore, Ψψψ = 0 and Ψkψ = 0. Here we take

into account the inequalities L 6= 0 and det(Zik) 6= 0.

We do not have more possibilities for splitting. The derived system of determining equations

consists of the equations

Z0
k = Z0

ψ = 0, Ziψ = 0, Z1
kZ

2
k = 0, Z1

kZ
1
k = Z2

kZ
2
k , Ψψψ = Ψkψ = 0.

The remaining terms determine the transformation rule for the arbitrary element F . This is

why any point transformation satisfying the above determining equations maps every equation

from class (8.12) to an equation from the same class and, therefore, belongs to the equivalence

group G∼1 of class (8.12). In other words, any admissible point transformation of class (8.12) is

induced by a transformation from G∼1 , i.e., class (8.12) is normalized. As a result, we have the

following theorem.

Theorem 8.2. Class (8.12) is normalized. Its equivalence group G∼1 consists of the transfor-

mations

t̃ = T (t), x̃ = Z1(t, x, y), ỹ = Z2(t, x, y), ψ̃ = Υ(t)ψ + Φ(t, x, y),

F̃ =
1

Tt

(
Υ

L
F +

(Υ

L

)
0
ζ +

(Φii

L

)
0
−
ZitZ

i
j

L

(
Υ

L
ζj +

(Υ

L

)
j
ζ +

(Φii

L

)
j

))
,

where T , Zi, Υ and Φ are arbitrary smooth functions of their arguments, satisfying the conditions

Z1
kZ

2
k = 0, Z1

kZ
1
k = Z2

kZ
2
k := L, TtΥL 6= 0, and the subscripts 1 and 2 denote differentiation

with respect to x and y, respectively.

The expression for the transformed vorticity is also simple: ζ̃ = L−1(Υζ + Φii).

Remark. The continuous component of unity of the group G∼1 consists of the transformations

from G∼1 with Tt > 0, ε = 1 and Υ > 0. Therefore, a complete set of independent discrete

transformations in G∼1 is exhausted by the uncoupled changes of the signs of t, y and ψ. In

particular, the value ε = −1 corresponds to alternating the sign of y.
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Consider the subclass of class (8.12), singled out by the constraints Fψ = 0, Fψx = −ζy and

Fψy = ζx, i.e., the class consisting of the equations of the form

ζt + ψxζy − ψyζx = H(t, x, y, ζ, ζx, ζy, ζxx, ζxy, ζyy), ζ := ψii, (8.14)

where H is an arbitrary smooth function of its arguments, which is assumed as an arbitrary

element instead of F = H −ψxζy +ψyζx. The class (8.14) is still a superclass of the class (8.8).

Theorem 8.3. Class (8.14) is normalized. The equivalence group G∼2 of this class is formed by

the transformations

t̃ = τ, x̃ = λ(xc− ys) + γ1, εỹ = λ(xs + yc) + γ2,

ψ̃ = ε
λ

τt

(
λψ +

λ

2
βt(x

2 + y2)− γ1
t (xs + yc) + γ2

t (xc− ys)
)

+ δ +
σ

2
(x2 + y2),

H̃ =
ε

τt2

(
H − τtt

τt
ζ − λt

λ
(xζx + yζy) + 2βtt − 2

τtt
τt
βt

)
− δy + σy

τtλ2
ζx +

δx + σx

τtλ2
ζy

+
2

τt

( σ
λ2

)
t
,

(8.15)

where ε = ±1, c = cosβ, s = sinβ; τ , λ, β, γi and σ are arbitrary smooth functions of t

satisfying the conditions λ > 0 and τt 6= 0; δ = δ(t, x, y) runs through the set of solutions of the

Laplace equation δxx + δyy = 0.

Proof. The class (8.14) is a subclass of the class (8.12) and the class (8.12) is normalized.

Therefore, any admissible transformation of the class (8.14) is generated by a transformation

from the equivalence group G∼1 of the superclass. It is only necessary to derive the additional

restrictions on transformation parameters caused by narrowing the class.

The group G∼1 is a usual equivalence group [118], i.e., in contrast to different generalizations of

equivalence groups [94, 131], it consists of point transformations of the joint space of the equation

variables and arbitrary elements, and the components of transformations for the variables do not

depend on the arbitrary elements. Any transformation from G∼1 is additionally projectable to the

space of the independent variables and the space of the single variable t. This is why it already

becomes convenient, in contrast to the proof of Theorem 8.2, to express the new derivatives via

old ones. Then we substitute the expressions for new derivatives into the transformed equation

ζ̃t̃ + ψ̃x̃ζ̃ỹ − ψ̃ỹ ζ̃x̃ = H̃, exclude the principal derivative ψtyy using the equation

ψtyy = −ψtxx − ψxζy + ψyζx +H,

split with respect to parametric variables whenever this is possible and solve the obtained de-

termining equations. As equations from the class (8.14) involve derivatives ψx and ψy in an

explicitly defined (linear) manner, we can split with respect to these derivatives, simply collect-

ing their coefficients. Since these coefficients do not involve the arbitrary element H, we can

further split them with respect to other derivatives. As a result, we obtain the equations

Υ = ε
L

Tt
, Li = 0, Φjji = 0,

where ε = ±1 and other notations are defined in the proof of Theorem 8.2. Therefore, L and

Φjj are functions of t only. As L > 0, we can introduce the function λ =
√
L of t. Acting by

the Laplace operator ∂jj on the conditions Z1
kZ

1
k = λ2 and Z2

kZ
2
k = λ2 and taking into account
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that Zi are solutions of the Laplace equation, Zikk = 0, we derive the important differential

consequences Zijk = 0, which imply that the functions Zi are affine in (x, y). Hence there exists

a function β = β(t) such that Z1
1 = λc and Z1

2 = −λs, where c = cosβ and s = sinβ, and,

therefore, Z1
1 = ελs and Z1

2 = ελc. We re-denote T by τ for the sake of notation consistency

and represent Φ in the following form1:

Φ = δ(t, x, y) +
σ

2
(x2 + y2) + ε

λ

τt

(
λ

2
βt(x

2 + y2)− γ1
t (xs + yc) + γ2

t (xc− ys)
)
,

where σ is a function of t and δ = δ(t, x, y) is a solution of the Laplace equation δxx + δyy = 0.

Collecting the terms without ψx and ψy gives the transformation for the arbitrary element H.

Similarly to the proof of Theorem 8.2, any transformation from G∼1 satisfying the above

additional constraints maps every equation from the class (8.14) to an equation from the same

class and, therefore, belongs to the equivalence group G∼2 of the class (8.14). In other words,

any admissible point transformation of the class (8.14) is induced by a transformation from G∼2 ,

i.e., the class (8.14) is normalized.

Remark. The transformations from the equivalence group G∼2 , which are associated with the

parameter-function δ depending only on t, and only such transformations identically act on the

arbitrary element H and, therefore, their projections to the space of independent and dependent

variables form the kernel (intersection) of point symmetry groups of the class (8.14).

Corollary 8.1. The subclass of the class (8.14) singled out by the constraint Hζ = 0 is normal-

ized. Its equivalence group G∼3 consists of the elements of G∼2 with τtt = 0.

Proof. As the vorticity and its derivatives are transformed by elements of G∼2 according to the

formulas

ζ̃ =
ε

τt
(ζ + βt) + 2

σ

λ2
, ζ̃i =

εZij
τtλ2

ζj , (8.16)

it follows from (8.15) under the constraints Hζ = 0 and H̃ζ̃ = 0 that τtt = 0. The rest of the

proof is similar to the end of the proof of Theorem 8.3.

Corollary 8.2. The subclass of the class (8.14) singled out by the constraints Hi = 0 is nor-

malized. Its equivalence group G∼4 consists of the elements of G∼2 with λt = 0, σ = 0 and

δij = 0.

Proof. As any admissible transformation of the class (8.14) has the form (8.15) and, therefore,

the vorticity and its derivatives are transformed according to (8.16), the system H̃x̃ = 0, H̃ỹ = 0

is equivalent to the system H̃x = 0, H̃y = 0. After differentiating the last equation in (8.15) with

respect to x and y and splitting with respect to ζx and ζy, we derive all the above additional

constraints on transformation parameters. The rest of the proof is similar to the end of the

proof of Theorem 8.3.

1There is an ambiguity in representations of Zi and Φ. For example, the last summand in the representation

of Φ can be omitted. The usage of the above complicated representations is motivated by a few reasons: the

consistency with the notation of basis operators of the equivalence algebra g∼1 from Theorem 8.1, the simpli-

fication of the expression for the transformed arbitrary element H̃ and the convenience of studying admissible

transformations within subclasses of the class (8.14).
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Corollary 8.3. The subclass of the class (8.14) singled out by the constraints Hζ = 0 and

Hi = 0 is normalized. Its equivalence group G∼5 consists of the elements of G∼2 with τtt = 0,

λt = 0, σ = 0 and δij = 0.

Proof. The subclass under consideration is normalized as it is the intersection of the normalized

subclasses from Corollaries 8.1 and 8.2. Therefore, we also have G∼5 = G∼3 ∩G∼4 .

Remark. For the subclass from Corollary 8.3, the kernel of point symmetry groups is essen-

tially extended in comparison with the whole class (8.14). It is formed by the projections of

elements of the equivalence group G∼2 , associated with the parameter-functions γ1 and γ2 and the

parameter-function δ depending only on t, to the space of independent and dependent variables,

cf. Section 8.3.4.

A further narrowing is given by the condition that the arbitrary element H with Hζ = 0 is a

total divergence with respect to the space variables, i.e., H = Dif
i for some differential functions

f i = f i(t, x, y, ζx, ζy). The corresponding subclass rewritten in the terms of f i coincides with the

class (8.8) and is singled out from the class (8.14) by the constraints Hζ = 0 and EH = 0, where

E = ∂ζ − Di∂ζi +
∑

i6j DiDj∂ζij + . . . is the associated Euler operator. In this Euler operator,

the role of independent and dependent variables is played by (x, y) and ζ, respectively, and the

variable t is assumed as a parameter. The vorticity ζ can be considered in E as the dependent

variable instead of ψ since the arbitrary element H depends only on combinations of derivatives

of ψ being derivatives of ζ.

Remark. It is obvious that the arbitrary element H satisfies the constraints Hζ = 0 and EH = 0

if it is represented in the formH = Dif
i for some differential functions f i = f i(t, x, y, ζx, ζy). The

converse claim should be proved. Thus, the constraint EH = 0 implies the representation H =

Dif
i for some differential functions f i(t, x, y, ζ, ζx, ζy), which may depend on ζ. Substituting

this representation into the constraint Hζ = 0 and splitting the resulting equations with respect

to the second derivatives of ζ, we obtain the following system of PDEs for the functions f i:

f iζi+f
i
ζζζi = 0, f1

ζζ1
= 0, f2

ζζ2
= 0, f1

ζζ2
+f2

ζζ1
= 0. Its general solution has the form f1 = D2Ψ+f̃1

and f2 = −D1Ψ + f̃2 for some smooth functions Ψ = Ψ(t, x, y, ζ) and f̃ i = f̃ i(t, x, y, ζx, ζy).

The first summands in the expressions for f i can be neglected due to the gauge equivalence in

the set of arbitrary elements (f1, f2). As a result, we construct the necessary representation for

the arbitrary element H.

Corollary 8.4. The class (8.8) is normalized. The equivalence group G∼6 of this class repre-

sented in terms of the arbitrary element H consists of the elements of G∼2 with τtt = 0 and

λt = 0. The arbitrary elements f i are transformed in the following way:

f̃1 = ελ
f1c− f2s

τ2
t

+

(
δ

τtλ
+

σ

2τtλ
(x2 + y2)− εχ

λ2

)
(ζxs + ζyc)

+ (ελ2βtt + τtσt)
xc− ys
τt2λ

− ερxs + ρyc

λ2
,

f̃2 = λ
f1s + f2c

τt2
− ε
(
δ

τtλ
+

σ

2τtλ
(x2 + y2)− εχ

λ2

)
(ζxc− ζys)

+ ε(ελ2βtt + τtσt)
xs + yc

τt2λ
+
ρxc− ρys

λ2
,

(8.17)

where χ = χ(t) and ρ = ρ(t, x, y) are arbitrary functions of their arguments.
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Proof. The class (8.8) is contained in the normalized subclass of the class (8.14) singled out by

the constraintHζ = 0. Therefore, any admissible transformation of the class (8.8) is generated by

an element of G∼2 with τtt = 0, and the corresponding transformations of the space variables are

affine with respect to these variables, Zijk = 0. Then D̃j f̃
j = Di(λ

−2Zji f̃
j), i.e., the differential

function H̃ is a total divergence with respect to the new space variables if and only if it is a

total divergence with respect to the old space variables. Applying the Euler operator E to the

last equality in (8.15) under the conditions Hζ = 0, H̃ζ̃ = 0, EH = 0, ẼH̃ = 0 and τtt = 0, we

derive the additional constraint λt = 0. The remaining part of the proof of normalization of the

class (8.8) and its equivalence group is analogous to the end of the proof of Theorem 8.3.

In order to construct the transformations of the arbitrary elements f i, we represent the right

hand side of the last equality in (8.15) as a total divergence: H̃ = Dih
i, where

h1 =
ε

τ2
t

(f1 + βttx) +
σt
τtλ2

x+

(
δ +

σ

2
(x2 + y2)

)
ζy
τtλ2

,

h2 =
ε

τ2
t

(f2 + βtty) +
σt
τtλ2

y −
(
δ +

σ

2
(x2 + y2)

)
ζx
τtλ2

,

As H̃ = D̃j f̃
j = Dih

i = D̃jZ
j
i h

i, the pair of the differential functions f̃ j − Zji h
i is a null

divergence, D̃i(f̃
j − Zji hi) = 0. In view of Theorem 4.24 from [115] there exists a differential

function Q depending on t, x, y and derivatives of ζ such that f̃1−Z1
i h

i = −D̃2Q and f̃2−Z2
i h

i =

D̃2Q. As D̃iQ and, therefore, DiQ should be functions of t, x, y, ζx and ζy, the function

Q is represented in the form Q = χ(t)ζ + ρ(t, x, y) for some smooth functions χ = χ(t) and

ρ = ρ(t, x, y).

Remark. The equivalence transformations associated with the parameter-functions χ and ρ

are identical with respect to both the independent and dependent variables, i.e., they transform

only arbitrary elements with no effect on the corresponding equation and, therefore, are trivial

[83, p. 53] or gauge [131, Section 2.5] equivalence transformations. These transformations arise

due to the special representation of the arbitrary element H as a total divergence and form a

normal subgroup of the entire equivalence group considered in terms of the arbitrary elements

f1 and f2, called the gauge equivalence group of the class (8.8).

Remark. The continuous component of unity of the group G∼6 is singled out from G∼6 by the

conditions τt > 0 and ε = 1. Therefore, a complete set of independent discrete transformations

in G∼6 is exhausted by alternating signs either in the tuple (t, ψ) or in the tuple (y, ψ, f1).

Consider the subclass of the class (8.8), singled out by the further auxiliary equation f ij = 0,

i.e., the class of equations

ζt + {ψ, ζ} = Dif
i(t, ζx, ζy), ζ := ψii, (8.18)

with the arbitrary elements f i = f i(t, ζx, ζy).

Remark. Rewritten in the terms of H, the class (8.18) is a well-defined subclass of (8.14). It

is singled out from the class (8.14) by the constraints EH = 0, Hζ = 0, Hi = 0 and ζijHζij = H.

Indeed, the representation H = Dif
i(t, ζx, ζy) obviously implies that the arbitrary element H

does not depend on x, y and ζ, is annulated by the Euler operator E and is a (homogenous)

linear function in the totality of the derivatives ζij . Hence all the above constraints are necessary.

Conversely, the constraint EH = 0 implies that the arbitrary element H is affine in the totality
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of ζij and, therefore, in view of the constraint ζijHζij = H it is a (homogenous) linear function in

these derivatives of ζ. As a result, we have the representation H = hijζij , where the coefficients

hij , h12 = h21, depend solely on t, ζx and ζy since Hζ = 0 and Hi = 0. Then the constraint

EH = 0 is equivalent to the single equation

2h12
ζ1ζ2 = h11

ζ2ζ2 + h22
ζ1ζ1

whose general solutions is represented in the form h11 = f1
ζ1

, h12 = f1
ζ2

+ f2
ζ1

and h22 = f2
ζ2

for some differential functions f i = f i(t, ζx, ζy). This finally gives the necessary representation

for H.

Remark. In view of the previous remark, the subclass of the class (8.14), singled out by the

constraints EH = 0, Hζ = 0 and Hi = 0 is a proper superclass for the class (8.18) rewritten in the

terms of H. This superclass of (8.18) is normalized since it is the intersection of the normalized

class from Corollary 8.3 and the normalized class (8.8). Its equivalence group coincides with the

group G∼5 described in Corollary 8.3.

In a way analogous to the above proofs, the normalization of the superclass and formu-

las (8.15) and (8.17) imply the following assertion.

Corollary 8.5. The class (8.18) is normalized. The equivalence group G∼7 of this class repre-

sented in terms of the arbitrary element H consists of the elements of G∼2 with τtt = 0, λt = 0,

βtt = 0, σ = 0 and δi = 0. The arbitrary elements f i are transformed according to (8.17), where

additionally ρij = 0.

Remark. The above consideration of normalized classes is intended for the description of in-

variant parameterizations of the forms (8.8) and (8.18). The hierarchy of normalized classes

constructed is, in some sense, minimal and optimal for this purpose. It can be easily extended

with related normalized classes. For instance, the subclass singled out from the class (8.14) by

the constraints EH = 0 is normalized. Other hierarchies of normalized classes, which are related

to the vorticity equation (8.5) and different from the hierarchy presented, can be constructed.

Remark. In fact, all subclasses of generalized vorticity equations studied in this section are

strongly normalized, cf. [131].

8.3.4 Parameterization via direct group classification

As proved in Section 8.3.3, the class (8.18) is normalized. Its equivalence algebra g∼2 (cf. Sec-

tion 8.3.2) can be represented as a semidirect sum g∼2 = ĩ 3 ã, where ĩ = 〈X̃ (γ1), Ỹ(γ2), Z̃(χ)〉
and ã = 〈D̃1, D̃2, ∂t, J̃

1, J̃t, K̃(δ), G̃(ρ1x+ρ2y)〉 are an ideal and a subalgebra of g∼2 , respectively.

Here γ1, γ2, ρ1, ρ2, δ and χ run through the set of smooth functions of the variable t and we

use the notation J̃1 = J̃(1), J̃t = J̃(t) and K̃(δ) = H̃(δ)− Z̃(δ). The intersection (kernel) of the

maximal Lie invariance algebras of equations from class (8.18) is

g∩2 = 〈X (γ1), Y(γ2), Z(χ)〉 = P ĩ.

In other words, the complete infinite dimensional part P ĩ of the projection of the equivalence

algebra g∼2 to the space of variables (t, x, y, ψ) is already a Lie invariance algebra for any equa-

tion from the class (8.18). Therefore, any Lie symmetry extension is only feasible via (finite-

dimensional) subalgebras of the five-dimensional solvable algebra

a = 〈D1, ∂t, D2, J, Jt〉 = Pã.
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In other words, for any values of the arbitrary elements f i = f i(t, ζx, ζy) the maximal Lie

invariance algebra gmax
f of the corresponding equation Lf from the class (8.18) is represented in

the form gmax
f = gext

f ∈ g∩2 , where gext
f is a subalgebra of a. A nonzero linear combination of the

operators J and Jt is a Lie symmetry operator of the equation Lf if and only if this equation is

invariant with respect to the algebra 〈J, Jt〉. Therefore, for any extension within the class (8.18)

we have that either gext
f ∩ 〈J, Jt〉 = {0} or gext

f ⊃ 〈J, Jt〉, i.e.,

dim(gext
f ∩ 〈J, Jt〉) ∈ {0, 2}. (8.19)

Moreover, as Pg∼2 = g0, the maximal Lie invariance algebra of the inviscid barotropic vorticity

equation (8.5), the normalization of class (8.18) means that only subalgebras of g0 can be used

to construct spatially independent parameterization schemes within the class (8.18). That is,

for such parameterizations, the approach from [113] based on inverse group classification is

quite natural and gives the same exhaustive result as direct group classification. Due to the

normalization, the complete realization of preliminary group classification of equations from the

class (8.18) is also equivalent to its direct group classification which can be carried out for this

class with the algebraic method.

Note that the class (8.18) possesses the nontrivial gauge equivalence algebra

ggauge = 〈K̃(δ), G̃(ρ1x+ ρ2y)〉,

cf. the second remark after Theorem 8.1. As we have Pggauge = {0}, the projections of operators

from ggauge obviously do not appear in gext
f for any value of f . At the same time, they are

essential for finding all possible parameterizations that admit symmetry extensions.

Therefore two equivalent ways for the further use of the algebraic method in this problem

depending on subalgebras of what algebra will be classified.

As a first impression, the optimal way is to construct a complete list of inequivalent subalge-

bras of the Lie algebra a and then substitute basis operators of each obtained subalgebra to the

infinitesimal invariance criterion in order to derive the associated system of equations for f i that

should be integrated. The algebra a is finite dimensional and has the structure of a direct sum,

a = 〈D1, ∂t, J, Jt〉 ⊕ 〈D2〉. The first summand is the four-dimensional Lie algebra g−1
4.8 in accor-

dance with Mubarakzyanov’s classification of low-dimensional Lie algebras [103] whose nilradical

is isomorphic to the Weyl (Bianchi II) algebra g3.1. The classification of inequivalent subalgebra

up to the equivalence relation generated by the adjoint action of the corresponding Lie group

on a is a quite simple problem. Moreover, the set of subalgebras to be used is reduced after

taking into account the condition (8.19). At the same time, the derived systems for f i consist

of second order partial differential equations and have to be integrated up to G∼7 -equivalence.

This is why another way is optimal. It is based on the fact that gext
f coincides with a

subalgebra g of a if and only if there exists a subalgebra g̃ of ã such that Pg̃ = g and the

arbitrary elements f i satisfy the equations

ξ0f it + θjf iζj = ϕi (8.20)

for any operator Q̃ from g̃, where ξ0 and θj are coefficients of ∂t and ∂ζj in Q̃, respectively. In

fact, the system (8.20) is the invariant surface condition for the operator Q̃ and the functions f i

depending only on t and ζj . This system is not compatible for any operator from ã of the form

Q̃ = K̃(δ)+G̃(ρ1x+ρ2y), where at least one of the parameter-functions δ, ρ1 or ρ2 does not vanish.

In other words, each operator from g̃ should have a nonzero part belonging to 〈D̃1, D̃2, ∂t, J̃
1, J̃t〉

102



and hence dim Pg̃ = dim g̃ 6 5. Taking into account also the condition (8.19), we obtain the

following algorithm for classification of possible Lie symmetry extensions within the class (8.18):

1. We classifyG∼7 -inequivalent subalgebras of ã each of which satisfies the conditions dim Pg̃ =

dim g̃ and dim(g̃∩ 〈J, Jt〉) ∈ {0, 2}. Adjoint actions corresponding to operators from ĩ can

be neglected.

2. We fix a subalgebra g̃ from the list constructed in the first step. This algebra is neces-

sarily finite dimensional, dim g̃ 6 5. We solve the system consisting of equations of the

form (8.20), where the operator Q̃ runs through a basis of g̃. For every solution of this

system we have gext
f = Pg̃.

3. Varying g̃, we get the required list of values of the arbitrary elements (f1, f2) and the

corresponding Lie symmetry extensions.

In order to realize the first step of the algorithm, we list the nonidentical adjoint actions

related to basis elements of ã:

Ad(eε∂t)D1 = D1 − ε∂t, Ad(eεD1)∂t = eε∂t,

Ad(eεJ
t
)D1 = D1 + εJt, Ad(eεD1)Jt = e−εJt,

Ad(eεK(δ))D1 = D1 + εK(tδt + δ), Ad(eεD1)K(δ) = K(e−εδ(e−εt)),

Ad(eεG(ρ))D1 = D1 + εG(tρt + 2ρ), Ad(eεD1)G(ρ) = G(e−2ερ(e−εt, x, y)),

Ad(eεK(δ))∂t = ∂t + εK(δt), Ad(eε∂t)Jt = Jt − εJ1,

Ad(eεG(ρ))∂t = ∂t + εG(ρt), Ad(eε∂t)K(δ) = K(δ(t− ε)),

Ad(eεJ
t
)∂t = ∂t + εJ, Ad(eε∂t)G(ρ) = G(ρ(t− ε, x, y)),

Ad(eεK(δ))D2 = D2 + εK(2δ), Ad(eεD2)K(δ) = K(e2εδ(t)),

Ad(eεG(ρ))D2 = D2 + εG(2ρ), Ad(eεD2)G(ρ) = G(e−ερ(t, e−εx, e−εy)),

Ad(eεG(ρ))J1 = J1 + εG(ρ2x− ρ1y), Ad(eεJ
1
)G(ρ) = G(ρ̂ε),

Ad(eεG(ρ))Jt = Jt + εG(tρ2x− tρ1y), Ad(eεJ
t
)G(ρ) = G(ρ̌ε),

where we omit tildes in the notation of operators and also omit arguments of parameter-functions

if these arguments are not changed under the corresponding adjoint action, ρ = ρ1x + ρ2y,

ρ̂ε = (ρ1x+ ρ2y) cos ε+ (ρ1y − ρ2x) sin ε, ρ̌ε = (ρ1x+ ρ2y) cos εt+ (ρ1y − ρ2x) sin εt,

Based upon these adjoint actions, we derive the following list of G∼7 -inequivalent subalgebras

of ã satisfying the above restrictions (we again omit tildes in the notation of operators):

one-dimensional subalgebras:

〈D1 + bD2 + aJ1〉, 〈∂t + cD2 + ĉJt〉, 〈D2 + Jt〉, 〈D2 + aJ1〉;

two-dimensional subalgebras:

〈D1 + bD2 + aJ +K(c) + G(c̃x), ∂t〉, 〈D1 + aJ1,D2 + âJ1〉,
〈∂t + cJt,D2 + âJ1〉, 〈J1 +K(δ1(t)), Jt +K(δ2(t))〉;

three-dimensional subalgebras:

〈D1 + aJ1, ∂t,D2 + âJ1〉, 〈D1 + bD2, J
1 +K(c|t|2b−1), Jt +K(ĉ|t|2b)〉,
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〈∂t + c̃D2, J
1 +K(ce2c̃t), Jt +K((ct+ ĉ)e2c̃t)〉, 〈D2, J

1, Jt〉;

four-dimensional subalgebras:

〈D1 + bD2 +K(ν2), ∂t, J
1 +K(ν1), Jt +K(ν1t+ ν0)〉, (2b− 1)ν1 = 0, bν0 = 0,

〈D1,D2, J
1, Jt〉, 〈∂t,D2, J

1, Jt〉;

five-dimensional subalgebra:

〈D1, ∂t,D2, J
1, Jt〉.

In the above subalgebras, due to adjoint actions we can put the following restrictions on the

algebra parameters: a ≥ 0, c, c̃ ∈ {0, 1}, â ≥ 0 if a = 0 (resp. c = 0), ĉ ∈ {0, 1} if c = 0;

additionally, in the first two-dimensional subalgebra we can set (1 + 2b)c = 0 and ((1 + b)2 +

a2)c̃ = 0; in the first four-dimensional subalgebra one non-zero parameter among ν0, ν1, ν2

can be set to 1. In the last two-dimensional subalgebra, the parameters δ1 and δ2 are arbitrary

smooth functions of t. The subalgebras with parameter tuples (δ1, δ2) and (δ̃1, δ̃2) are equivalent

if and only if there exist constants ε0, ε1 and ε2 such that δ̃1 = eε2−ε1δ1(e−ε1t + ε0) and

δ̃2 = eε2δ2(e−ε1t+ ε0).

Concerning the realization of the second step of the algorithm, we note that the system

corresponding to the last two-dimensional subalgebra is compatible if and only if δ2(t) = tδ1(t).

We re-denote δ1 by δ. As the general solution of the system is parameterized by functions of two

arguments, we put the associated two-dimensional symmetry extension into Table 8.1, where

the other extensions are one-dimensional. A similar remark is true for the three-dimensional

subalgebra 〈D2, J
t, J〉, which is why we list it in Table 8.2 containing symmetry extensions

parameterized by functions of a single argument.

The system associated with the first two-dimensional subalgebra is compatible if and only if

(a, b) 6= (0,−1). The solution of the system is split into three cases, (i) b 6= −1, 1/2, (ii) b = 1/2

and (iii) b = −1 and a 6= 0. We will use the notation µ = c/(2b − 1) for b 6= 1/2 and µ = 2c/3

in case of b = 1/2.

For the second and third three-dimensional subalgebras, the corresponding systems are com-

patible if and only if c = ĉ and ĉ = 0, respectively.

For the reason of compatibility, in the first four-dimensional subalgebra we have ν0 = 0 and

b 6= −1. Due to the condition (2b−1)ν1 = 0, the solution of the corresponding system should be

split into the two cases b 6= 1/2 and b = 1/2. For simplicity of the representation of the results

in Table 8.3 we introduce the notation µ = ν2/(2b− 1) if b 6= 1/2 and ν̃2 = −2ν2/3 for b = 1/2.

In Tables 8.1–8.3,

Φ = arctan
ζy
ζx
, R =

√
ζ2
x + ζ2

y , P1 =
ζxI1 − ζyI2

ζ2
x + ζ2

y

, P2 =
ζyI1 + ζxI2

ζ2
x + ζ2

y

.

Moreover, α1 = 3/(b + 1) (for b 6= −1), α2 = 3/a (for b = −1 and a 6= 0) and α3 = 3/(â − a)

(for â 6= a). In Table 8.1, δ is an arbitrary function of t. In Table 8.3, subalgebras I1 and I2 are

two arbitrary constants.

Up to gauge equivalence, the single parameterization admitting five-dimensional symmetry

extension within the class (8.18) is the trivial parameterization, f1 = f2 = 0, in which we neglect

the eddy vorticity flux. This shows the limits of applicability of the method proposed in [112],

cf. Section 8.3.1.
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Table 8.1: Symmetry extensions parameterized by functions of two arguments

gext
f Arguments of I1, I2 f1, f2

〈D1 + bD2 + aJ〉
|t|b+1(ζx cos τ + ζy sin τ),

τ := a ln |t|
|t|b−2(I1 cos τ − I2 sin τ),

|t|b+1(ζy cos τ − ζx sin τ), |t|b−2(I1 sin τ + I1 cos τ)

〈∂t + cD2 + ĉJt〉
ect(ζx cos τ + ζy sin τ),

τ :=
ĉ

2
t2

ect(I1 cos τ − I2 sin τ),

ect(ζy cos τ − ζx sin τ), ect(I1 sin τ + I1 cos τ)

〈D2 + Jt〉 t, ReΦ/t P1, P2

〈D2 + aJ〉 t, RaeΦ P1, P2

〈J, Jt〉 t, R
ζxI

1 − ζyI2 + δ(t)ζyΦ,

ζyI
1 + ζxI

2 − δ(t)ζxΦ

Table 8.2: Symmetry extensions parameterized by functions of a single argument

gext
f Argument of I1, I2 f1, f2

〈D1 + bD2 + aJ, ∂t〉, b 6= −1, 1
2 Rae(1+b)Φ Rα1P1 − µζy, Rα1P2 + µζx

〈D1 + 1
2D2 + aJ, ∂t〉 Rae3Φ/2 R2P1 − µζy lnR, R2P2 + µζx lnR

〈D1 −D2 + aJ, ∂t〉, a 6= 0 R eα2ΦP1 − µζy, eα2ΦP2 + µζx
〈D1 + aJ,D2 + âJ〉 |t|â−aRâeΦ t−3P1, t−3P2

〈∂t + cJt,D2 + âJ〉 RâeΦ−ct2/2 P1, P2

〈D1 + bD2, J
1, Jt〉 |t|b+1R

|t|2b−1(ζxI
1 − ζyI2 + cζyΦ),

|t|2b−1(ζyI
1 + ζxI

2 − cζxΦ)

〈∂t + c̃D2, J
1, Jt〉 ec̃tR

e2c̃t(ζxI
1 − ζyI2 + cζyΦ),

e2c̃t(ζyI
1 + ζxI

2 − cζxΦ)

〈D2, J, J
t〉 t P1, P2

Table 8.3: Symmetry extensions parameterized by constants

gext
f f1, f2

〈D1 + aJ1, ∂t,D2 + âJ1〉, â 6= a Rα3âeα3ΦP1, Rα3âeα3ΦP2

〈D1 + bD2, ∂t, J, J
t〉, b 6= −1, 1

2 Rα1P1 − µζy, Rα1P2 + µζx
〈D1 + 1

2D2, ∂t, J, J
t〉 R2P1 − (ν̃2 lnR+ ν1Φ)ζy, R

2P2 + (ν̃2 lnR+ ν1Φ)ζx
〈D1,D2, J, J

t〉 t−3P1, t−3P2

〈∂t,D2, J, J
t〉 P1, P2
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8.3.5 Parameterization via preliminary group classification

The technique of preliminary group classification is based on classifications of extensions of the

kernel Lie invariance algebra by operators obtained via projection of elements of the correspond-

ing equivalence algebra to the space of independent and dependent variables [65]. It is illustrated

here with the class (8.8) whose equivalence algebra g∼1 is calculated in Section 8.3.2.

The kernel Lie invariance algebra of class (8.8) (i.e., the intersection of the maximal Lie

invariance algebras of equations from the class) is 〈Z(χ)〉. In view of the classification of one-

dimensional subalgebras of the equivalence algebra in Appendix 8.5 (list (8.21)) and since for pre-

liminary group classification we are only concerned with extensions of the complement of 〈Z(χ)〉
in g∼1 , we essentially have to consider the inequivalent subalgebras

〈D1 + aD2〉, 〈∂t + bD2〉, 〈D2 + J(β) +R(σ)〉, 〈J(β) +R(σ)〉,
〈X (γ1) +R(σ)〉, 〈R(σ) +H(δ) + G(ρ)〉.

It now remains to present the corresponding parameterization schemes, which can be found in

the Table 8.4.

Table 8.4: One-dimensional symmetry algebra extensions for the case f i = f i(t, x, y, ζx, ζy)

gext
f Arguments of I1, I2 f1, f2

〈D1 + aD2〉
t−ax, t−ay,

t−3P1, t−3P2t1+aζx, t1+aζy

〈∂t + aD2〉
xe−at, ye−at,

P1, P2ζxe
at, ζye

at

〈D2 + J(β) +R(σ)〉
t, rβe−ϕ, xζx + yζy, xI1 − yI2 +

σ

2
r2ζy ln r + h1(t, x, y),

yζx − xζy yI1 + xI2 − σ

2
r2ζx ln r + h2(t, x, y)

〈J(β) +R(σ)〉
t, r, xζx + yζy, xI1 − yI2 +

σ

2β
r2ζyϕ+

βtt + σt
2β

xϕ,

yζx − xζy yI1 + xI2 − σ

2β
r2ζxϕ+

βtt + σt
2β

yϕ

〈X (γ1) +R(σ)〉 t, y, ζx, ζy
I1 +

1

γ1

(
σt
x2

2
+
σ

4

(
x3

3
+ xy2

)
ζy

)
,

I2 +
1

γ1

(
σtxy −

σ

4

(
x3

3
+ xy2

)
ζx

)
〈R(σ) +H(δ) + G(ρ)〉 No ansatz possible

In this table, P1 and P2 are the same as in Tables 8.1–8.3, r =
√
x2 + y2 and ϕ = arctan y/x.

The functions h1 and h2 are h1 = xϕ(βtt + σt)/β and h2 = yϕ(βtt + σt)/β in the case of β 6= 0

and h1 = σtx ln r and h2 = σty ln r for β = 0. In the last class of subalgebras no ansatz can be

constructed due to the special form of functions f i. Namely, as the variable ψ is not included

in the list of arguments of f i, any operator of the form R(σ) +H(δ) + G(ρ) + Z(χ) belongs to

the gauge equivalence algebra and hence its projection gives no extension of the kernel algebra.
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8.4 Conclusion

In this paper we have addressed the question of symmetry-preserving parameterization schemes.

It was demonstrated that the problem of finding invariant parameterization schemes can be

treated as a group classification problem. In particular, the interpretation of parameterizations

as particular elements of classes of differential equations renders it possible to use well-established

methods of symmetry analysis for the design of general classes of closure schemes with prescribed

symmetry properties. For parameterizations to admit selected subgroups of the maximal Lie

invariance group of the related unaveraged differential equation, they should be expressed in

terms of related differential invariants. These differential invariants can be computed either using

infinitesimal methods or the method of moving frames, cf. Section 8.3.1. For parameterization

ansatzes with prescribed functional dependence on the resolved quantities and no prescribed

symmetry group, the direct group classification problem should be solved. In the case where the

given class of differential equations is normalized (which can be checked by the computation of

the set of admissible transformations), it is possible and convenient to carry out the classification

using the algebraic method [131]. In the case where the class fails to be normalized (or in the

case where it is impossible to compute the set of admissible transformations), an exhaustive

investigation of parameterizations might be possible due to applying compatibility analysis of the

corresponding determining equations or by combining the algebraic and compatibility methods.

For more involved classes of differential equations at least symmetry extensions induced by

subalgebras of the equivalence algebra can be found, i.e. preliminary group classification can be

carried out.

Since the primary aim of this paper is a clear presentation of the variety of invariant pa-

rameterization methods, we focused on rather simple first order local closure schemes for the

classical barotropic vorticity equation, cf. the introduction of Section 8.3. That is, we param-

eterized already the eddy vorticity flux v′ζ ′ using ζ̄ and its derivatives. Admittedly, this is a

quite simple ansatz for one of the simplest physically relevant models in geophysical fluid dy-

namics. On the other hand, it can be seen that already for this particular simple example the

computations involved were rather elaborate. This is in particular true for the computation of

the set of admissible transformations for the various classes of vorticity equations considered in

Section 8.3.3. Needless to say that irrespectively of practical computational problems the same

technique would be applicable to higher order closure schemes as well. In designing such schemes

it is necessary to explicitly include differential equations for the first or higher order correlation

terms. In the case of the vorticity equations, a second order closure schemes is obtainable upon

retaining the equations governing the evolution of v′ζ ′ and parameterize the higher order corre-

lation terms arising in these equations. In practice, however, it becomes increasingly difficult to

acquire real atmospheric data for such higher-order correlation quantities, which therefore makes

it difficult to propose parameterization schemes based solely on physical considerations [150].

We argue that especially in such cases symmetries could provide a useful guiding principle to

determine general classes of relevant parameterizations.

Up to now, we have restricted ourselves to the problem of invariant local closure schemes.

Nonlocal schemes constructed using symmetry arguments should be investigated in a subsequent

work. This extension is crucial in order to make general methods available that can be used in

the development of parameterization schemes for all types of physical processes in atmosphere-

ocean dynamics. A further perspective for generalization of the present work is the design of

parameterization schemes that preserve conservation laws. This is another aspect that is of
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major importance in practical applications. For parameterizations of conservative processes, it

is crucial that the corresponding closed differential equation preserves energy conservation. This

is by no means self-evident. In fact, energy conservation is violated by various classes of down-

gradient ansatzes [158], which is straightforward to check also for parameterizations constructed

in this paper. The construction of parameterization schemes that retain conservation laws will

call for the classification of conservation laws in the way similar as the usual group classification.

A main complication is that there is no restriction on the order of conservation laws for general

systems of partial differential equations (so far, such restrictions are only known for (1 + 1)-

dimensional evolution equations of even order and some similar classes of equations).

8.5 Appendix: Inequivalent one-dimensional subalgebras of the

equivalence algebra of class (8.8)

In this appendix, we classify one-dimensional subalgebras of the equivalence algebra g∼1 with

basis elements (8.9). For this means, we subsequently present the commutator table of g∼1 . In

what follows we omit tildes in the notation of operators.

Table 8.5: Commutation relations for the algebra g∼1
D1 D2 ∂t J(β) X (γ1)

D1 0 0 −∂t J(tβt) X (tγ1
t )

D2 0 0 0 0 −X (γ1)

∂t ∂t 0 0 J(βt) X (γ1
t )

J(β̃) −J(tβ̃t) 0 −J(β̃t) 0 −Y(β̃γ1) + G(γ1β̃tty)

X (γ̃1) −X (tγ̃1
t ) X (γ̃1) −X (γ̃1

t ) Y(βγ̃1)− G(γ̃1βtty) 0

Y(γ̃2) −Y(tγ̃2
t ) Y(γ̃2) −Y(γ̃2

t ) −X (βγ̃2) + G(γ̃2βttx) −Z((γ1γ̃2)t)

R(σ̃) −R(tσ̃t + σ̃) 0 −R(σ̃t) 0 −H(γ1σ̃x) + G(γ1σ̃ty)

H(δ̃) −H(tδ̃t + δ̃) −H(xδ̃x + yδ̃y − 2δ̃) −H(δ̃t) −H(βxδ̃y − βyδ̃x) −H(γ1δ̃x)

G(ρ̃) −G(tρ̃t + 2ρ̃) −G(xρ̃x + yρ̃y + ρ̃) −G(ρ̃t) −G(βxρ̃y − βyρ̃x) G(γ1ρ̃x)

Z(χ̃) −Z(tχ̃t + χ̃) 2Z(χ̃) −Z(χ̃t) 0 0

Y(γ2) R(σ) H(δ) G(ρ) Z(χ)

D1 Y(tγ2
t ) R(tσt + σ) H(tδt + δ) G(tρt + 2ρ) Z(tχt + χ)

D2 −Y(γ2) 0 H(xδx + yδy − 2δ) G(xρx + yρy + ρ) −2Z(χ)

∂t Y(γ2
t ) R(σt) H(δt) G(ρt) Z(χt)

J(β̃) X (β̃γ2)− G(γ2β̃ttx) 0 H(β̃xδy − β̃yδx) G(β̃xρy − β̃yρx) 0

X (γ̃1) Z((γ̃1γ2)t) H(γ̃1σx)− G(γ̃1σty) H(γ̃1δx) G(γ̃1ρx) 0

Y(γ̃2) 0 H(γ̃2σy) + G(γ̃2σtx) H(γ̃2δy) G(γ̃2ρy) 0

R(σ̃) −H(γ2σ̃y)− G(γ2σ̃tx) 0 0 0 0

H(δ̃) −H(γ2δ̃y) 0 0 0 0

G(ρ̃) −G(γ2ρ̃y) 0 0 0 0

Z(χ̃) 0 0 0 0 0

Based on Table 8.5, it is straightforward to recover the following nontrivial adjoint actions:

Ad(eε∂t)D1 = D1 − ε∂t, Ad(eεD1)∂t = eεD1,

Ad(eεJ(β))D1 = D1 + εJ(tβt), Ad(eεD1)J(β) = J(β(e−εt)),

Ad(eεX (γ1))D1 = D1 + εX (tγ1
t ), Ad(eεD1)X (γ1) = X (γ1(e−εt)),

Ad(eεY(γ2))D1 = D1 + εY(tγ2
t ), Ad(eεD1)Y(γ2) = Y(γ2(e−εt)),
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Ad(eεR(σ))D1 = D1 + εR(tσt + σ), Ad(eεD1)R(σ) = R(e−εσ(e−εt)),

Ad(eεH(δ))D1 = D1 + εH(tδt + δ), Ad(eεD1)H(δ) = H(e−εδ(e−εt, x, y)),

Ad(eεG(ρ))D1 = D1 + εG(tρt + 2ρ), Ad(eεD1)G(ρ) = G(e−2ερ(e−εt, x, y)),

Ad(eεZ(χ))D1 = D1 + εZ(tχt + χ), Ad(eεD1)Z(χ) = Z(e−εχ(e−εt)),

Ad(eεJ(β))∂t = ∂t + εJ(βt), Ad(eε∂t)J(β) = J(β(t− ε)),

Ad(eεX (γ1))∂t = ∂t + εX (γ1
t ), Ad(eε∂t)X (γ1) = X (γ1(t− ε)),

Ad(eεY(γ2))∂t = ∂t + εY(γ2
t ), Ad(eε∂t)Y(γ2) = Y(γ2(t− ε)),

Ad(eεR(σ))∂t = ∂t + εR(σt), Ad(eε∂t)R(σ) = R(σ(t− ε)),

Ad(eεH(δ))∂t = ∂t + εH(δt), Ad(eε∂t)H(δ) = H(δ(t− ε, x, y)),

Ad(eεG(ρ))∂t = ∂t + εG(ρt), Ad(eε∂t)G(ρ) = G(ρ(t− ε, x, y)),

Ad(eεZ(χ))∂t = ∂t + εZ(χt), Ad(eε∂t)Z(χ) = Z(χ(t− ε)),

Ad(eεX (γ1))D2 = D2 − εX (γ1), Ad(eεD2)X (γ1) = X (eεγ1),

Ad(eεY(γ2))D2 = D2 − εY(γ2), Ad(eεD2)Y(γ2) = Y(eεγ2),

Ad(eεH(δ))D2 = D2 + εH(xδx + yδy − 2δ), Ad(eεD2)H(δ) = H(e2εδ(t, e−εx, e−εy)),

Ad(eεG(ρ))D2 = D2 + εG(xρx + yρy + ρ), Ad(eεD2)G(ρ) = G(e−ερ(t, e−εx, e−εy)),

Ad(eεZ(χ))D2 = D2 − 2εZ(χ), Ad(eεD2)Z(χ) = Z(e2εχ),

Ad(eεX (γ1))J(β) = A1, Ad(eεJ(β))X (γ1) = A3,

Ad(eεY(γ2))J(β) = A2, Ad(eεJ(β))Y(γ2) = A4,

Ad(eεH(δ))J(β) = J(β) + εH(βxδy − βyδx), Ad(eεJ(β))H(δ) = A5,

Ad(eεG(ρ))J(β) = J(β) + εG(βxρy − βyρx), Ad(eεJ(β))G(ρ) = A6,

Ad(eεY(γ2))X (γ1) = X (γ1) + εZ((γ1γ2)t), Ad(eεX (γ1))Y(γ2) = Y(γ2)− εZ((γ1γ2)t),

Ad(eεR(σ))X (γ1) = A7, Ad(eεX (γ1))R(σ) = A8,

Ad(eεH(δ))X (γ1) = X (γ1) + εH(γ1δx), Ad(eεX (γ1))H(δ) = H(δ(t, x− εγ1, y)),

Ad(eεG(ρ))X (γ1) = X (γ1) + εG(γ1ρx), Ad(eεX (γ1))G(ρ) = G(ρ(t, x− εγ1, y)),

Ad(eεR(σ))Y(γ2) = A9, Ad(eεY(γ2))R(σ) = A10,

Ad(eεH(δ))Y(γ2) = Y(γ2) + εH(γ2δy), Ad(eεY(γ2))H(δ) = H(δ(t, x, y − εγ2)),

Ad(eεG(ρ))Y(γ2) = Y(γ2) + εG(γ2ρy), Ad(eεY(γ2))G(ρ) = G(ρ(t, x, y − εγ2)),

where

A1 := J(β)− ε
(
Y(βγ1)− G(βttγ

1y)
)

+ 1
2ε

2Z
(
(β(γ1)2)t

)
,

A2 := J(β) + ε
(
X (βγ2)− G(βttγ

2x)
)

+ 1
2ε

2Z
(
(β(γ2)2)t),

A3 := X (γ1 cosβε) + Y(γ1 sinβε)− εG
(
γ1βtt(−x sinβε+ y cosβε)

)
,

A4 := −X (γ2 sinβε) + Y(γ2 cosβε) + εG
(
γ1βtt(x cosβε+ y sinβε)

)
,

A5 := H(δ(t, x cosβε+ y sinβε,−x sinβε+ y cosβε)),

A6 := G(ρ(t, x cosβε+ y sinβε,−x sinβε+ y cosβε)),

A7 := X (γ1) + ε
(
H(γ1σx)− G(γ1σty)

)
,

A8 := R(σ)− ε
(
H(γ1σx)− G(γ1σty)

)
+ 1

2ε
2H
(
(γ1)2σ

)
,
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A9 := Y(γ2) + ε
(
H
(
γ2σy

)
+ G(γ2σtx)

)
,

A10 := R(σ)− ε
(
H(γ2σy) + G(γ2σtx)

)
+ 1

2ε
2H
(
(γ2)2σ

)
.

Using the above adjoint actions, we construct the following optimal list of inequivalent one-

dimensional subalgebras of g∼1 :

〈D1 + aD2〉, 〈∂t + bD2〉, 〈D2 + J(β) +R(σ)〉, 〈J(β) +R(σ) + Z(χ)〉,
〈X (γ1) +R(σ)〉, 〈R(σ) +H(δ) + G(ρ) + Z(χ)〉,

(8.21)

where a ∈ R, b ∈ {−1, 0, 1}. In fact, each element of the above list represents a class of

subalgebras rather than a single subalgebra. Subalgebras within each of the four last classes can

be equivalent. Thus, in the third class we can use adjoint action Ad(eεD1) to rescale σ as well as

the argument t of β and σ. Using Ad(eε∂t) allows us to shift t in the functions β and σ. In the

fourth class, equivalence is understood up to actions of Ad(eεD1), Ad(eεD2) and Ad(eε∂t), which

permit rescaling of σ, χ and their argument t, scaling of χ as well as shifts of t in β, σ and χ.

Similar equivalence is also included in the fifth class. The last class comprises equivalence with

respect to actions of Ad(eεJ(β)), Ad(eεX (γ1)) and Ad(eεY(γ2)). In the three last classes we can

also rescale the entire basis elements.
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Chapter 9

Summary and conclusions

In this part of the thesis we have presented several methods for the construction of physi-

cal parameterization schemes with prescribed symmetry properties. These methods have been

demonstrated by the construction of invariant parameterization schemes for the eddy vorticity

flux in the barotropic vorticity equation. It should be stressed that this model is indeed one of

the simplest equations for which the parameterization problem can be illustrated. Additionally,

we have only focussed on first order closure schemes. On the other hand, the computations

involved in the construction of parameterizations for this equation were already rather elabo-

rate. This is especially true in view of the calculations of the equivalence algebra and the set

of admissible transformations for the considered setting. The situation gets even worse if one

aims to investigate not only first order closure schemes as done in the present thesis. Cur-

rently, it is typical to employ third or higher order closure schemes in state of the art models,

i.e. to construct parameterizations with explicit differential equations for the first and second

order correlation terms [98, 150]. In such situations it is necessary to simultaneously treat a

possibly large system of several differential equations. Although the methods proposed in this

part can be applied to all kinds of local parameterization schemes, the practical computation

of the equivalence algebra of these models by hand seems to be an extremely challenging task.

This is why we regard the usage of suitable computer packages for an automatic computation

of the equivalence algebra to be crucial in such situations. Similarly, the calculation of the set

of admissible transformations and checking of the normalization property seem to be an almost

hopeless task for systems of differential equations employing such higher order closure schemes.

It should be added that there are so far no computer algebra packages available which allow for

the computation of the set of admissible transformations.

At the same time, even if the set of admissible transformations of a class of the differential

equations is incomputable (or if a given class fails to be normalized), there are several possi-

bilities for the construction of invariant parameterization schemes. Using methods of inverse

group classification only requires knowledge of the differential invariants of the maximal Lie

invariance algebra of the system of differential equations not involving unknown terms. What

is more, the computation of the maximal Lie invariance algebra is feasible even for large sys-

tems of differential equations by infinitesimal methods. For this reason we regard inverse group

classification as suitable for state of the art models in which parameterizations are needed. But

also direct group classification methods can prove valuable in cases where the set of admissible

transformations cannot be obtained. For simple classes of parameterizations, the group classi-

fication problem can possibly be solved completely by employing compatibility methods to the
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system of determining equations of Lie symmetries. If the determining equations at hand are

not suitable for a thorough compatibility analysis, invariant parameterizations can still be con-

structed using preliminary group classification, provided that the equivalence algebra is known.

Since this technique is essentially algorithmic, it may also be well-suited for an application by

researchers working in the field of parameterization without explicit background in symmetry

analysis. Though such a treatment will not yield a complete description of all possible invariant

parameterization schemes, it might nevertheless help finding a restricted form of the chosen pa-

rameterization functions. This might be especially fruitful for processes that are well-understood

but have to be parameterized in numerical models. For such processes, the parameterization

functions are already quite determined. In turn, the more restrictions on the parameterization

functions are already imposed, the less possibilities exist for the construction of different invari-

ant parameterizations. That is, in order to determine invariant parameterization schemes, it

might not be necessary at all to carry out an exhaustive group classification of the given class

of differential equations as several classes that could arise under classification can already be

excluded for physical reasons. In this light, the exhaustive description of invariant parameter-

izations of the eddy vorticity flux in the vorticity equation should also be considered to be of

pedagogical value going beyond the requirements, which might be finally needed in practice.

So far, the parameterization schemes proposed in this part have not been tested in practice.

It should be clear that while the parameterizations in the Tables 8.1–8.4 are optimal from the

mathematical viewpoint, they are far from being suitably prepared for an actual application in a

numerical model. Firstly, as mentioned above, some of them are obviously unphysical (such as,

e.g., the first and the second parameterization in Table 8.1). Secondly, parameterizations from

these tables represent classes of invariant parameterizations. This means that there is still a

freedom in choosing a particular realization from the single classes. At this level, other desirable

physical properties should be incorporated into the parameterization. Finally, each of the pa-

rameterizations listed above is a representative of the respective class based on the classification

of inequivalent subalgebras. It is hence possible to use transformations of the corresponding

equivalence group to map the given representative to a new one, without leaving the current

class of parameterization. This freedom in choosing an appropriate class representative can be

crucial in order to find those parameterization that is best suited for practical applications.

All these remarks have to be taken into account before it becomes possible to attach such an

invariant parameterization to a numerical integration model. Nevertheless, it will be interesting

to test and assess the quality of parameterization schemes that are constructed using methods

of group classification. This is one of our future perspective in the framework of invariant

parameterization theory.
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methods

Integration of deter-
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Figure 9.1: Schematic overview of the construction of invariant discretization schemes based

on methods of direct group classification. Red path: Suitable for classes of parameterization

schemes that can be investigated using compatibility analysis of the system of determining

equations of Lie point symmetries. Black path: The algebraic method of group classification

applied to the parameterization problem. This latter method is specially adapted for classes that

possess the normalization property (which should be checked separately), eventually leading to a

modification of the parameterization ansatz (green path). For classes that fail to be normalized,

the result of this method gives a non-exhaustive list of invariant parameterizations, which still

might be useful in practice.
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Part III

Symmetries, Nambu mechanics and

finite-mode models
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Chapter 10

Rayleigh-Bénard Convection as a

Nambu-metriplectic problem

Abstract The traditional Hamiltonian structure of the equations governing conservative Ray-

leigh-Bénard convection (RBC) is singular, i.e. it’s Poisson bracket possesses nontrivial

Casimir functionals. We show that a special form of one of these Casimirs can be used to

extend the bilinear Poisson bracket to a trilinear generalised Nambu bracket. It is further

shown that the equations governing dissipative RBC can be written as the superposition

of the conservative Nambu bracket with a dissipative symmetric bracket. This leads to a

Nambu-metriplectic system, which completes the geometrical picture of RBC.

10.1 Introduction

The noncanonical Hamiltonian form of the hydro-thermodynamical equations in Eulerian vari-

ables is typically singular. This gives rise to the existence of a special class of conserved quantity,

the Casimir functionals. This singularity is a consequence of the reduction that takes place if

one changes the coordinates from the (canonical) Lagrangian coordinates to the (noncanonical)

Eulerian coordinates by means of the particle-relabeling symmetry, e.g. [155].

In the noncanonical Hamiltonian form the existence of additional conserved quantities is still

hidden and hence it is natural to seek for a formulation which lets enter them the description in

a similar way as the Hamiltonian does. For the great majority of hydrodynamical systems this

is possible [106, 108] and leads to a form of description that formally resembles the structure of

Nambu mechanics, which was first introduced by [104] for discrete systems.

We start with the classical definition of a discrete Nambu system [151]:

Definition: Let M be a smooth manifold and C∞(M) the algebra of infinitely differentiable

real valued functions defined on M . Then M is called a Nambu-Poisson manifold of order n if

there exists a map {, . . . , } : [C∞(M)]⊗n → C∞(M) called the Nambu bracket that satisfies

1. {f1, f2, . . . , fn} = (−1)ε(σ){fσ(1), fσ(2), . . . , fσ(n)} where σ denotes an element of the sym-

metric group of n elements, with ε(σ) being it’s parity.

2. {f1f2, f3, . . . , fn+1} = f1{f2, f3, . . . , fn+1}+ {f1, f3, . . . , fn+1}f2

3. {{f1, . . . , fn−1, fn}, fn+1, . . . , f2n−1} + {fn, {f1 . . . , fn−1, fn+1}, fn+2, . . . , f2n−1} + · · · +

{fn, . . . , f2n−2, {f1, . . . , fn−1, f2n−1}} = {f1, . . . , fn−1, {fn, . . . , f2n−1}}
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Note that the first property defines the skew-symmetry of the Nambu bracket, the second prop-

erty is the Leibniz rule and the last one is a generalisation of the Jacobi identity, known as the

Fundamental identity (FI) or Takhtajan identity.

The Nambu bracket defines the kinematic part of a Nambu system, which is supplemented

by n− 1 function H1, . . . ,Hn−1, such that the evolution of a real-valued function on M is given

by

df

dt
= {f,H1, . . . ,Hn−1}.

Due to the antisymmetry of the Nambu bracket, it follows that H1, . . . ,Hn−1 are conserved by

the Nambu flow.

The generalisation to field equations was done in [106, 108] by starting with the noncanonical

Hamiltonian formulation of the respective model equations. They extended them by means of

using one of their Casimirs as additional conserved quantity. Hence, their continuous Nambu

formulation also only uses trilinear bracket structures. This kind of generalisation is the one we

aim to use for the equations governing RBC.

Let us now turn to dissipative systems with a conservative Hamiltonian core. Although the

notion of such so called metriplectic systems is not unique (see [49] for a review) the constituent

parts of them are the antisymmetric Poisson and a symmetric (or gradient) structure, that

accounts for dissipation. Adding both pieces together then describes the dynamics of the whole

dissipative system. The metriplectic bracket hence reads

〈〈f, g〉〉 := {f, g}+ 〈f, g〉

where

{f, g} = −{g, f} antisymmetric (Poisson) bracket

〈f, g〉 = 〈g, f〉 symmetric (gradient) bracket

holds.

In this paper we show that the equations of RBC can be cast in Nambu-metriplectic form,

that is, the conservative part possesses a Nambu and the dissipative part a symmetric bracket

structure.

10.2 The Nambu structure of conservative RBC

The equations of two-dimensional RBC in case of an incompressible fluid using the Boussinesq

approximation in nondimensional form read [153]:

∂ζ

∂t
+ [ψ, ζ] =

∂T

∂x
+ ν∇4ψ,

∂T

∂t
+ [ψ, T ] =

∂ψ

∂x
+ κ∇2T. (10.1)

As usual, ψ is the stream function generating two-dimensional nondivergent flow in the x–z-

plane, ζ = ∇2ψ is the vorticity, T is the temperature departure of a linear conduction profile,

ν and κ are kinematic viscosity and thermal conductivity, respectively. [a, b] := ∂a/∂x ∂b/∂z −
∂a/∂z ∂b/∂x denotes the Jacobian operator.

In the following, we will assume that the domain of interest is periodic in the x-direction. In

the vertical, we either also assume periodicity or stress-free boundary conditions [145], i.e.

ψ = 0, ζ = 0,
∂ψ

∂x
= 0 at z = 0, z = ztop.
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In either case, since in RBC a constant temperature difference is maintained externally be-

tween the top and bottom of the fluid, the appropriate boundary condition for the temperature

deviation T is

T = 0 at z = 0, z = ztop.

Determining the classical continuous Nambu form is possible only in the case of vanishing dis-

sipation, i.e. in case ν = κ = 0. Then, since the remaining terms on the right hand side can be

written as ∂T/∂x = [T, z] and ∂ψ/∂x = [ψ, z], respectively, both equations may be arranged as

∂ζ

∂t
+ [ψ, ζ] + [z, T − z] = 0,

∂T

∂t
+ [ψ, T − z] = 0. (10.2)

This set of equations is Hamiltonian upon using

H =

∫
Ω

(
1

2
(∇ψ)2 − Tz

)
df

as Hamiltonian functional and

{F ,H} =

∫
Ω

(
ζ

[
δF
δζ
,
δH
δζ

]
+ (T − z)

([
δF
δζ
,
δH
δT

]
+

[
δF
δT

,
δH
δζ

]))
df (10.3)

as a Poisson bracket. An analogue bracket arises also in magnetohydrodynamics (MHD) [102].

Note, however, that this Poisson bracket is singular, i.e. it possesses nonvanishing Casimir

functionals. They are

C1 =

∫
Ω
g(T − z) df, C2 =

∫
Ω
ζh(T − z) df,

where g, h are arbitrary functions of T−z. For a physical interpretation of the analogue Casimirs

in MHD, see [154]. In conservative RBC the first class of Casimirs C1 physically describes the

preservation of T − z-contours. In fact, this class of Casimirs generally arises in nondivergent

and inviscid fluid models. In turn, the second class C2 incorporates the Kelvin’s circulation

theorem, which in the case of RBC requires conservation of the vorticity ζ on closed contours

of T − z.
To determine the conservative Nambu form, we are only interested in the special form of C2

with h = T − z:

C =

∫
Ω
ζ(T − z) df.

It allows us to extend the Poisson bracket formulation of the governing equations to arrive at

the their Nambu form:

∂ζ

∂t
= −

[
δC
δT

,
δH
δζ

]
−
[
δC
δζ
,
δH
δT

]
= {ζ, C,H}

∂T

∂t
= −

[
δC
δζ
,
δH
δζ

]
= {T, C,H},
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where the bracket {·, ·, ·} is defined for arbitrary functionals F1, F2 and F3 by the equation

{F1,F2,F3} := −
∫

Ω

(
δF1

δT

[
δF2

δζ
,
δF3

δζ

]
+
δF1

δζ

[
δF2

δT
,
δF3

δζ

]
+
δF1

δζ

[
δF2

δζ
,
δF3

δT

])
df.

(10.4)

This bracket is easily seen to be totally antisymmetric in case we assume periodic boundary

conditions in both directions. Another possibility that guarantees antisymmetry of (10.4) is

provided by periodicity in x-direction and free boundaries in the vertical. For this choice,

however, it is necessary to fix F3 = H in the Nambu bracket. This is explicitly shown in the

appendix. Assuring antisymmetry is also possible by only considering those class of functionals

that sufficiently rapidly go to zero towards the boundaries. All these choices guarantee that

surface terms emerging from an integration by parts vanish.

The FI is proved by noting that the above Nambu bracket is simply the continuous analogue

of the heavy top Nambu bracket. Hence, this bracket may indeed serve as a good Nambu bracket.

Note that C is indefinite with respect to sign. In this respect it is akin to the helicity, which

is a Casimir for the three dimensional incompressible Euler equations [108]. To our knowledge,

the latter model and RBC are the only known ones that need indefinite Casimirs to allow for a

Nambu representation.

10.3 The Nambu-metriplectic structure of dissipative RBC

Now turning to the dissipative equations (i.e. ν 6= 0, κ 6= 0), we aim to show that this model has

Nambu-metriplectic form. Let us first note, that adding 0 = [T − z, T − z] to the first equation

in (10.2) leads to the equivalent system

∂ζ

∂t
+ [ψ, ζ] + [T, T − z] = 0,

∂T

∂t
+ [ψ, T − z] = 0.

which is Hamiltonian upon using (10.3) as Poisson bracket and

G =

∫
Ω

(
1

2
(∇ψ)2 − Tz − 1

2
(T − z)2

)
df = H− S

as Hamiltonian functional. Note that S is the particular realisation of the first class of Casimir

functionals C1 with g = 1/2(T − z)2. In [100], functionals like G are termed generalised free

energy.

This formulation enables us to cast the equations governing dissipative RBC in Nambu-

metriplectic form. Indeed, in this case the equations can be written as

∂ζ

∂t
+

[
δC
δT

,
δG
δζ

]
+

[
δC
δζ
,
δG
δT

]
= −ν∇4 δG

δζ

∂T

∂t
+

[
δC
δζ
,
δG
δζ

]
= −κ∇2 δG

δT

and it is possible to introduce an indefinite symmetric bracket that governs dissipation:

〈F ,G〉 := −
∫

Ω

(
ν
δF
δζ
∇4 δG

δζ
+ κ

δF
δT
∇2 δG

δT

)
df. (10.5)
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The symmetry property of this bracket is assured if either periodic boundaries are assumed

or only functionals that sufficiently rapidly decay to zero near the boundaries are considered.

Adding together both brackets gives the entire dynamics of two-dimensional RBC:

∂ζ

∂t
= {ζ, C,G}+ 〈ζ,G〉 , ∂T

∂t
= {T, C,G}+ 〈T,G〉 .

Note that in some sense the Nambu-metriplectic formulation of (10.1) is geometrically the most

complete, since representatives of both classes of Casimirs are needed to represent the whole

dynamics.

The existence of dissipation generally spoils the conservation properties of conservative sys-

tem. This is also the case in RBC, since we have

∂G
∂t

= 〈G,G〉 6= 0,
∂C
∂t

= 〈C,G〉 6= 0.

That is, the evolution of G is determined solely by G, whereas the evolution of C is determined

both by C and G.

10.4 Comments and outlook

In this work we have shown that the conservative part of (10.1) can be written in Nambu form,

while the full dissipative system possesses a Nambu-metriplectic form. For both representations,

the explicit usage of Casimir functionals of (10.3) is crucial. The Casimir C allows to extend

the bilinear Poisson bracket to a trilinear Nambu bracket. In turn, the Casimir S can be

subtracted from the Hamiltonian H to give the modified Hamiltonian G. This doesn’t alter the

dynamics, since Casimirs are trivial conserved quantities and Hamiltonians are only determined

up to Casimir functionals. But introducing G is essential to allow for the necessary symmetry

property of the dissipative bracket (10.5).

The Poisson bracket (10.3) is an example of a Lie-Poisson system. Such systems are built

from an underlying Lie algebra structure, typically owing to a reduction from a set of canonical

to a set of noncanonical variables, e.g. [155]. In case of RBC it is the semi-direct extension of

the algebra associated to the group of volume-preserving diffeomorphisms on some domain Ω

with the vector space of real-valued functions on Ω [155]. As was shown in our work, the Nambu

structure is compatible with this type of algebra extension. In particular, the Nambu bracket

(10.4) allows to put (10.3) in a more symmetric form.

Studying algebras and extensions thereof in conjunction with Nambu structures offers a way

to classify Nambu systems. Such work is currently in progress and will be published elsewhere.

Appendix

We aim to explicitly show here that assuming periodic boundaries in x-direction and free bound-

aries in the vertical guarantees the total antisymmetry of (10.4) provided we fix the Hamiltonian

H in the bracket.

We only need to prove antisymmetry with respect to the first two functionals of the bracket

(10.4). The antisymmetry in the other pair of arguments is obvious. An integration by parts

gives ∫
Ω

δF
δT

[
δC
δζ
,
δH
δζ

]
df = −

∫
Ω

δC
δζ

[
δF
δT

,
δH
δζ

]
df −

∫
L

(
δF
δT

δC
δζ

∂

∂x

δH
δζ

) ∣∣∣
z
dx
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∫
Ω

δF
δζ

[
δC
δT

,
δH
δζ

]
df = −

∫
Ω

δC
δT

[
δF
δζ
,
δH
δζ

]
df −

∫
L

(
δF
δζ

δC
δT

∂

∂x

δH
δζ

) ∣∣∣
z
dx∫

Ω

δF
δζ

[
δC
δζ
,
δH
δT

]
df = −

∫
Ω

δC
δζ

[
δF
δζ
,
δH
δT

]
df −

∫
L

(
δF
δζ

δC
δζ

∂

∂x

δH
δT

) ∣∣∣
z
dx

were we have already taken into account periodicity in the x-direction. Due to the imposed

boundary conditions

∂

∂x

(
δH
δζ

) ∣∣∣
z

= −∂ψ
∂x

∣∣∣
z

= 0,
∂

∂x

(
δH
δT

) ∣∣∣
z

= −∂z
∂x

∣∣∣
z

= 0

all the second terms on the right hand side vanish. Similar considerations also hold for fixing

the modified Hamiltonian G.
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Chapter 11

Symmetry justification of Lorenz’

maximum simplification

Abstract In 1960 Edward Lorenz (1917–2008) published a pioneering work on the ‘maximum

simplification’ of the barotropic vorticity equation. He derived a coupled three-mode

system and interpreted it as the minimum core of large-scale fluid mechanics on a ‘finite

but unbounded’ domain. The model was obtained in a heuristic way, without giving a

rigorous justification for the chosen selection of modes. In this paper, it is shown that one

can legitimate Lorenz’ choice by using symmetry transformations of the spectral form of

the vorticity equation. The Lorenz three-mode model arises as the final step in a hierarchy

of models constructed via the component reduction by means of symmetries. In this sense,

the Lorenz model is indeed the ‘maximum simplification’ of the vorticity equation.

11.1 Introduction

Symmetry is one of the most important concepts in numerous branches of modern natural

science. The exploitation of symmetries of dynamical systems may lead to a more efficient

treatment of the differential equations describing these systems via a reduction of the information

that is necessary in order to account for model dynamics.

There are many ways to utilize symmetries of differential equations, including the systematic

construction of exact solutions of PDEs, determination of conservation laws and construction

of mappings that relate or linearize differential equations (see e.g. [3, 115, 118]). Also, there is

some work on symmetries in the study of dynamical systems and bifurcation theory [48], giving

rise to the study of equivariant dynamical systems. In the present work, we will take a related

but somewhat different direction to investigate how the Lorenz-1960 model [84] can be derived

in a rigorous way.

In this classical work, Lorenz considered the spectral expansion of the barotropic vorticity

equation on a torus. In what follows, he sought for the minimum system of coupled ordinary

first order differential equations for the Fourier coefficients that is necessary to still account

for the nonlinear interaction of modes. In doing so, he first restricted the range of indices in

the infinite Fourier series by the values {−1, 0, 1}. His crucial step to achieve the maximum

simplification was the observation that all but three of these remaining coefficients retain their

particular values once they are taken. We aim to give a justification of this observation by

interpreting it as a condition of symmetry. To be more precise, we show that this simplification
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is possible due to the corresponding spectral counterparts of point symmetry transformations

of the vorticity equation in physical space. These symmetries are preserved under truncations

of the infinite Fourier series and are inherited by the spectral set of equations for the Fourier

coefficients.

A justification of the selection of modes in finite-mode models by considering inherited sym-

metries may be potentially useful also in more general situations. It could provide an additional

criterion addressing the important question which modes in the reduced model should be re-

tained and which may be neglected. In this sense, using induced symmetries may supply special

kinds of truncations that are designed to preserve e.g. the invariants of the parental model also

in the truncated dynamics (e.g. [153]). This may lead to more concise and consistent finite-mode

representations. As stated above, this approach is to be distinguished from the field of equiv-

ariant dynamics. The main difference is that in the latter usually no exhaustive and rigorous

calculations of symmetry groups are given.

The organization of this paper is the following: Section 11.2 is devoted to discrete and

continuous symmetries of the barotropic vorticity equation in a non-rotating reference frame.

We expand the vorticity in a double Fourier series and discuss how the symmetries of the equation

in physical space are induced to symmetry transformations in terms of the Fourier coefficients.

In section 11.3 the initial model of eight ODEs will be presented amongst a discussion of the

induction of the symmetries to this truncated system. Finally, in section 11.4 subgroups of

the whole symmetry group of the truncated spectral vorticity equations will be used to derive

hierarchies of reduced models describing the evolution of the relevant Fourier coefficients. The

main result is that the Lorenz-1960 model is indeed the maximum simplification of the dynamic

equations. It is the minimal system that can be obtained by using symmetry subgroups of the

spectral vorticity equation for component reduction.

11.2 Symmetries of the barotropic vorticity equation

The inviscid barotropic vorticity equation in an inertial system in stream function form reads

∂

∂t
∇2ψ +

∂ψ

∂x

∂

∂y
∇2ψ − ∂ψ

∂y

∂

∂x
∇2ψ = 0, (11.1)

where ψ is the stream function generating two-dimensional nondivergent flow in the (x, y)-plane.

It states the individual or Lagrangian conservation of the vorticity

ζ = ∇2ψ.

Eqn. (11.1) possesses the eight-element group of discrete symmetries, generated by the elements

e1 : (x, y, t, ψ)→ (x,−y, t,−ψ)

e2 : (x, y, t, ψ)→ (−x, y, t,−ψ)

e3 : (x, y, t, ψ)→ (x, y,−t,−ψ).

Note that these transformations are involutive (i.e. e2
i = 1, i = 1, 2, 3) and, moreover, they

commute (i.e. eiej = ejei, i, j = 1, 2, 3, i 6= j). Each ei generates a copy of Z2, the cyclic group

of order 2. The group of all discrete symmetry transformations of the vorticity equation may

then be written as Z2 ⊕ Z2 ⊕ Z2.
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For sake of completeness, we also present the generators of one-parameter symmetry groups

of (11.1), which were computed using the program LIE by A. Head [51]. They read

vt =
∂

∂t
vu = tx

∂

∂y
− ty ∂

∂x
+

1

2

(
x2 + y2

) ∂

∂ψ

vr = x
∂

∂y
− y ∂

∂x
Z(h) = h(t)

∂

∂ψ

X1(f) = f(t)
∂

∂x
− yf ′(t) ∂

∂ψ
X2(g) = g(t)

∂

∂y
+ xg′(t)

∂

∂ψ

D1 = x
∂

∂x
+ y

∂

∂y
+ 2ψ

∂

∂ψ
D2 = t

∂

∂t
− ψ ∂

∂ψ
,

where f , g and h are arbitrary smooth functions of t. Thus, in addition to the discrete symmetries

ei, i = 1, 2, 3, the vorticity equation (11.1) possesses the time translations (generated by vt), the

rotations with constant velocities and on constant angles (vu and vr, respectively), the gauging

of stream function with arbitrary summands depending in t (Z(h)), translatory motions with

arbitrary (nonconstant) velocities (X1(f) and X2(g)) and (separate) scaling of the space and

time variables (D1 and D2). In contrast to the other basis operators, the operator vu has no

counterpart in the three-dimensional case and leads to nonlocal transformations in terms of the

fluid velocity and the pressure. This singularity, from the symmetry point of view, of the two-

dimensional vorticity equations in terms of the stream function was first observed by Berker [13]

and later re-opened (c.f. [7]). In this paper we simultaneously use discrete symmetries and some

of transformations from the continuous symmetry group.

We now expand the vorticity in a double Fourier series on the torus,

ζ =
∑
m

cm exp(im̂ · x), x = xi + yj, m = m1i +m2j, m̂ = m1ki +m2lj,

where k and l are nonzero constants, i = (1, 0, 0)T, j = (0, 1, 0)T, m1 and m2 run through the

set of integers and the coefficient c00 vanishes. Inserting this expansion in the vorticity equation

(11.1) gives its spectral form [84]:

dcm
dt

= −
∑

m′ 6=0

cm′cm−m′

m̂′2
(
k · [m̂′ × m̂]

)
, (11.2)

where k = (0, 0, 1)T. The transformations ei induce transformations of the Fourier coefficients.

Thus, in spectral terms the action ζ̃(x, y, t) = −ζ(x,−y, t) of e1 on ζ has the form∑
m

c̃m exp(im̂ · x) = −
∑
m

cm exp(i(m1kx−m2ly))

= −
∑
m

cm1,−m2 exp(i(m1kx+m2ly)),

upon changing the summation over m2. Hence we have c̃m1m2 = −cm1,−m2 as a consequence of

the x-reflection e1. Finally, these and similar computations give the transformations

e1 : cm1m2 → −cm1,−m2

e2 : cm1m2 → −c−m1m2

e3 : cm1m2 → −cm1m2 , t→ −t.
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It is obvious that the induced transformations for the coefficients cm are symmetries of system

(11.2).

Some of continuous symmetries of the vorticity equation also induce well-defined symmetries

of system (11.2). Thus, the rotation on the angle π coincides with e1e2. (In fact, only one of the

reflections e1 and e2 is independent up to continuous symmetries.) More nontrivial examples

are given by the space translations, which induce the transformations

pε : cm1m2 → eim1kεcm1m2

qε : cm1m2 → eim2lεcm1m2 .

For the values ε = π/k and ε = π/l, respectively we have pπ/k : cm1m2 → (−1)m1cm1m2 and

qπ/l : cm1m2 → (−1)m2cm1m2 . For the sake of brevity, we will set p̂ = pπ/k and q̂ = qπ/l.

11.3 Discrete symmetries of the truncated system

The restriction of the range of indices in (11.2) by {−1, 0, 1} × {−1, 0, 1} leads to the following

eight-mode model related to the vorticity equation:

dc11

dt
=

(
1

l2
− 1

k2

)
klc10c01

dc10

dt
=

(
1

k2 + l2
− 1

l2

)
kl [c11c0,−1 − c1,−1c01]

dc1,−1

dt
=

(
1

k2
− 1

l2

)
klc10c0,−1

dc01

dt
=

(
1

k2 + l2
− 1

k2

)
kl [c10c−11 − c11c−10]

dc−1,−1

dt
=

(
1

l2
− 1

k2

)
klc−10c0,−1

dc−10

dt
=

(
1

k2 + l2
− 1

l2

)
kl [c−1,−1c01 − c0,−1c−11]

dc−11

dt
=

(
1

k2
− 1

l2

)
klc−10c01

dc0,−1

dt
=

(
1

k2 + l2
− 1

k2

)
kl [c−10c1,−1 − c10c−1,−1] .

(11.3)

System (11.3) consists of first-order ordinary differential equations. Hence the problem on

description of its point symmetries is even more difficult than its complete integration (c.f.

[115]). At the same time, some symmetries of (11.3) are in fact known since they are induced

by symmetries of the vorticity equation. In particular, the symmetric truncation guarantees

that the resulting system (11.3) inherits the discrete symmetries of the initial system (11.2),

induced by e1, e2, e3 and their compositions. (This is an argument justifying such kind of

truncation.) Any truncation also preserves the symmetries pε and qε. It is easy to see that the

transformations p̂ and q̂ are involutive and commutes with e1, e2 and e3.

The above transformations are of crucial importance for deriving the Lorenz system.

11.4 Component reduction of the truncated system

The transformations e1, e2, p̂ and q̂ and their compositions act only on dependent variables and,

therefore, can be used for component reductions of system (11.3).1 The technique applied is

similar to that developed for invariant solutions without transversality (c.f. [4, 118]). However,

it is not apparent that the element e3 can be used for this purpose. We thus restrict ourselves

1See the appendix for a depiction of these transformations.
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to the group G ' Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 generated by e1, e2, p̂ and q̂. We will apply the following

subgroups of G:

S1 = {1, e1}, S′1 = {1, e2}, S2 = {1, p̂}, S′2 = {1, q̂},
S3 = {1, p̂e2}, S′3 = {1, q̂e1}, S4 = {1, p̂q̂},
S5 = {1, p̂e1}, S′5 = {1, q̂e2}, S6 = {1, e1e2},
S7 = {1, p̂e1e2}, S′7 = {1, q̂e1e2}, S8 = {1, p̂q̂e1}, S′8 = {1, p̂q̂e2},
S9 = {1, p̂q̂e1e2}, S10 = {1, p̂q̂e1, p̂q̂e2, e1e2},
S11 = {1, p̂e1, q̂e1e2, p̂q̂e2}, S′11 = {1, q̂e2, p̂e1e2, p̂q̂e1},
S12 = {1, p̂e1, q̂e2, p̂q̂e1e2}.

By 1 we denote the identical transformation. There are yet other subgroups of G but as we will

see they do not lead to nontrivial reduced systems.

Note that the subgroup S′1 will result in the same reduced system as S1 (up to the re-notation

(x, k) ↔ (y, l)). A similar remark holds also for all the subgroup marked by prime, so we only

have to consider reductions with respect to the subgroups without prime. This should be done

subsequently.

11.4.1 Trivial reductions

The tuple (cij) is invariant with respect to the transformation e1 if and only if the following

identifications hold:

c−1,−1 = −c−11, c0,−1 = −c01, c1,−1 = −c11, c10 = −c10, c−10 = −c−10.

The last two conditions require that c10 = c−10 = 0. Inserting these identifications in (11.3)

leads to a trivial system only. Hence, the subgroup S1 cannot be used for a component reduction

of (11.3). As a consequence, no subgroup of G that contains the transformation e1 can be used

for this purpose.

The same statement is true for the transformations e2, p̂, q̂, p̂e2, q̂e1 and p̂q̂. Finally, any

subgroup of G containing one of the elements e1, e2, p̂, q̂, p̂e2, q̂e1 or p̂q̂ gives a trivial reduction.

11.4.2 Reductions in three components

The tuple (cij) is invariant under the subgroup S8 generated by the transformation p̂q̂e1 if and

only if the following equalities hold:

c0,−1 = c01, c−1,−1 = −c−11, c1,−1 = −c11.

This transformation allows us to reduce (11.3) to the nontrivial five-component system

dc10

dt
= 2

(
1

k2 + l2
− 1

l2

)
klc11c01

dc11

dt
=

(
1

l2
− 1

k2

)
klc10c01

dc−10

dt
= −2

(
1

k2 + l2
− 1

l2

)
klc−11c01

dc−11

dt
=

(
1

k2
− 1

l2

)
klc−10c01 (11.4)

dc01

dt
=

(
1

k2 + l2
− 1

k2

)
kl [c10c−11 − c11c−10] .

The subgroup S5 leads to a similar reduction under equating

c0,−1 = −c01, c−1,−1 = c−11, c1,−1 = c11.
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11.4.3 Reductions in four components

Utilizing the subgroup S6 = {1, e1e2} by means of similar consideration as in the previous

sections leads to the following nontrivial reduced system of (11.3) after equating c−11 = c1,−1,

c−1,−1 = c11, c0,−1 = c01 and c−10 = c10:

dc11

dt
=

(
1

l2
− 1

k2

)
klc10c01

dc10

dt
=

(
1

k2 + l2
− 1

l2

)
kl[c11 − c1,−1]c01

dc1,−1

dt
=

(
1

k2
− 1

l2

)
klc10c01

dc01

dt
=

(
1

k2 + l2
− 1

k2

)
kl [c1,−1 − c11] c10. (11.5)

Similar four-component reductions are also given by the non-primed subgroups S7 (c−11 =

−c1,−1, c−1,−1 = −c11, c0,−1 = c01 and c−10 = −c10) and S9 (c−11 = c1,−1, c−1,−1 = c11,

c0,−1 = −c01 and c−10 = −c10).

11.4.4 Maximal reduction: subgroup S10

Finally, let us derive the reduced system associated with the subgroup S10. This reduced system

coincides with the Lorenz-1960 model. Since all transformations mutually commute, there are

three equivalent ways for the reduction. The first way is to perform the reduction in a single step

from system (11.3) using the subgroup S10. Because the system (11.5) possesses the symmetry

transformation induced by p̂q̂e1, we can also start with (11.5) and compute the induced com-

ponent reduction. Alternatively, it is possible start with (11.4) and apply the transformation

induced by e1e2. This will give the same reduced system associated with the subgroup S10.

The subgroups S11 and S12 lead to similar reductions connected with the Lorenz’ reduction

via transformations generated by pπ/2k and qπ/2l. Therefore, up to symmetries of (11.3) induced

by the symmetries of the vorticity equation, there is a unique reduction in five components.

However, let us note before that we have already employed the transformation

(x, y, t, ψ)→ (−x,−y, t, ψ)

which accounts for the identification c−m = cm. Observe that the connection between the

complex and real Fourier coefficients is given by

am = cm + c−m, bm = i(cm − c−m).

Hence we can already set

cm =
1

2
am.

This explains the first observation by Lorenz [84]: If the imaginary parts of the Fourier coeffi-

cients vanish initially, they will vanish for all times. Mathematically, this is justified since we

have used the symmetry transformation group S6.

Now employing the transformation p̂q̂e1 at this stage of simplification, we have the identifi-

cation

c1,−1 = −c11 ⇔ a1,−1 = −a11.

This is the second observation by Lorenz [84], namely that if a1,−1 = −a11 initially, then the

equality will hold for all times. That is, Lorenz heuristically discovered the symmetry transfor-

mation p̂q̂e1 to obtain his famous finite-mode model.
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It is straightforward to see that the resulting system leads to the Lorenz system upon setting

A = a01, F = a10, G = a1,−1:

dA

dt
= −

(
1

k2
− 1

k2 + l2

)
klFG

dF

dt
=

(
1

l2
− 1

k2 + l2

)
klAG

dG

dt
= −1

2

(
1

l2
− 1

k2

)
klAF.

The Lorenz-1960 system is thus the result of invariance of the system (11.3) under the subgroup

S10. Hence it is truly the maximum simplification that can be obtained. We have exhausted

all the symmetry groups consisting of chosen discrete symmetry transformations and leading to

nontrivial reduced systems.

Appendix: Depiction of symmetry transformations

For the readers’ convenience, we graphically illustrate some of the symmetry transformations

used for the component reduction. An arrow between two components means the identification

of the respective coefficients. If there is a minus sign next to an arrow, the corresponding

identification is up to minus. For any arrow starting and ending in the same coefficient, the

identification up to minus means that this coefficient vanishes. The coefficients remained in the

finite-mode models after the identification are displayed in bold.
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Chapter 12

Minimal atmospheric finite-mode

models preserving symmetry and

generalized Hamiltonian structures

Abstract A typical problem with the conventional Galerkin approach for the construction of

finite-mode models is to keep structural properties unaffected in the process of discretiza-

tion. We present two examples of finite-mode approximations that in some respect preserve

the geometric attributes inherited from their continuous models: a three-component model

of the barotropic vorticity equation known as Lorenz’ maximum simplification equations

[Tellus, 12, 243–254 (1960)] and a six-component model of the two-dimensional Rayleigh–

Bénard convection problem. It is reviewed that the Lorenz–1960 model respects both the

maximal set of admitted point symmetries and an extension of the noncanonical Hamilto-

nian form (Nambu form). In a similar fashion, it is proved that the famous Lorenz–1963

model violates the structural properties of the Saltzman equations and hence cannot be

considered as the maximum simplification of the Rayleigh–Bénard convection problem.

Using a six-component truncation, we show that it is again possible retaining both sym-

metries and the Nambu representation in the course of discretization. The conservative

part of this six-component reduction is related to the Lagrange top equations. Dissipation

is incorporated using a metric tensor.

12.1 Introduction

Various models of the atmospheric sciences are based on nonlinear partial differential equations.

Besides numerical simulations of such models, it has been tried over the past fifty years to

capture at least some of their characteristic features by deriving reduced and much simplified

systems of equations. A common way for deriving such reduced models is based on the Galerkin

approach: One expands the dynamic variables of a model in a truncated Fourier (or some other)

series, substitutes this expansion into the governing equations and studies the dynamics of the

corresponding system of ordinary differential equations for the expansion coefficients. Although

the number of expansion coefficients is usually minimal to allow for an analytic investigation,
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these reduced models have been used in order to explain some common properties of atmospheric

models.

To the best of our knowledge there is up to now no universal criterion for the selection of

modes or the choice of truncation of the series expansion. However, at least some cornerstones

for the Galerkin approach are already settled. It is desirable for finite-mode models to retain

structural properties of the original set of equations, from which they are derived [44, 45]. Such

properties are, e.g., quadratic nonlinearities, conservation of energy and one or more vorticity

quantities in the nondissipative limit and preservation of the Hamiltonian form.

Recently, an extension of the Hamiltonian structure based on the idea of Nambu [104] to

incorporate multiple conserved quantities in a system representation also came into focus. It

was shown in [16, 106, 108, 110, 141, 146] that various equations of ideal hydrodynamics and

magneto-hydrodynamics allow for a formal Nambu representation. It therefore seems reasonable

to derive finite-mode models that also retain this structure. Moreover, almost all models in the

atmospheric sciences possess symmetry properties. These symmetries should thus be taken into

account in low-dimensional modeling too, which is an issue in the field of equivariant dynamical

systems (see, e.g., [48]).

The general motivation for this work is that low-order models are still in widespread use in the

atmospheric sciences. It has been mentioned above that their original purpose was to identify

characteristic features of the atmospheric flow in the pre-supercomputer era. While the advent

of supercomputers partially renders this aim obsolete, finite-mode models are still valuable

for testing advanced methods in the atmospheric sciences, related to issues of predictability,

ensemble prediction, data assimilation or stochastic parameterization [5, 99, 119, 120]. Such

finite-mode models offer the possibility for a conceptual understanding of techniques that are

to be used in comprehensive atmospheric numerical models later on. For such testing issues, in

turn, it is essential to have finite-mode models that preserve the structure of the underlying set

of partial differential equations at least in some minimal way.

In this paper we give two examples of finite-mode models that retain the above mentioned

features of their parent model: The first is the three-component Lorenz–1960 model, derived

as the maximum simplification of the vorticity equation [84]. The second is a six-component

extension of the Lorenz–1963 model [85]. The authors are aware that there exists a great

variety of other finite-mode (Lorenz) models, such as e.g. [86, 87, 88], possessing richer geometric

structure and allowing to address other important issues in the atmospheric sciences, such as the

existence of a slow manifold, atmospheric attractors, balanced dynamics and the initialization

problem of numerical weather prediction. Results in these directions can be found, besides in

the original papers by Lorenz, e.g., in [25, 27, 159, 162]. The choice to investigate the Lorenz–

1960 and Lorenz–1963 models, however, is reasonable since the latter still is one of the most

prominent finite-mode models used in dynamic meteorology for testing issues as reviewed above.

As we are going to show, the Lorenz–1963 model in various respects does not constitute a sound

geometric model, the derivation of a revised version of this system appears to be well justified.

The Lorenz–1960 model, on the other hand has been chosen as it is the simplest system for

which the techniques to be applied in this paper can be demonstrated.

The Lorenz–1963 model is a dissipative model and as such it necessarily violates conservative

properties. On the other hand this is a rather typical situation for more comprehensive atmo-

spheric numerical models too. Usually, the conservative dynamical core of such models is coupled

to a number of dissipative processes such as friction, precipitation and radiation. Nonetheless,

130



it is a necessary condition that the numerics for the dynamical core itself do not violate the

structural properties of the underlying conservative dynamics [165]. Any valuable toy model of

the atmosphere should reflect this, e.g. by consisting of the superposition of a conservative part

and a dissipative part. This is one of the guiding principles for our derivation of the generalized

Lorenz–1963 model.

The organization of the paper is as follows: Properties of discrete and continuous Nambu

mechanics are briefly reviewed in section 12.2. Section 12.3 includes a description of the Lorenz–

1960 model, establishing its Nambu structure and its compatibility with the admitted point sym-

metries of the barotropic vorticity equation. In section 12.4, it is shown that the Lorenz–1963

model is neither compatible with the corresponding Nambu (Hamilton) form of the Saltzman

convection equations nor with its point symmetries. We hereafter identify the maximum simpli-

fication of the Saltzman convection equations [145] that reflects both symmetries and the proper

Nambu structure of the continuous model. Finally, in section 12.5 we sum up our results and

discuss some open questions.

12.2 Nambu mechanics

Since Nambu mechanics emerged from discrete Hamiltonian mechanics, it is convenient to start

with a short description of the latter. The evolution equation of a general n-dimensional Hamil-

tonian system is given by

dF

dt
= {F,H} ,

where F = F (zi) is an arbitrary function of the phase space variables zi, i = 1, . . . , n, H is the

Hamiltonian function and {., .} is a Poisson bracket, which satisfies bilinearity, skew-symmetry

and the Jacobi identity. For discrete Hamiltonian systems, the Poisson bracket is characterized

by an antisymmetric rank two tensor that can depend on the coordinates of the underlying

phase space. In modern Hamiltonian dynamics, this tensor is allowed to be singular, leading to

the notion of a Casimir function C, which Poisson-commutes with all arbitrary functions G(zi)

{C,G} = 0, ∀ G.

Setting G = H, it follows that every Casimir is in particular also a conserved quantity.

Guided by Liouville’s theorem stating volume-preservation in phase space, Nambu [104] pro-

posed a formalism for discrete mechanical systems allowing multiple conserved quantities to

determine, at the same level of significance, the evolution of a dynamical system. More pre-

cisely, let us consider a point mechanical system with n degrees of freedom and n−1 functionally

independent conserved quantities Hj , j = 1, . . . , n− 1. The evolution equation for an arbitrary

function F according to Nambu is

dF

dt
=
∂(F,H1, H2, . . . ,Hn−1)

∂(z1, z2, . . . , zn)
=: {F,H1, H2, . . . ,Hn−1} .

The above bracket operation is called Nambu bracket, which due to the properties of the Jacobian

is non-singular, multi-linear and totally antisymmetric. It was demonstrated in [151], that a

Nambu bracket also fulfills a generalization of the Jacobi identity, which reads

{{F1, . . . , Fn−1, Fn}, Fn+1, . . . , F2n−1}+ {Fn, {F1 . . . , Fn−1, Fn+1}, Fn+2, . . . , F2n−1}
+ · · ·+ {Fn, . . . , F2n−2, {F1, . . . , Fn−1, F2n−1}} = {F1, . . . , Fn−1, {Fn, . . . , F2n−1}}

(12.1)
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for any set of 2n− 1 functions Fi. Various discrete models that allow for a Nambu formulation

were identified, e.g. the free rigid body [104], a system of three point vortices [106], and the

conservative Lorenz–1963 model [109], which is discussed in some detail below.

It appears that the application of ideas of discrete Nambu mechanics to field equations was

first considered in [14] (and even earlier in a talk [93]), and later independently by Névir and

Blender [108]. It was noted that the singularity of many continuous Poisson brackets of fluid

mechanics may be formally removed by extending them to tribrackets using explicitly one of

their Casimir functionals as additional conserved quantity. That is, despite the fact that partial

differential equations represent systems with infinitely many degrees of freedom, up to now

there only exist models using one additional conserved quantity. This way, the term continuous

Nambu mechanics (referring to a Nambu representation of field equations) is at once misleading,

though it is already used in several papers.

The restriction to tribrackets may be traced back to the underlying Lie algebras on which

the Poisson brackets in Eulerian variables are based on [90, 101]. Hence, the fixed relation

between the dimension of the phase space and the number of conserved quantities used for a

system representation is lost in continuous Nambu mechanics. In the atmospheric sciences, this

generalization is called energy-vorticity theory, as the employed Casimir functional is frequently

related to some vortex integral. Since in the atmospheric sciences the evolution of the rotational

wind field is dominant over different scales, the energy-vorticity description may be well suited

for a better understanding of e.g. turbulence. Among others, models that can be cast into

energy-vorticity form include the inviscid non-divergent 2d and 3d barotropic vorticity equations,

the quasi-geostrophic potential vorticity equation and the governing equations of ideal fluid

mechanics as well as equations of magnetohydrodynamics [16, 106, 107, 110, 141].

The main problem with continuous Nambu mechanics is that it is up to now not clear whether

it is possible to state an appropriate condition analog to the generalized Jacobi identity (12.1)

of discrete Nambu mechanics. While this is obviously a serious point assessing the self-reliance

of continuous Nambu mechanics compared to usual noncanonical Hamiltonian field theory, for

the application of the Nambu formalism this point is not of prior importance. Indeed, the main

benefit of a continuous Nambu formulation so far lies in the possibility of the construction of con-

servative numerical schemes. Namely, numerically conserving the antisymmetric Nambu bracket

automatically leads to a numerical conservation of energy and the second constitutive conserved

quantity of the bracket. This allows to explain the construction of the celebrated Arakawa

discretization [8] of the Jacobian operator and enables to generalize the Arakawa method in a

systematic way to other models possessing a Nambu representation [42, 143, 144, 146]. That

is, although the Nambu form might appear to be an algebraic curiosity from the theoretical

point of view, it is nevertheless of high value in the numerical application. This is also the main

reason, why we aim to care about this form in the course of the present paper. The general-

ized Lorenz–1963 model derived in section 12.4 is of Nambu form and hence it automatically

conserves certain representatives of both classes of Casimir functionals of the Rayleigh-Bénard

convection equations.

It could be argued, that the numerical preservation of only one additional conserved quantity

is only a little success in view of the infinite number of conserved quantities of two-dimensional

ideal hydrodynamics. As was demonstrated in [2], not only energy, circulation and enstrophy

are statistically relevant for the large scale behavior of ideal fluid mechanics, but also is the

third integrated power of the vorticity. Though this objection can hardly be rebutted, the au-
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thors are not aware of any truncation conserving an appropriate number of conserved quantities

besides the method proposed by Zeitlin [164, 165], which however can neither be adopted for

all models in fluid mechanics nor in arbitrary geometries. Although similar objections also hold

against the Nambu bracket approach, the Nambu discretization method nevertheless might be

considered as an enrichment of existing numerical methods in fluid mechanics (see [37, 147] for

a discussion of the Nambu discretization in relation to the statistics). Moreover, the Nambu

bracket approach goes beyond various numerical methods for Hamiltonian field equations, in

which solely conservation of energy can be assured.

12.3 Structural properties of the vorticity equation

The inviscid barotropic vorticity equation on the f -plane for an incompressible flow can be

written in form of a conservation law

∂ζ

∂t
= − [ψ, ζ] , (12.2)

where ψ(t, x, y) is the stream function generating two-dimensional nondivergent flow, ζ = ∇2ψ

is the vorticity and [a, b] = ∂a/∂x ∂b/∂y − ∂a/∂y ∂b/∂x denotes the Jacobian.

12.3.1 The Nambu structure

Eqn. (12.2) possesses an infinite number of conserved quantities, i.e. kinetic energy and all

moments of vorticity are preserved (see, e.g., [10]). In [108], the Nambu (or energy-vorticity)

bracket

{F1,F2,F3} := −
∫

Ω

δF1

δζ

[
δF2

δζ
,
δF3

δζ

]
df, (12.3)

was introduced for arbitrary functionals Fi[ζ], i = 1, . . . , 3. In the above equation, δ/δζ denotes

the usual variational derivative, df = dxdy is the area element to be integrated within the

2D-domain Ω. Using appropriate boundary conditions (e.g. cyclic), it can be shown that the

above bracket is totally antisymmetric. Geometrically, this Nambu bracket is essentially a

reformulation of the singular Lie–Poisson bracket of ideal fluid mechanics, which is based on

the infinite-dimensional Lie algebra associated to the group of area preserving diffeomorphisms

on Ω.

Using the bracket (12.3) it is possible to reformulate eqn. (12.2) as

∂ζ

∂t
= {ζ, E ,H} . (12.4)

In the above equation, H and E denote the global conserved quantities energy and the second

moment of vorticity (enstrophy), respectively, which are given by

H[ζ] =
1

2

∫
Ω

(∇ψ)2df, E [ζ] =
1

2

∫
Ω
ζ2df.

12.3.2 Maximum simplification

One pioneering work in the field of finite-mode approximations was done by Lorenz [84], who

introduced a minimal system of hydrodynamic equations based on (12.2). Using a severe trun-

cation of the Fourier series expansion of ζ, the following set of ordinary differential equations
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for the remaining three modes A,F,G was derived:

dA

dt
=

(
1

k2 + l2
− 1

k2

)
klFG,

dF

dt
=

(
1

l2
− 1

k2 + l2

)
klAG,

dG

dt
=

1

2

(
1

k2
− 1

l2

)
klAF,

(12.5)

where k, l are constant wave numbers. We now show, that this model preserves in some sense

the structure of its continuous counterpart, as the above equations can be derived directly from

the spectral Nambu bracket of the barotropic vorticity equation. For this purpose, we expand ζ

in a double Fourier series on the torus

ζ(c) =
∑
M

cMeiM·x,

where M = (m1k,m2l)
T and x = (x, y)T are the wavenumber and position vector, respectively.

Moreover, cM = c†-M = 1
2 (Am1,m2 − iBm1,m2), where † denotes the complex conjugate. The

variational derivative may be expanded as

δF [ζ]

δζ(c)
=

1

Ω

∑
M

∂F
∂cM

e−iM·x,

where in the right hand side we consider F as a smooth function of cM. Plugging these expres-

sions into eqn. (12.3) we find the spectral form of the energy–vorticity bracket

{F1,F2,F3} =
∑
K,M

kl(m1k2 −m2k1)
∂F1

∂cK

∂F2

∂c−(M+K)

∂F3

∂cM
. (12.6)

To simplify the notation, we have assumed that Ω is the unit square. Enstrophy and energy

in their spectral representations are given by E = 1/2
∑

K cKc−K and H = 1/2
∑

K
1

K2 cKc−K,

respectively. To obtain eqn. (12.5) from bracket (12.6), we have to truncate the conserved

quantities E and H on the set of indices k1, k2 ∈ {−1, 0, 1} under the following restrictions

introduced by Lorenz: (i) If the coefficients are real at the onset of evolution they remain real

for all times. (ii) If c1,1 = −c1,−1 at the onset of evolution this relation holds true for all

times. Introducing the new variables A = Re(c0,1), F = Re(c1,0) and G = Re(c1,−1), it is

straightforward to recover eqn. (12.5) from eqn. (12.6). The maximum simplification of the

vorticity equation in Nambu form then reads

dz

dt
= kl(∇zE ×∇zH) =: {z, E ,H} ,

with z = (A,F,G)T, where

E =
1

2
(A2 + F 2 + 2G2), H =

1

4

(
A2

l2
+
F 2

k2
+

2G2

k2 + l2

)
.

The above Nambu bracket is based on the Lie–Poisson bracket of so(3), turning the Lorenz–1960

model into a particular form of the free rigid body equations. It therefore satisfies all properties

of discrete Nambu mechanics. In this respect, the continuous Nambu bracket structure of the
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vorticity equation passes over to the discrete Nambu bracket structure of the free rigid body.

Note, however, that the Lorenz–1960 model represents a restricted class of a free rigid body, as

only two moments of inertia are independent. Moreover, it was demonstrated in [19] that the

above truncation also respects the maximal set of admitted point symmetries in spectral space.

This set of symmetries consists of discrete mirror transformations (t, x, y, ψ) 7→ (t, x,−y,−ψ)

and (t, x, y, ψ) 7→ (t,−x, y,−ψ), together with combinations of shifts by π in both x and y

direction. These shifts are the admitted spectral counterparts of translational symmetries in

physical space. In particular, using these transformations the above two observations by Lorenz

can be naturally interpreted as conditions of symmetry. That is, for the Lorenz–1960 model

preservation of symmetries and preservation of the Nambu structure are mutually compatible.

Due to the Nambu representation, eqns. (12.5) also satisfy Liouville’s theorem.

As the Lorenz–1960 model inherits the Nambu structure of the vorticity equation and the se-

lection of modes can be justified using the admitted point symmetries of the continuous equation,

the notion of a maximum simplification may be regarded as appropriate.

12.4 Structural properties of the Saltzman equations

In this section, we discuss the structural properties of the convection model derived by Saltz-

man [145]. That is, we discuss the admitted point symmetries and Nambu form and derive the

maximum simplification that retains these properties in a minimal form.

The Saltzman equations we base our investigation on read in nondimensional form [55]:

∂ζ

∂t
+ [ψ, ζ] = Rσ

∂T

∂x
+ σ∇4ψ,

∂T

∂t
+ [ψ, T ] =

∂ψ

∂x
+∇2T. (12.7)

As before, ψ is a stream function generating two-dimensional nondivergent flow in the x–z-plane,

ζ = ∇2ψ is the vorticity, T is the temperature departure from a linear conduction profile, σ is

the Prandtl number, R is the Rayleigh number and [a, b] := ∂a/∂x ∂b/∂z−∂a/∂z ∂b/∂x denotes

the Jacobian.

In what follows, we aim to distinguish between dissipative and nondissipative systems. In

the former, we preserve the form of equations as given in (12.7), while in the latter we neglect

terms ∇4ψ, ∇2T . Note, however, that in the second case a different definition of R and σ arises,

see [145] for details.

Let us consider the domain Ω = [−L,L] × [0, 1]. The boundary conditions we adopt are

free-slip boundaries at both the top and the bottom of the fluid

ψ(t, x, z = 0) = ψ(t, x, z = 1) = 0, ζ(t, x, z = 0) = ζ(t, x, z = 1) = 0,

together with

T (t, x, z = 0) = T (t, x, z = 1) = 0.

Although it could be argued that non-slip boundaries in the vertical would be more natural to

this viscous problem, the above choice is motivated to be able to incorporate the Lorenz–1963

model, which is based on free-slip boundaries. In x-direction there are different possibilities, e.g.

periodic, free-stress or non-slip boundaries.
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12.4.1 Symmetries

We are interested in point symmetries of system (12.7). For this purpose, let us for the moment

neglect the impact of the boundary conditions. To compute the maximal Lie invariance algebra

we used the Maple package DESOLV [28]. The maximal Lie invariance algebra reads

D = 2t∂t + x∂x + z∂z − (3T − 4Rz)∂T , ∂t, ∂z, Z(g) = g(t)∂ψ,

X1(f) = f(t)∂z + f(t)R∂T + f ′(t)x∂ψ, X2(h) = h(t)∂x − h′(t)z∂ψ,
(12.8a)

where f , g, h run through the set of real-valued time-dependent functions. Hence, system (12.7)

admits scalings, shifts in t and z, respectively, gauging of the stream function and generalized

Galilean boosts in z- and x-direction, respectively. Moreover, there are two independent discrete

symmetries given by

e1 : (t, x, z, ψ, T ) 7→ (t, x,−z,−ψ,−T ), e2 : (t, x, z, ψ, T ) 7→ (t,−x, z,−ψ, T ). (12.8b)

The presence of boundary conditions usually restricts the number of admitted symmetries

strongly. In the symmetry analysis of differential equations, boundary value problems are rarely

considered (see [23] for a discussion of this problem). On the other hand, for Rayleigh–Bénard

convection, the consideration of boundaries obviously cannot be omitted. Therefore, we now

single out those symmetries, which are admitted by the boundary value problem. We are only

interested in symmetries acting on the space geometry of the problem. This is reasonable as

transformations acting solely on t, ψ or T in the course of a series expansion do not place re-

strictions on the Fourier coefficients and thus cannot be used as a criterion for the selection of

modes. This at once allows to exclude the transformations generated by ∂t and Z(g) from our

considerations. Moreover, scaling generated by D in any case would change the fixed geometry

in z-direction, so we can exclude it too. The most general transformation generated by the

remaining basis operators in combination with the discrete symmetries is given by

(t, x, z, ψ, T ) 7→ (t, δ2(x+ hε2), δ1(z + fε1 + ε3), δ1δ2(ψ + f ′xε1 − h′zε2), δ1(T +Rfε1)),

where εi ∈ R and δj ∈ {−1, 1}. Acting on the boundaries in z-direction, it is straightforward to

determine those transformations preserving their values:

(t, x, z, ψ, T ) 7→ (t, δ2(x+ ε2), z, δ2ψ, T ),

(t, x, z, ψ, T ) 7→ (t, δ2(x+ ε2), 1− z,−δ2ψ,−T ).
(12.9)

It is now necessary to specify the boundaries in x-direction. A natural choice in the atmospheric

sciences are periodic boundary conditions. This way, shifts in x-direction are admitted. On the

other hand, this choice singles out the second discrete symmetry, i.e. we have δ2 = 1. This is

the set of point symmetries on which we subsequently base our truncation.

12.4.2 The Nambu structure

To make this paper self-contained, we restate some results given in [16], slightly adapted for the

special form of (12.7). The conservative part of system (12.7) can be represented in continuous

Nambu form by

∂ζ

∂t
= −

[
δC
δT

,
δH
δζ

]
−
[
δC
δζ
,
δH
δT

]
= {ζ, C,H},

∂T

∂t
= −

[
δC
δζ
,
δH
δζ

]
= {T, C,H},

(12.10a)
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with conserved quantities

H =

∫
Ω

(
1

2
(∇ψ)2 −RσTz

)
df, C =

∫
Ω
ζ(T − z) df, (12.10b)

representing the total energy and a circulation-type quantity, respectively. In (12.10a), the

Nambu bracket {·, ·, ·} is defined for arbitrary functionals Fi = Fi[ζ, T ], i = 1, . . . , 3 by the

equation

{F1,F2,F3} := −
∫

Ω

(
δF1

δT

[
δF2

δζ
,
δF3

δζ

]
+
δF1

δζ

([
δF2

δT
,
δF3

δζ

]
+

[
δF2

δζ
,
δF3

δT

]))
df.

(12.10c)

This Nambu bracket is based on the semi-direct product extension of the Lie algebra of area-

preserving diffeomorphisms with the vector space of real-valued functions on Ω. The process of

extension of a Lie–Poisson bracket is usually done for systems that incorporate more than one

field variable. There are different ways how to extend a Lie algebra (see [155] for an excellent

overview), but the semi-direct extension is common for systems where one variable is advected

by another (as is the temperature departure by the ψ-field). Using the Nambu bracket form,

the semi-direct product structure can be cast in completely symmetric form.

We note that there is a second class of Casimir functionals given by

Sg =

∫
Ω
g df, (12.10d)

where g is an arbitrary function of T−z. This class of Casimirs is not needed for the conservative

Nambu representation. However, it plays an important role for a geometric incorporation of

dissipation. Namely, using the generalized free energy

G = H− S =

∫
Ω

(
1

2
(∇ψ)2 −RσTz − 1

2
Rσ(T − z)2

)
df, (12.10e)

where S is a realization of the class of Casimirs Sg, it is possible to represent the dissipative

system (12.7) via

∂ζ

∂t
= {ζ, C,G}+ 〈ζ,G〉, ∂T

∂t
= {T, C,G}+ 〈T,G〉, (12.10f)

where

〈F1,F2〉 := −
∫

Ω

(
σ
δF1

δζ
∇4 δF2

δζ
+

1

Rσ

δF1

δT
∇2 δF2

δT

)
df

is the symmetric bracket of dissipation, which is briefly discussed in the section below.

A delicate problem is to state appropriate boundary conditions making the Nambu bracket

(12.10c) twofold antisymmetric. While the antisymmetry {F1,F2,F3} = −{F1,F3,F2} is al-

ways satisfied due to the properties of the Jacobian operator, the antisymmetry {F1,F2,F3} =

−{F2,F1,F3} follows from an integration by parts. Hence, the boundary conditions must be

specified in a way such that the resulting boundary terms vanish. For the specified boundary

conditions in the vertical and periodical boundaries in x-direction, the Nambu bracket is indeed

completely antisymmetric.
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12.4.3 Maximum simplification

In this part, we derive the minimal model of (12.7) that retains both point symmetries and

the associated Nambu form of the continuous equations. There are several attempts to extend

the famous Lorenz–1963 model [85]. The motivation for these extensions is that the Lorenz–

1963 model does not represent characteristic features of Rayleigh–Bénard convection properly,

as noted e.g. in [32]. Several authors have tried to improve the Lorenz–1963 model by attaching

additional modes, but in various cases this lead to models exhibiting nonphysical behavior such

as violation of energy or vorticity conservation (e.g. [58]). The problem of energy conservation

was solved in [153] where a universal criterion for the truncation to energy-conserving finite-mode

models was established. Moreover, truncation to systems in coupled gyrostat form [44, 45] may

also lead to models that retain the conservation properties of the original equations. We also

note, that a single gyrostat is a Nambu system and hence using such a truncation, conservation

of the underlying geometry may be implemented at least in some minimal form.

It was shown in [109] that the conservative part of the Lorenz–1963 model allows for a Nambu

representation via

dz

dt
= ∇zH1 ×∇zH2,

where z = (x, y, z)T. The conserved quantities are

H1 =
1

2
x2 − σz, H2 =

1

2
y2 +

1

2
z2 − rz,

where r = R/Rc, with Rc being the critical Rayleigh number. However, these two conserved

quantities are proportional to spectral forms of energy and
∫

Ω(T − z)2df , respectively, while the

spectral expansion of C under the Lorenz ansatz gives identically zero. Therefore, the Lorenz–

1963 truncation only allows for a Nambu form that is not directly related to the continuous

Nambu form presented before. Moreover, if we also try to justify the selection of modes of the

Lorenz–1963 system using point symmetries, we find that it would be necessary to simultaneously

use the symmetries e2 and shift in x-direction by 1, which in any case would violate the boundary

conditions. That is, the selection of modes is not natural from the symmetry point of view in

this case.

Additionally, the Lorenz–1963 truncation does not account for the semi-direct product struc-

ture of the bracket of the continuous equations. An appropriate discrete realization of this

semi-direct product structure is given by the special Euclidean algebra se(3) = so(3) n R3.

The associated Lie–Poisson bracket on the dual se(3)∗ forms the basis of the Hamiltonian (or

Nambu) representation of the heavy top equations in the body frame. The Lie–Poisson bracket

reads [56, 90]

{F,G} = −Π · (∇ΠF ×∇ΠG)− Γ · (∇ΠF ×∇ΓG+∇ΓF ×∇ΠG),

where Π and Γ denote the vectors of angular momentum and the direction of gravity as seen

from the body, respectively.

The heavy top model consists of three equations governing the evolution of angular momen-

tum and three equations for the characterization of the direction of gravity as seen from the

body. The maximum simplification of the Saltzman model based on the above Lie–Poisson

bracket therefore needs a six-component reduction.
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We now proceed with the construction of the modified Lorenz–1963 model. The expansion

in Fourier series that is compatible with the specified boundary conditions is

ψ =

∞∑
n=0

∞∑
m=1

(φnm sin anπx+ ϕnm cos anπx) sinmπz,

T =
∞∑
n=0

∞∑
m=1

(ϑnm sin anπx+ θnm cos anπx) sinmπz,

(12.11)

where a is the inverse aspect ratio.

For the selection of modes for the six-component model, we employ the concept of symmetry

in a similar fashion as in [19, 32, 55]. In these papers it was demonstrated that the admitted

point symmetries of the original set of differential equations impose restricting conditions on the

Fourier expansion that have to be taken into account in the course of the derivation of finite-

mode models. As discussed above, the equations governing Rayleigh–Bénard convection admit

an infinite-dimensional symmetry group with finite-dimensional subgroup (12.9) preserving the

boundary value problem. However, not all symmetry transformations included in (12.9) may be

used for a selection of modes since we cannot use all shifts in x-direction as the spectral space

is essentially discrete.

For the selection of modes, we aim to use the transformations

t1 : (t, x, z, ψ, T ) 7→ (t, x+ 1/a, z, ψ, T ),

t2 : (t, x, z, ψ, T ) 7→ (t, x, 1− z,−ψ,−T ).

The task is now to compute the corresponding implications of these transformations on the

Fourier coefficients, which follow from a straightforward application to the expansion (12.11).

The transformation t1 e.g. implies

ψ =
∞∑
n=0

∞∑
m=1

(φnm sin(anπx+ nπ) + ϕnm cos(anπx+ nπ)) sinmπz,

and similarly for the transformation of T . Hence t1 leads to the spectral transformations

(φnm, ϕnm, ϑnm, θnm) 7→ ((−1)nφnm, (−1)nϕnm, (−1)nϑnm, (−1)nθnm). In a similar fashion, the

transformation t2 is treated. The corresponding transformations in spectral space hence read

t1 : (φnm, ϕnm, ϑnm, θnm) 7→ ((−1)nφnm, (−1)nϕnm, (−1)nϑnm, (−1)nθnm),

t2 : (φnm, ϕnm, ϑnm, θnm) 7→ ((−1)mφnm, (−1)mϕnm, (−1)mϑnm, (−1)mθnm).
(12.12)

These two transformations give a restriction on the admitted modes since for all n = 2k − 1

and m = 2k−1, respectively, the corresponding Fourier coefficients would violate the symmetry

property and hence are not allowed in the truncation.

The discrete symmetry group generated by the transformations (12.12) is G = {e, t1, t2, t1t2},
where e denotes the identity transformation. By exhaustively studying the implications of

subgroups of G on truncations of (12.11), we can derive different low-dimensional models in a

similar fashion as was done in [19] for the barotropic vorticity equation. The list of nontrivial

subgroups of G is given by S1 = {e, t1}, S2 = {e, t2} and S3 = {e, t2t3}.
Since we already know that the model to be derived must have six coefficients, it remains to

select them in accordance with the above subgroups. The first six nonvanishing coefficients under

consideration of the subgroup S1 are ϕ01, θ01, φ21, ϕ21, ϑ21 and θ21. Since these coefficients do
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not include those of the original Lorenz–1963 model, the resulting model will not be considered

here. Selecting the modes using the subgroup S2 and G itself also does not allow to incorporate

the Lorenz–1963 model.

The remaining possibility is given by the subgroup S3, leading to the choice of coefficients

φ11, ϕ11, ϑ11, θ11, ϕ02, θ02. This choice incorporates both the Lorenz–1963 model and the

model in [32] and also gives a sound justification for the selection of modes. In addition to the

symmetries, we also aim to preserve the semi-direct product structure of the Nambu representa-

tion (12.10c). For this purpose, the selection of the above listed coefficients based on symmetry

considerations is still too general. It is necessary to scale these coefficients appropriately. Setting

φ11 = bA, ϕ11 = bB, ϕ02 = cC,

ϑ11 = eD, θ11 = eE, θ02 = fF,

and plugging the corresponding truncation of (12.11) into the conservative part of system (12.7),

it is found that the scaling coefficients have to satisfy

c =
1

2b
, e =

a3

π2(1 + a2)
, f =

2a3

π2b2(1 + a2)2
,

in order to allow for a Nambu representation of heavy top form:

{F1,F2,F3} := −∇ΓF1 · ∇πF2 ×∇πF3 −∇πF1 · (∇ΓF2 ×∇πF3 +∇πF2 ×∇ΓF3).

Here, π = (A,B,C)T and Γ = (D,E, F )T are the fluid mechanical analogs of the vector of

angular momentum and the direction of gravity as seen from the body, respectively.

The resulting six-component model then reads

dA

dt
=

a

2bπ(1 + a2)
((a2 − 3)π3BC + 2eRσE),

dB

dt
= − a

2bπ(1 + a2)
((a2 − 3)π3AC + 2eRσD),

dC

dt
= 0,

dD

dt
=
aπ

2be
(eπCE − 2b2fπBF − 2b2B),

dE

dt
= − aπ

2be
(eπCD − 2b2fπAF − 2b2A),

dF

dt
=
abeπ2

2f
(BD −AE).

(12.13)

The conserved quantities (12.10b) are correspondingly

H =
1

4ab2π
((1 + a2)b4π3(A2 +B2) + 2π3C2 + 4Rb2fσF ),

C = − π

2ab
((1 + a2)b2eπ(AD +BE) + 4fπCF + 4C).

Using both the heavy top Nambu bracket and the conserved quantities, finite-mode model (12.13)

can be cast in Nambu from

dx

dt
= {x, C,H},
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where x = (A,B,C,D,E, F )T. Note, that this Nambu bracket formulation is now structurally

completely analog to the continuous Nambu bracket (12.10c) of the convection equations, as it

is based on the Lie–Poisson bracket using the Lie algebra se(3). In particular, by fixing one

argument in the heavy top Nambu bracket one naturally recovers all the Hamiltonian properties

of the Lie–Poisson system, e.g. the Jacobi identity. Bracket (12.10c) therefore also automatically

conserves the corresponding truncated forms of the second class of Casimirs (12.10d), such as

S =
Rσ

12aπ

(
3e2π(D2 + E2) + 6f2πF 2 + 12fF

)
.

It is remarkable that the above model has now a mechanical interpretation similar to the Lorenz–

1960 model. As the Lorenz–1960 model is a restricted class of the free rigid body equations,

the finite-mode model (12.13) in turn may be considered as a restricted class of the heavy top

equations that is referred to as Lagrange top [56]. This is a heavy top with two moments of

inertia being equal (a symmetric top) with the position vector of the center-of-mass pointing

in C-direction (which leads to dC/dt = 0). Correspondingly, a number of results valid for the

Lagrange top might already be passed over to the model (12.13), such as issues of stability [56] or

numerical algorithms preserving the Lie–Poisson structure of the above bracket [39]. Moreover,

due to the additional conserved quantity C = const the Lagrange top is a prominent example of

a Liouville integrable system [11, 43]. In addition, since ∂ẋi/∂xi = 0, ∀i = 1, . . . , 6, the above

set of equations also satisfies the Liouville theorem.

Note that the term linear in C (resp. F ) in the expression for C (resp. S) arises due to the

use of variable T instead of T̃ = T − z and correspondingly do the terms linear in A and B in

the fourth and fifth equation, respectively.

If C = 0 at the onset of evolution, the above model reduces to the five-component model given

in [32] upon rescaling of the Fourier modes. Although in any case C = const during evolution, we

find it nevertheless important to retain this component in the above model. Firstly, it enables

to cast the reduced model in Lagrange top form. Secondly, the selection of modes based on

symmetries does not allow to truncate the Saltzman equations to a five component model, since

there is no additional criterion that permits one to predict a priori whether to chose ϕ02 or θ02.

Hence, both coefficients must be incorporated in the Fourier series expansion.

The extension to a Nambu-metriplectic finite-mode model is straightforward. Following

[100], a discrete metric system can defined via dz/dt = g∇zP = 〈z, P 〉, where z is the phase

space vector, P denotes a phase space function and g is a tensor. It is further required that

〈F1, F2〉 = 〈F2, F1〉 , ∀F1, F2, which in turn enforces g to be symmetric. In our case, using

the above truncation and correspondingly the generalized free energy (12.10e) as phase space

functional, we can incorporate the dissipative terms upon using

g = −2a diag

(
σ

b2
,
σ

b2
, 2σb2,

π2(1 + a2)

Re2σ
,
π2(1 + a2)

Re2σ
,

2π2

Rf2σ

)
as metric tensor. Then, attaching g∇xG to system (12.13) gives the maximum simplification of
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the dissipative Saltzman equations, which reads

dA

dt
=

a

2bπ(1 + a2)
((a2 − 3)π3BC + 2eRσE)− (1 + a2)π2σA,

dB

dt
= − a

2bπ(1 + a2)
((a2 − 3)π3AC + 2eRσD)− (1 + a2)π2σB,

dC

dt
= −4π2σC,

dD

dt
=
aπ

2be
(eπCE − 2b2fπBF − 2b2B)− (1 + a2)π2D,

dE

dt
= − aπ

2be
(eπCD − 2b2fπAF − 2b2A)− (1 + a2)π2E,

dF

dt
=
abeπ2

2f
(BD −AE)− 4π2F,

(12.14)

or in the more compact Nambu-metriplectic form

dx

dt
= {x, C,G}+ 〈x,G〉.

System (12.14) can be considered as a damped Lagrange top and its Nambu-metriplectic form

completes the geometric picture of the maximal structure-preserving truncation of the dissipative

Saltzman equations (12.10f) discussed in the present paper.

It was noted in [54] that any vorticity field under the Boussinesq approximation has to satisfy

the balance equation:

∂

∂t

1∫
0

2/a∫
0

ζ dxdz = σ

[
∂

∂z

2/a∫
0

ζdx

]∣∣∣∣∣
z=1

z=0

.

Straightforward computation for the six-component model shows that this balance equation is

identically satisfied for any value of the Prandtl number.

It should be emphasized that the results in this section were derived under the assumption of

δ2 = 1 in (12.9). This choice was enforced due to the use of periodic boundary conditions, which

are of obvious importance in geophysical fluid dynamics. On the other hand, the alternative

choice of δ2 = −1 would not allow to derive the above discrete convection model, as it would

require a different selection of Fourier modes (not including the Lorenz–1963 model). However,

this is quite natural as a physical realization admitting this reflection symmetry involves sidewalls

at x = −L,L [55]. For such a configuration, the generic Nambu structure (12.10c) has to

be supplemented with boundary term contributions, since the second antisymmetry relying

on integration by parts is then not automatically fulfilled any more. As usual in continuous

Hamiltonian and Nambu mechanics, the presence of nontrivial boundary conditions complicates

the appropriate formulation of the models, which in the present case also passes over to the

finite-mode simplification.

12.5 Conclusion and outlook

In this paper we have addressed the problem of maximum simplification of atmospheric models

by a discussion of the Lorenz–1960 and Lorenz–1963 model. It was reviewed that the Lorenz–

1960 model is indeed the maximum simplification of the inviscid barotropic vorticity equation
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that preserves both point symmetries as well as the inherited Nambu structure of the continuous

counterpart. This way, we have also implicitly shown that the selection of modes in accordance

with symmetries is compatible with the inherited Nambu form of the discrete model. Inspired

from this tutorial example, the Lorenz–1963 model was investigated too. It was found that this

model neither preserves the proper Nambu structure nor is it compatible with respect to the

underlying symmetries. This may serve as an additional justification of reported unphysical

behavior of this model. The proposed extension of the Lorenz–1963 model is a six-component

truncation that also includes the model [32] as special case. This model is constructed using

a subgroup of the symmetry group of the Saltzman equations preserving the boundary value

problem. Moreover, the semi-direct product structure of the Lie–Poisson (or Nambu) bracket of

the field equations is retained, hence the model is automatically energy- and Casimir-conserving

in the nondissipative limit. This again implicitly shows that for the presented six-component

truncation both the Nambu structure and the admitted point symmetries are compatible. In-

corporation of dissipation leads to a discrete Nambu-metriplectic model, also conserving the

symmetric structure given by the metric part of the continuous bracket. This compatibility of

the six-component model with geometric structures may be considered beneficial in view of the

testing issues reviewed in section 12.1, for which the newly derived model could be employed.

Moreover, due to the preservation of important geometric structures, both models that were

presented in this paper may deserve the notion of a maximum simplification.

If one aims to use finite-mode models for physical purposes and not only as toy models, the

question of structure-preserving extensions of such minimal systems of equations is of certain

interest. It was indicated in section 12.2 that there is merely the method of Zeitlin that allows to

construct fully Hamiltonian finite-mode approximations of 2d fluid mechanics. In this method,

series of approximated n-dimensional models are derived on the two-dimensional torus T 2, which

in the limit n→∞ converge to the vorticity equation and the equations of a Boussinesq stratified

fluid, respectively [164, 165]. This convergent sequence of finite-dimensional models exists due

to the property that for a certain representation of SU(n), in the limit of n→∞, the group of

area-preserving diffeomorphisms (and its semi-direct extension by a vector space, respectively) is

recovered. One main benefit of this method is that for each finite-mode model a maximal number

of Casimirs is preserved, which makes such models very attractive, e.g. for the investigation of

statistical properties of fluid mechanical systems [2]. For more general settings than T 2 or

for three-dimensional fluid mechanics, however, the question of a connection between finite-

and infinite-dimensional Lie–Poisson systems is not fully answered yet. This points to another

still unsolved question, namely whether it is possible to relate discrete and continuous Nambu

mechanics in some natural way. Although such a relation was established for two very low-

dimensional models in the present paper, the problem of a proper extension of these minimal

models without violating the Nambu structure has not been tackled yet. Furthermore, it would

be interesting to apply the method used in this paper to other models of fluid mechanics. This

way, a list of maximal simplified structure-preserving models could be established. This should

be the issue of forthcoming work.
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Chapter 13

Summary and conclusions

The main aim of this part of the thesis was to present some examples of how point symmetries

can help to derive low-dimensional models of differential equations arising in the atmospheric

sciences. Although this is also an issue in the theory of equivariant dynamical systems, we

find it necessary to put a stronger focus on a systematic symmetry analysis. Without the

precise knowledge of point symmetries of the given differential equation, it might be impossible

to exhaustively construct all possible low-dimensional simplifications with a fixed number of

coefficients as shown in Chapter 11 for the barotropic vorticity equation. This in turn implies

that it is necessary to compute all point symmetries of the given equation first, which leads us

back to the field of classical (Lie) symmetry analysis.

In the present thesis we solely focused on spectral models. This restriction was motivated

primarily since the overwhelming majority of atmospheric low-dimensional models is based on

Fourier or other orthogonal series expansions. This allowed us to investigate both the Lorenz–

1960 model and the Lorenz–1963 model using symmetry techniques. The problem of finding

an appropriate truncation of the Fourier series is illustrated by various attempts to generalize

the Lorenz–1963 model as discussed in Chapter 12. Using symmetry techniques in conjunction

with the Hamiltonian and Nambu forms of the underlying field equations we were able to give a

geometric motivation for the truncation of the vorticity equation to the Lorenz–1960 model as

well as of the Saltzman convection equations to our newly derived extended Lorenz–1963 model.

On the other hand, symmetries can be perfectly used in order to determine appropriate dis-

cretization schemes in the usual physical space of the differential equation [81]. In fact, it is a

quite recent application of symmetry methods to construct finite-difference approximations of

differential equations that have symmetry properties similar to those of the original differential

equations. There presently exist two notable techniques for the construction of invariant dis-

cretization schemes which explicitly use Lie symmetries. The first technique was developed by

Dorodnitsyn and is based on the prolongation of the Lie symmetry generators of a differential

equation to the grid points of the selected discretization mesh. Subsequently, the invariants of

these prolonged generators are determined, leading to a set of difference invariance. Assem-

bling the difference invariance to stable and convergent finite-difference schemes yields invariant

approximations of the given differential equation. This method was applied to several (1 + 1)-

dimensional evolution equations [12, 34, 35, 157]. The second method rests on the property of

moving frames to map arbitrary functions to invariant ones [40]. It proceeds as follows. The

symmetry group action of a differential equation can be easily extended to a group action on the

grid points, on which the differential equation should be approximated. For this extended group
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action a moving frame can be constructed. The moving frame in turn can be used to transform

a prescribed finite-difference approximation of this differential equation to an invariant finite-

difference scheme. This way, it is possible to invariantize existing numerical schemes rather

than setting up new schemes from scratch as done in the method by Dorodnitsyn [33, 71, 72].

The construction of invariant discretization schemes of the equations of the atmospheric

sciences using the above specified methods seems promising for several reasons. Firstly, it in

some way complements the number of present day’s attempts to construct finite-difference ap-

proximations of differential equations that numerically retain conservation laws as discussed in

Section 12.2. As both symmetries and conservation laws are important properties of differential

equations, it seems reasonable to not exclusively focus on the latter. Secondly, it is presumed

that hydrodynamical configurations tend to states exhibiting a high degree of symmetry [114].

Even if it might be difficult to prove this conjecture in general, having discretization schemes

at hand that are able to account for invariance properties of the set of governing equations is

certainly valuable. Moreover, it was described in the second part of the thesis that constructing

an approximation of a differential equation always involves both discretization and parameter-

izations. Hence the construction of invariant parameterization schemes is only one step on the

route to completely invariant numerical models.

The development of such invariant difference schemes for equations of the atmospheric sci-

ences will be another primary future research perspectives we aim to start working on.
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