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1 Chapter 1

1.1 Topology of C

Open balls (disks) B(z0, r) in the complex plane are specified by a centre z0 ∈ C and a radius
r > 0,

B(z0, r) = {z ∈ C : |z − z0| < r},
where

|z| =
√

[Re z]2 + [Im z]2

is the modulus of z. We denote by B the collection of all open balls,

B = {B(z0, r) : z0 ∈ C, r > 0}.
It is easy to see that the following two properties hold:

(T1) For all z ∈ C there exists a B ∈ B such that z ∈ B.
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.q Bz

(T2) If z ∈ B1∩B2 for some B1, B2 ∈ B, then there exists a B3 ∈ B such that B3 ⊂ (B1∩B2)
and z ∈ B3.
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B1B2 zq
B3

A collection of sets B satisfying (T1) and (T2) is called a basis for a topology. The topology
T generated by B is the collection of sets defined as follows:

U ∈ T ⇐⇒ for all x ∈ U there exists a Bx ∈ B such that x ∈ Bx ⊂ U.

A set U is called open if and only if U ∈ T . Let U be an open set and, for all x ∈ U , let Bx

be as above. Then U = ∪x∈UBx. Conversely, suppose U = ∪α∈IBα with Bα ∈ B for all α in
the index set I. Then for all x ∈ U there exists an αx ∈ I such that x ∈ Bαx ⊂ U . Thus, U
is open if and only if U is a union of basis elements. Note that in proving this fact we did not
use any properties of complex numbers – it is true in all topological spaces. The topology
of C generated by all open balls is simply called the topology (or Euclidean topology) of C.

An open ball around z (with centre z) is called a neighbourhood of z. A sequence of
complex numbers zn is said to converge to z, written zn → z or limn→∞ zn = z if, given any
neighbourhood U of z, there is an N = N(U) < ∞, such that zn ∈ U whenever n > N .
Equivalently, zn → z if and only if for all ǫ > 0 there exists N = N(ǫ) such that if n > N ,
then |zn − z| < ǫ.
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Example 1. If zn = xn + iyn → z = x + iy, then zn → z. Indeed, since xn → x and yn → y,
we have zn = xn − iyn → x − iy = z. (This means that the map zn 7→ z is continuous).

A subset U ⊂ C is called connected if and only if each pair of points z1 and z2 in U can be
joined by a polygonal line (a path of straight line segments) lying in U . An open connected
set is called a domain.

1.2 Complex Derivative and Analyticity

Let f : C → C be a complex function. We say that f is continuous at z0 if f(z0) is defined,
and limz→z0 f(z) = f(z0). In other words, f is continuous at z0 if f(z0) is defined, and if for
all ǫ > 0 there exists δ > 0 such that if |z − z0| < δ, then |f(z) − f(z0)| < ǫ.

Example 2. f(z) = z+i is continuous at z0 = i. Indeed, |f(z)−f(z0)| = |z+i−2i| = |z− i|,
so we can take δ = ǫ.

Example 3. Arg(z), the principal value of the argument, taking values in (−π, π], is not
continuous at any point on the negative real axis (−∞, 0]. It is continuous everywhere else.

The derivative of a function f : C → C at a point z0 is defined by the following limit, if it
exists

f ′(z0) = lim
∆z→0

f(z + ∆z) − f(z0)

∆z
.

Note that ∆z → 0 means that the complex number ∆z approaches the origin, but it is
not specified on which path. It is understood in the definition of the derivative that the
limit exists for ∆z approaching zero in any possible way, and that the value of the limit
is independent of how the origin is approached. Two particular ways of realizing ∆z =
∆x + i∆y → 0 are: ∆x = 0, ∆y → 0 and ∆y → 0, ∆x = 0. They lead to the Cauchy-
Riemann equations (see the next section). If the derivative of f at z0 exists, then we say f
is differentiable at the point z0.

We say that f is analytic at the point z0 if there is a neighbourhood U of z0 s.t. f ′(z)
exists for all z ∈ U . “Analytic” is sometimes called “holomorphic”; the distinction between
these two words will become important when considering multi-valued functions later on
(holomorphic is then used for single-valued functions only). If a function is analytic at every
point in a domain then we say it is analytic in that domain. A function that is analytic
throughout C is called an entire function. It is important to note that analyticity has an
equivalent characterization in terms of power series expansions (details will be given later,
see Theorems 19, 20). If a function is not analytic at a point z0, but is analytic at some
point in every neighbourhood of z0, then z0 is called a singular point, or a singularity of f .

Examples 4. 1. Every polynomial is entire.

2. f(z) = 1/z is analytic at all points except the origin, which is a singularity of f .

3. The function f(z) = z is not analytic at any point and f has no singular points.

The usual rules for derivatives of sums, products and quotients yield the result: Sums, prod-
ucts, compositions of analytic functions are analytic. The quotient of two analytic functions
is analytic except at points where the denominator vanishes.
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1.3 Cauchy-Riemann Equations

Suppose that f is differentiable at z0. We write f(z) = u(x, y)+iv(x, y), where u, v : R
2 → R

are the real and imaginary parts of the function f , viewed as functions of R × R ∼= C. The
difference quotient takes the form

f(z0 + ∆z) − f(z0)

∆z

=
u(x0 + ∆x, y0 + ∆y) − u(x0, y0)

∆z
+ i

v(x0 + ∆x, y0 + ∆y) − v(x0, y0)

∆z
,

where z0 = x0 + iy0 and ∆z = ∆x + i∆y. We know that the left hand side has the limit
f ′(z0) as ∆z → 0, that is, as ∆x → 0 and ∆y → 0. Choosing ∆z = ∆x (i.e., ∆y = 0), we
get

f ′(z0) = lim
∆x→0

[

u(x0 + ∆x, y0) − u(x0, y0)

∆x
+ i

v(x0 + ∆x, y0) − v(x0, y0)

∆x

]

.

Therefore, the limits of the real part and the imaginary part of the right hand side must
exist individually, and we obtain

f ′(z0) = ∂xu(x0, y0) + i∂xv(x0, y0).

Similarly, we can take ∆z = i∆y (that is, ∆x = 0), and we obtain

f ′(z0) = −i∂yu(x0, y0) + ∂yv(x0, y0).

Consequently, since f ′(z0) does not depend on how ∆z approaches zero, it follows that the
above two expressions for f ′(z0) must be equal. Hence (equating individually the real and
imaginary parts) we see that u and v satisfy

∂xu(x0, y0) = ∂yv(x0, y0)

∂yu(x0, y0) = −∂xv(x0, y0).

The latter two equations are called the Cauchy-Riemann Equations. They are necessarily
satisfied if f is differentiable at z0 = x0 + iy0. We have just shown the following result.

Theorem 1. Suppose that f(z) = u(x, y) + iv(x, y) is differentiable at z0 = x0 + iy0. Then
the partial derivatives of u, v at (x0, y0) exist and satisfy the Cauchy-Riemann equations

∂xu(x0, y0) = ∂yv(x0, y0) and ∂yu(x0, y0) = −∂xv(x0, y0).

Example 5. For f(z) = z we have u(x, y) = x, v(x, y) = −y. Since ∂xu = 1 and ∂yv = −1,
the Cauchy-Riemann equations are not satisfied at any point z = x + iy. It follows that f is
nowhere differentiable (and in particular, nowhere analytic).

A sufficient condition for differentiability is obtained by imposing continuity of the partial
derivatives of u and v, as shows the following result.
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Theorem 2. Suppose that f(z) = u(x, y) + iv(x, y) is defined in a neighbourhood of z0 =
x0 + iy0, and that ∂xu, ∂yu, ∂xv, ∂yv exist in this neighbourhood and are continuous at
(x0, y0). If u and v satisfy the Cauchy-Riemann equations at (x0, y0), then f ′(z0) exists.

Proof. Let us write ∆z = α + iβ with α, β ∈ R. Then

f(z0 + ∆z) − f(z0) = u(x0 + α, y0 + β) − u(x0, y0) + i[v(x0 + α, y0 + β) − v(x0, y0)].

We use the mean value theorem (for real functions of a single variable) to arrive at

u(x0 + α, y0 + β) − u(x0, y0)

= u(x0 + α, y0 + β) − u(x0, y0 + β) + u(x0, y0 + β) − u(x0, y0)

= α∂xu(x0 + θα, y0 + β) + β∂yu(x0, y0 + ψβ),

for some 0 < θ, ψ < 1. Next, since ∂xu and ∂yu are continuous at (x0, y0), we can write

∂xu(x0 + θα, y0 + β) = ∂xu(x0, y0) + ǫ1

∂yu(x0, y0 + ψβ) = ∂yu(x0, y0) + ǫ2,

where ǫ1, ǫ2 → 0 as α, β → 0. One can proceed in the same way with v(x0 + α, y0 + β) −
v(x0, y0). It follows that

f(z0 + ∆z) − f(z0) = α∂xu(x0, y0) + β∂yu(x0, y0) + αǫ1 + βǫ2

+i[α∂xv(x0, y0) + β∂yv(x0, y0) + αη1 + βη2],

where η1, η2 → 0 as α, β → 0. Since the Cauchy-Riemann equations are satisfied, we obtain

f(z0 + ∆z) − f(z0)

= (α + iβ)∂xu(x0, y0) + (β − iα)∂yu(x0, y0) + α(ǫ1 + iη1) + β(ǫ2 + iη2).

Dividing both sides by ∆z = α + iβ we get

f(z0 + ∆z) − f(z0)

∆z
= ∂xu(x0, y0) − i∂yu(x0, y0) +

α(ǫ1 + iη1) + β(ǫ2 + iη2)

∆z

Finally, we need to estimate the last quotient. To do so, we observe that
∣

∣

∣

∣

∣

α(ǫ1 + iη1) + β(ǫ2 + iη2)
√

α2 + β2

∣

∣

∣

∣

∣

≤ max{|α|, |β|}
√

α2 + β2

[

|ǫ1| + |ǫ2| + |η1| + |η2|
]

≤ |ǫ1| + |ǫ2| + |η1| + |η2|,

so this quotient tends to zero as α, β → 0. This completes the proof of the Theorem.

1.4 Elementary Functions

We introduce in this section a few elementary complex functions and discuss some of their
properties.
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1.4.1 Exponential Function

For y ∈ R we define eiy as
eiy = cos y + i sin y.

This is the Euler formula. The exponential function is defined for z = x + iy ∈ C by

ez = exeiy,

so that by Euler’s formula, ez = ex[cos y + i sin y]. In particular, for y = 0, ez reduces to the
familiar real function ex. The following properties are easily derived from the definition and
from the properties of the real exponential function:

1. ez1+z2 = ez1ez2 , for all z1, z2 ∈ C

2. ez 6= 0 and e−z = 1/ez, for all z ∈ C

3. ez is entire and d
dz

(ez) = ez for all z ∈ C

4. ez+2πi = ez, for all z ∈ C (periodic function with period 2πi)

The first point can be shown using the properties of the real exponential function and
trigonometric identities. The second point follows from the first one. To prove 3. one can
first show that ez is everywhere differentiable, using Theorem 2, and then one can choose a
specific easy path (say ∆z = ∆x ∈ R) to calculate the derivative. Finally, the periodicity
follows directly from the definition and the periodicity of the trigonometric functions.

1.4.2 Logarithms

The logarithmic function is naturally introduced as the “inverse” of the exponential function.
Let z 6= 0 be given and let us try to solve the equation ew = z for w. We have seen above that
ew 6= 0, so the equation we propose to solve has no solution for z = 0. Since the exponential
function is periodic of period 2πi, there will be multiple solutions and hence log is naturally
a multi-valued function.

We set w = u + iv and z = reiθ, with u, v ∈ R, r > 0 and −π < θ ≤ π (i.e., θ is the
principal argument of z, Arg(z)). The equation ew = z is equivalent to eueiv = reiθ, from
which it follows that

eu = r, and eiv = eiθ.

Hence u = ln(r) and v = θ + 2πn for some n ∈ Z. It follows that the complex numbers
w = ln(r) + i(θ + 2πn), n ∈ Z, are exactly the solutions of the equation ew = z. The
non-uniqueness of the solution is due to the periodicity of the exponential function.

We would like to keep the simple identity eln(x) = x also in the complex case (in which ln
is generally written as log to distinguish the natural logarithm in the real and the complex
case). We define the logarithm to be the multiple-valued function

log(z) = ln(|z|) + i(Arg(z) + 2πn), n ∈ Z.
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Each value n ∈ Z defines a branch of the multiple-valued function. For fixed n, we get a
single-valued function. By construction, we have the desired relation

elog z = z.

This identity is to be understood as a property of the multiple-valued function log, i.e., it
holds for all branches. The principal value (or principal branch) of log(z) is obtained by
setting n = 0 and denoted by Log,

Log(z) = ln |z| + iArg(z).

In the real case, we have ln(ex) = x. Does this generalize to the complex case? We have

log(ez) = log(exeiy) = ln
(

|exeiy|
)

+ i
(

Arg(exeiy) + 2πn
)

= z + 2πin, n ∈ Z.

Here we have used that Arg(exeiy) = Arg(eiy) = y + 2πik for some k ∈ Z (chosen so that
y + 2πik ∈ (−π, π]). Hence the relation ln(ex) = x does not generalize to the complex case:
log(ez) is a multiple-valued function taking values z + 2πin, n ∈ Z.

Example 6. Log(−1 − i) = ln(
√

2) + iArg(−1 − i) = 1
2
ln(2) − 3πi

4
.

The logarithm has been constructed as the solution z = log w of the equation ez = w, for
w 6= 0. On the other hand, in real analysis, we are accustomed to simply applying the ln to
solve ey = x, obtaining the unique solution y = ln x. The next example shows how to apply
the same strategy in the complex case.

Example 7. Consider the equation ez = −1. Fix a branch of the logarithm, say n0, and, in
an attempt to solve the equation for z, apply the logarithm to both sides of the equation:
log ez = log(−1) = iπ + 2πin0. Set z = x + iy, then log ez = ln |ex| + iArg(eiy) + 2πin0.
There exists exactly one k(y) ∈ Z s.t. Arg(eiy) = y + 2πk(y) (this k(y) is taken exactly such
that y + 2πk(y) ∈ (−π, π]). Therefore we obtain log ez = z + 2πi[k(y) + n0] = iπ + 2πin0.
Equating the real and imaginary parts gives x = 0 and y = π[1 − 2k(y)]. The latter is an
implicit equation for y. A solution in the interval (−π, π] exists if and only if y = π has a
solution in this interval (because on this interval, k(y) = 0). So y = π is the only solution in
(−π, π]. A solution in (π, 3π] exists if and only if y = 3π has a solution in this interval (since
there k(y) = −1). Hence y = 3π is the only solution in this interval. Proceeding in this way
we see that the solutions to the implicit equation are exactly y ∈ {(2n+1)π : n ∈ Z}. This
shows that ez = −1 ⇔ z ∈ {i(2n + 1)π : n ∈ Z}. Of course, this set of solutions coincides
with the multiple values of the logarithm of −1.

Consider a fixed branch of the logarithm (n fixed) and simply denote the corresponding
single-valued function by log. Where is log analytic? It is clear that log(z) is not continuous
on the negative real axis (−∞, 0] because Arg(z) is not continuous there. Consequently, log
cannot be analytic at any point on (−∞, 0]. We now show that log is analytic on C\(−∞, 0],
by applying Theorem 2.

In order to verify the Cauchy-Riemann equations for the logarithm (and for other func-
tions exhibiting certain symmetries), it is useful to pass to polar coordinates (r, θ) ∈ R+ ×
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(−π, π], defined by r = |z|, θ = Arg(z). The relation between the polar and euclidean
coordinates are

x = r cos θ, y = r sin θ.

In polar coordinates, we have

log(z) = ln(r) + i(θ + 2πn), n ∈ Z,

a simple function of the variables r, θ (expressed in euclidean coordinates, the form is more
complicated). We now write the Cauchy-Riemann equations in polar coordinates. Let f(x, y)
be a function and set g(r, θ) = f(r cos θ, r sin θ). We take the partial derivatives w.r.t. r and
θ and obtain

∂rg(r, θ) = cos θ ∂xf(r cos θ, r sin θ) + sin θ ∂yf(r cos θ, r sin θ),

∂θg(r, θ) = −r sin θ ∂xf(r cos θ, r sin θ) + r cos θ ∂yf(r cos θ, r sin θ).

These two equations are usually written in a shorter way as

∂r = cos θ ∂x + sin θ ∂y and ∂θ = −r sin θ ∂x + r cos θ ∂y.

It is easy to solve this system for ∂x and ∂y,

∂x = cos θ ∂r −
sin θ

r
∂θ and ∂y = sin θ ∂r +

cos θ

r
∂θ.

It follows that the Cauchy-Riemann equations for the function f(z) = u(r, θ) + iv(r, θ) in
polar coordinates take the form

cos θ ∂ru(r, θ) − sin θ

r
∂θu(r, θ) = sin θ ∂rv(r, θ) +

cos θ

r
∂θv(r, θ)

sin θ ∂ru(r, θ) +
cos θ

r
∂θu(r, θ) = − cos θ ∂rv(r, θ) +

sin θ

r
∂θv(r, θ).

For a fixed branch f = log, we have u(r, θ) = ln(r) and v(r, θ) = θ+2πn. Clearly, the partial
derivatives ∂ru = 1/r, ∂θv = 1, ∂θu = ∂rv = 0 are continuous on C\(−∞, 0] and satisfy the
Cauchy-Riemann equations. This shows analyticity of log(z).

Let z ∈ C\(−∞, 0]. For any fixed branch (fixed n ∈ N), log is differentiable at z, since
it is even analytic at z. What is the derivative d

dz
log(z)? By differentiating the relation

elog(z) = z we obtain (chain rule) elog(z) d
dz

log(z) = 1 and hence d
dz

log(z) = 1/elog(z) = 1/z,
i.e., for any fixed branch, we have

d

dz
log(z) =

1

z
for all z ∈ C\(−∞, 0]. (1)

A bit more about branches. Let arg(z) be the multiple-valued argument function,
arg(z) = Arg(z) + 2πin, n ∈ Z, where Arg(z) ∈ (−π, π]. We see from the above defini-
tion of the logarithm that

log(z) = ln |z| + i arg(z).
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The convention that Arg takes values in (−π, π] is arbitrary. It may be changed to Arg(z) ∈
(−α, α + 2π], for any α ∈ R. One may then define the (multi-valued) logarithm associated
to this choice of Arg by

log(z) = ln |z| + i(θ + 2πin), n ∈ Z, θ = Arg(z) ∈ (−α, α + 2π].

Any specific choice of fixed n gives a single valued function for this logarithm.

.....................................................................................................................................................................................................................................................................................
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↑

→Re

Im

We may use the Cauchy-Riemann equations to prove that log(z) is analytic in the domain
{z ∈ C : Arg(z) ∈ (−α, α + 2π)}. On the ray Arg(z) = α + 2π, log is not analytic (indeed,
Arg(z) is not even continuous there).

The concept of branches we encountered in the above discussion of the logarithm is
introduced in more generality for multiple-valued functions. A branch of a multiple-valued
function f is any single valued function F which is analytic in some domain at each point
of which the value F (z) is one of the values of f(z). A branch cut is a portion of a line
(or curve) that is introduced in order to define a branch F of a multiple-valued function f .
Points on a branch cut are singular points of F , and any point that is common to all possible
branch cuts of f is called a branch point.

In the above example of the logarithm, a branch cut is the ray Arg(z) = α, and the point
zero is a branch point.

1.4.3 Complex Exponentials

For z 6= 0 and c ∈ C we define the multiple-valued function

zc = ec log(z).

Multiple-valuedness is inherited from the log.

Example 8. We have ii = ei log(i) = ei[ln(1)+i π
2
+2πin] = e−

π
2
[1+4n], n ∈ Z.

It follows directly from the properties of the exponential function that z−c = e−c log(z) =
1/ec log(z) = 1/zc.

Let us fix a branch of the logarithm. Then zc is a single-valued function, analytic on
C\(−∞, 0] (since the logarithm is analytic there and the exponential function is entire).
What is the derivative of zc on that domain? To find the derivative, we use the chain rule,

d

dz
zc =

d

dz
ec log(z) =

c

z
ec log(z) = ce− log(z)ec log(z) = ce(c−1) log(z) = czc−1.

The principal value of zc is denoted by P.V. zc. It is the single-valued function defined
by

P.V. zc = ecLog(z).
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Notes PM 4310

Example 9. The principal value of z2/3 is P.V. z2/3 = r2/3 cos(2Θ/3)+ir2/3 sin(2Θ/3), where
Θ = Arg(z).

We know the relations ln xα = α ln x and (xα)β = xαβ for x > 0, α, β ∈ R. Do they
generalize to the complex case? To investigate the first relation, consider a fixed branch n0

of the logarithm, and let a = α + iβ, α, β ∈ R. By using the definition of the logarithm, is
not hard to see that for any z 6= 0,

log za = a log z + 2πi[k(z, a, n0) + n0],

where k(z, a, n0) ∈ Z is the unique integer chosen exactly so that

β ln |z| + αArgz + 2παn0 + 2πk ∈ (−π, π].

Note that if z ∈ (0,∞), a ∈ R and if we consider the principal branch n0 = 0, then k = 0
and we recover the habitual formula from real analysis. By now we feel that (xα)β = xαβ is
not going to hold in the complex case, since it is based on the property ln xα = α ln x. In
the complex case, we have for a, b, z ∈ C, z 6= 0,

(za)b = eb log za

= eb[a log z+2πik(z,a,n0)+2πin0] = zabe2πib[k(z,a,n0)+n0].

We conclude that (za)m = zam for any z 6= 0, a ∈ C and m ∈ Z, and for any branch.

1.4.4 Trigonometric Functions

We define for z ∈ C

sin(z) =
eiz − e−iz

2i
and cos(z) =

eiz + e−iz

2
.

Both are entire functions since e±iz are. For real numbers z = x ∈ R, the definition yields
sin(x) = eix−e−ix

2i
= 1

2i
(i sin(x) + i sin(x)). It thus coincides with the real function sin for

real arguments. The same holds for the cosine. The complex trigonometric functions are
examples of analytic continuations: they are analytic functions which coincide with given
functions when restricted to the real line (the given functions being the real trigonometric
functions in this example).

As usual, we set

tan(z) =
sin(z)

cos(z)
and cot(z) =

cos(z)

sin(z)
.

The latter functions are defined for all z for which the denominators do not vanish. They
are analytic at all points in their domain of definition.

1.4.5 Hyperbolic Functions

In analogy with real hyperbolic functions, we define

sinh(z) =
ez − e−z

2
, cosh(z) =

ez + e−z

2
, tanh(z) =

sinh(z)

cosh(z)
, coth(z) =

cosh(z)

sinh(z)
.

The first two functions are defined for all z ∈ C and are entire. The latter two are defined
for all z where the denominators do not vanish, and they are analytic in their domains of
definition.

Marco Merkli 9



Notes PM 4310

Example 10. Solve z = sinh(w) for w. We write z = (eiw − e−iw)/2 as 2z = ζ − 1/ζ, where
ζ = eiw. It follows that ζ2 − 2zζ − 1 = 0. The solutions to this quadratic equation are

ζ =
2z + (4z2 + 4)1/2

2
= z + (1 + z2)1/2.

(Note that (1 + z2)1/2 is a double-valued function.) So, by taking the log on both sides we
obtain

log(eiw) = iw + 2πin = log[z ± (1 + z2)1/2], n ∈ Z.

Consequently, sinh−1(z) = −i log[z ± (1 + z2)1/2] + 2πn, n ∈ Z.

1.5 Integration

Let [a, b] be an interval in R, and let u, v : [a, b] → R be piecewise continuous functions.
Define w : [a, b] → C by w(t) = u(t) + iv(t). The (Riemann) integral over the complex
valued function w is defined by

∫ b

a

w(t)dt =

∫ b

a

u(t)dt + i

∫ b

a

v(t)dt.

The usual properties of (real) Riemann integrals hold for
∫ b

a
w(t)dt. We want to define

∫

C f(z)dz, where C is a curve (a “contour”) in the complex plane. The “contour integral”
should reduce to the usual integral for the special case C = [a, b].

An arc C is a set of points {z(t) = x(t) + iy(t) : t ∈ [a, b]} in the complex plane, where
x and y are real continuous functions, and where [a, b] is a real interval. C is a simple arc
or a Jordan arc if it does not cross itself, that is, if z(t1) = z(t2) ⇒ t1 = t2. An arc C
is smooth if z′(t) exists and is continuous and nonzero for all t ∈ [a, b]. (The slope of the

tangent of the curve is dy
dx

= y′(t)
x′(t)

; we allow for infinite slope or zero slope, but not for both

x′(t) = y′(t) = 0).
A contour is an arc consisting of a finite number of smooth arcs joined end to end. When

only the initial and final values of z(t) are the same, the contour is called a simple closed
contour.

C

Figure 1: Arc

C

Figure 2: Smooth Simple Arc
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C

Figure 3: Contour

C

Figure 4: Simple Closed Contour

C

Figure 5: Simple Arc

C

Figure 6: Smooth Arc
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It is a general convention to take the direction of increasing parameter to be anti-clockwise
for all closed contours. Let C be a contour represented by z(t) = x(t) + iy(t), t ∈ [a, b],
and denote the endpoints by z(a) = z1 and z(b) = z2. Let f : C → C be defined and
piecewise continuous on C, i.e., f(z(t)) is piecewise continuous on [a, b]. We define the
complex (definite) line integral of f along C by

∫

C
f(z)dz =

∫ b

a

f(z(t))z′(t)dt.

We point out that the right hand side is independent of the choice of parametrization of C.
Indeed, without loss of generality, let C be a smooth simple arc, parameterized as well by
ζ(s), s ∈ [c, d] ⊂ R, with ζ(c) = z1 and ζ(d) = z2. Then we have

∫ d

c

f(ζ(s))ζ ′(s)ds =

∫ d

c

f(z(τ(s)))z′(τ(s))τ ′(s)ds =

∫ b

a

f(z(t))z′(t)dt,

where τ : [c, d] → [a, b] is defined by ζ(s) = z(τ(s)), so that ζ ′(s) = z′(τ(s))τ ′(s).

Example 11. Let f : C → C be given by f(z) = x + iky, for some k ∈ Z. Let Cn be the
contour joining 0 to 1 + i given by y = xn, n ∈ N. Calculate

∫

Cn
f(z)dz.

C1

C2

1 + i

y

x
0

Parametrizing Cn as zn(t) = t + itn, t ∈ [0, 1], we have
∫

Cn

f(z)dz =

∫ 1

0

f(zn(t))z′n(t)dt

=

∫ 1

0

(t + iktn)(1 + intn−1)dt

=

∫ 1

0

(t − nkt2n−1)dt + i

∫ 1

0

(ntn + ktn)dt

=
1

2
(1 − k) + i

n + k

n + 1
.

We see that the value of the integral depends on the path joining the endpoints 0 and
1 + i (i.e., on n), except if k = 1. This is no accident: f is analytic (actually entire) if and
only if k = 1. This can easily be check by applying Theorem 2. We shall examine in detail
the relation between path-dependence of integrals and analyticity of the integrand below in
Theorem 3.
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Lemma 1. Let f and g be piecewise continuous functions on a contour C.

1. For all α, β ∈ C we have
∫

C
[αf(z) + βg(z)]dz = α

∫

C
f(z)dz + β

∫

C
g(z)dz.

2. If C consists of a contour C1 joining z1 to z2 and a contour C2 joining z2 to z3, then
∫

C
f(z)dz =

∫

C1

f(z)dz +

∫

C2

f(z)dz.

3. Let C be given by z(t), t ∈ [a, b], and let −C be the same path, but taken in reverse
order. That is, −C is given by ζ(t) = z(−t), t ∈ [−b,−a]. Then we have

∫

−C

f(z)dz = −
∫

C

f(z)dz.

The proof of the Lemma follows directly from the definition of the integral. It follows
from 2. that

∫

C f(z)dz is independent of the choice of the initial point of C for any closed
contour C. The next result is very useful.

Lemma 2. Let f be piecewise continuous on a contour C given by z(t), t ∈ [a, b], having

length L =
∫ b

a
|z′(t)|dt. Then

∣

∣

∣

∣

∫

C
f(z)dz

∣

∣

∣

∣

≤ L sup
z∈C

|f(z)|.

Remark that since f is piecewise continuous on the closed set C, f is bounded on C, so
the supremum is finite.

Proof. First we notice that for g : [a, b] → C we have
∣

∣

∣

∫ b

a
g(t)dt

∣

∣

∣
≤

∫ b

a
|g(t)|dt. To show this

we write the integral in polar coordinates,
∫ b

a
g(t)dt = reiθ, where θ ∈ R and r ≥ 0. Then

r =

∫ b

a

e−iθg(t)dt = Re

∫ b

a

e−iθg(t)dt =

∫ b

a

Re(e−iθg(t))dt.

Now Re(e−iθg(t)) ≤ |e−iθg(t)| = |g(t)|, so the desired formula follows from the monotonicity
of real (Riemann) integrals. Therefore,

∣

∣

∣

∣

∫

C
f(z)dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a

f(z(t))z′(t)dt

∣

∣

∣

∣

≤
∫ b

a

|f(z(t))| |z′(t)|dt

≤ sup
t∈[a,b]

|f(z(t))|
∫ b

a

|z′(t)|dt

= L sup
z∈C

|f(z)|.
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Example 12. It is not true that
∣

∣

∫

C f(z)dz
∣

∣ ≤
∫

C |f(z)|dz. (Note that the r.h.s. is in general
a complex number, so the inequality does not even make sense, in general.) For instance, let
f(z) = 1/z, C = {z ∈ C : |z| = 1}. Then, parametrizing the circle as z(t) = eit, t ∈ [0, 2π],
we obtain

∫

C

dz

z
=

∫ 2π

0

e−iteitidt = 2πi,

but on the other hand,

∫

C

|f(z)|dz =

2π
∫

0

ieitdt = i
e2πi − 1

i
= 0.

Let F be analytic on a domain D. We say that F is the anti-derivative of f on D if
f(z) = F ′(z) on D.

Theorem 3. Suppose that f is continuous on a domain D. Then the following are equivalent

(1) f has an anti-derivative F on D.

(2) Take any points ζ1, ζ2 ∈ D. The integral of f along any contour linking ζ1 and ζ2, lying
inside D, has the same value.

(3) The integral of f around any closed contour lying inside D is zero.

If the integrals of contours linking ζ1 and ζ2 are independent of the paths, as it is the
case in the theorem, then we simply write

∫ ζ2
ζ1

dz for that integral.

Proof. We show (1) ⇒ (2) ⇒ (3) ⇒ (2) ⇒ (1).
To show (1) ⇒ (2) we let C be a contour, C = C1 ∪ · · · ∪ Cn, where the Cj are smooth

arcs, linking points zj to zj+1 as in Figure 7, so that

∫

C
f(z)dz =

n
∑

j=1

∫

Cj

f(z)dz,

and z1 = ζ1, zn+1 = ζ2.

C1

C2

C3

C4

z1

z2
z3

z5

z4

Figure 7: The contour C = C1 ∪ · · · ∪ Cn
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Let us analyze one smooth arc Cj, represented by z(t), t ∈ [a, b]. We have

d

dt
F (z(t)) = F ′(z(t))z′(t) = f(z(t))z′(t),

from which it follows that

∫

Cj

f(z)dz =

∫ b

a

f(z(t))z′(t)dt =

∫ b

a

d

dt
F (z(t))dt.

Let us decompose F into real and imaginary parts, F (z) = U(z) + iV (z), U, V : C → R.
Then d

dt
F (z(t)) = d

dt
U(z(t)) + i d

dt
V (z(t)) , so by the fundamental theorem of calculus,

∫

Cj

f(z)dz =

U(z(b)) − U(z(a)) + iV (z(b)) − iV (z(a)) = F (z(b)) − F (z(a)) = F (zj+1) − F (zj).

Consequently we obtain

∫

C
f(z)dz =

n
∑

j=1

[F (zj+1) − F (zj)] = F (zn+1) − F (z1).

This shows that the value of the integral is just the difference of the values the anti-derivative
takes at the end points of the contour. In particular, it does not depend on the path linking
z1 to zn+1.

To show (2) ⇒ (3) we pick two points z1, z2 on the closed contour C (see Figure 8).

C1

C2

z1

z2

Figure 8: Dividing C into two contours

We define two contours C1 and C2, each linking z1 to z2, such that C1 ∪ (−C2) = C. Then

∫

C
f(z)dz =

∫

C1

f(z)dz −
∫

C2

f(z)dz.

Now the right hand side equals zero by (2).
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To show (3) ⇒ (2) we let z1, z2 be two points in D, and C1, C2 ⊂ D be contours linking
z1 and z2. The contour C = C1 ∪ (−C2) is a closed contour lying inside D, so we have

∫

C
f(z)dz = 0 =

∫

C1

f(z)dz −
∫

C2

f(z)dz,

which means that (2) holds.
To prove (2) ⇒ (1) we fix z0 ∈ D and define F (z) =

∫ z

z0
f(ζ)dζ for z ∈ D. We now show

that F is an anti-derivative of f , that is, F is analytic in D and F ′(z) = f(z), for all z ∈ D.
Fix z ∈ D and take ∆z so small that the ball of radius |∆z| around z is in D (this is possible
since D is open). We have

F (z + ∆z) − F (z) =

∫ z+∆z

z

f(ζ)dζ,

where we may choose the path in the integral to be the straight line linking z and z + ∆z.
Since

∫ z+∆z

z
dζ = ∆z we have f(z) = 1

∆z

∫ z+∆z

z
f(z)dζ, and hence

F (z + ∆z) − F (z)

∆z
− f(z) =

1

∆z

∫ z+∆z

z

[f(ζ) − f(z)]dζ.

The function f is continuous at z, so for all ǫ > 0 there exists a δ > 0 such that if |ζ−z| < δ,
then |f(ζ) − f(z)| < ǫ. Therefore,

∣

∣

∣

∣

F (z + ∆z) − F (z)

∆z
− f(z)

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

∆z

∣

∣

∣

∣

ǫ|∆z| = ǫ,

whenever |∆z| < δ. This means that F is differentiable at z, and that F ′(z) = f(z), for all
z ∈ D.

The proof of the previous theorem yields also the following result.

Theorem 4 (Fundamental theorem of calculus). Let C be a contour lying inside a domain
D, and suppose that f is continuous on D and has an anti-derivative F on D. Let z1, z2

denote the endpoints of C. Then we have

∫

C
f(z)dz = F (z2) − F (z1).

Corollary 1. Suppose f is a function satisfying f ′(z) = 0 for all z in a domain D. Then f
is constant on D.

Proof. The function f ′ is continuous on D and has the anti-derivative f on D. Thus by
Theorem 4 we have, for any z1, z2 ∈ D,

∫

C f ′(z)dz = f(z2) − f(z1), where C is any contour
linking z1 to z2 and lying in D. Since the integral is zero (f ′(z) = 0) we have f(z1) = f(z2)
for all z1, z2 ∈ D.
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Example 13. Evaluate
∫

C z−2dz, where C = {z ∈ C : |z| = 1}. Let D be the annulus
D = {reiθ : 0 < a < r < b < 2, θ ∈ R}. On this domain, f(z) = z−2 has the anti-
derivative F (z) = −1/z. Moreover, C ⊂ D and f is continuous on D. Thus, by the theorem,
∫

C z−2dz = 0. We can verify this explicitly:

∫ 2π

0

e−2itieitdt = i
e2πi − 1

i
= 0.

Example 14. Evaluate
∫

C z−1dz, where C = {z ∈ C : |z| = 1}. It is easy to evaluate the
integral directly, it has the value 2πi. Thus

∫

C z−1dz 6= 0. This is so because there is no
domain containing C, and throughout which the integrand is the continuous derivative of an
analytic function. Indeed, the derivative of Log(z) is 1/z, but Log fails to be analytic along
the branch cut given by z = x ∈ (−∞, 0]. (Note that any branch cut must contain the origin
which is a branch point.) However, we can still use the fundamental theorem of calculus to
evaluate the integral! The trick is to “open” slightly the contour in order to avoid the branch
cut (in this example the negative real axis, see Figure 9). Formally, we may set

Cǫ = {z ∈ C : z = eiθ, θ ∈ (−π + ǫ, π − ǫ)}.

Then we have
∫

C dz/z = limǫ→0

∫

Cǫ
dz/z, since the integrand is bounded on C.

0

y

x

Figure 9: Opening the contour

For any ǫ > 0 we can find a domain Dǫ containing Cǫ, but not intersecting the negative
real axis. Now, on Dǫ the function f has the anti-derivative Log, and thus we obtain

∫

C

dz

z
= lim

θ↑π
Log(z)

∣

∣

z=eiθ

z=e−iθ = lim
θ↑π

(

ln |z| + iArg(z)
)∣

∣

z=eiθ

z=e−iθ = 2πi.

1.6 The Cauchy-Goursat Theorem

We have seen in the previous section that if f is continuous on a domain D and has an
anti-derivative on that domain, then

∫

C f(z)dz = 0 for all closed contours C lying inside D.
We can arrive at the conclusion

∫

C f(z)dz = 0 also if we assume that f is analytic in the
interior and on a simple closed curve C, and if f ′ is continuous there too. To see this, we
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recall Green’s Theorem. Let C be a simple closed curve in R
2 and denote by R the closed

region consisting of all points interior to and on C. If P and Q are continuously differentiable
functions from R to the real numbers, then

∫

C
Pdx + Qdy =

∫

R

[∂xQ − ∂yP ]dxdy.1

We represent f(z) = u(z) + iv(z) (real and imaginary parts) and write z′(t) = x′(t) + iy′(t).
Then

∫

C
f(z)dz =

∫ b

a

f(z(t))z′(t)dt

=

∫ b

a

[u(z(t))x′(t) − v(z(t))y′(t)]dt + i

∫ b

a

[u(z(t))y′(t) + v(z(t))x′(t)]dt.

Now
∫ b

a
u(x(t), y(t))x′(t)dt =

∫

C u(x, y)dx and similarly for the other integrals. Hence

∫

C
f(z)dz =

∫

C
[u(x, y)dx − v(x, y)dy] + i

∫

C
[v(x, y)dx + u(x, y)dy]

=

∫

R

[−∂xv(x, y) − ∂yu(x, y)]dxdy + i

∫

R

[∂xu(x, y) − ∂yv(x, y)]dxdy,

where we used Green’s theorem in the last step. The r.h.s. is zero by the Cauchy-Riemann
equations. Thus, we have the following result, known as the Cauchy Theorem.

Suppose that f is analytic at all points interior to and on a simple closed contour C, and
that f ′ is continuous in that same region. Then we have

∫

C f(z)dz = 0.
The next theorem gives the same assertion without the assumption that f ′ is continuous.

Theorem 5 (Cauchy-Goursat Theorem). Suppose that f is analytic at all points interior to
and on a simple closed contour C. Then

∫

C
f(z)dz = 0.

We start with a preparatory result which will be useful in the proof of the Cauchy-Goursat
Theorem.

Lemma 3. Let C be a simple closed contour and denote by R the closed region consisting of
points lying interior to and on C. Let f be analytic on R. Then, given any ǫ > 0, we can
cover R with finitely many squares (and partial squares), indexed by j = 1, 2, . . . , n, such
that in each one there is a point zj for which we have

∣

∣

∣

∣

f(z) − f(zj)

z − zj

− f ′(zj)

∣

∣

∣

∣

< ǫ,

for all others points z in the same square (partial square).

1Recall that if C is represented by (x(t), y(t)) with t ∈ [a, b], then
∫

C
Pdx =

∫

b

a
P (x(t), y(t))x′(t)dt.
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By a partial square we mean one that does not lie entirely inside C, but is “cut” by C,
see Figure 10.

C
Figure 10: Squares and partial squares

Proof. Start off with a subdivision of R in squares and partial squares. Suppose that in a
given square (or partial square), there is no point zj satisfying the inequality. Denote this
(partial) square by σ0. Now we subdivide σ0 into four smaller squares by cutting each side
in two (Figure 11).

1 2

3 4

Figure 11: Subdivisions of a square

3 4

21

Figure 12: Subdivisions of a partial square

If σ0 is a partial square, then we subdivide it as indicated in Figure 12. If all four
new subregions contain points zj such that the inequality of the lemma is satisfied in each
new (partial) square, then we stop the treatment of σ0. Suppose that one of the four new
subregions does not have a point zj satisfying the inequality. Call this subregion (square
or partial square) σ1. We subdivide σ1 in the same fashion we did σ0. Like this we get a
sequence of subregions σ0, σ1, σ2, . . .. We now show that after a finite number of steps in this
process, there must be a zj satisfying the inequality.
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Suppose that there is a an infinite sequence of σk. The set ∩∞
k=0σk is not empty, as the

σk are decreasing and compact. Let z0 ∈ ∩∞
k=0σk. Since σk ⊂ R, the intersection is a subset

of R, and so z0 ∈ R.
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..B(z0, ǫ)

The function f is analytic at z0 (since z0 ∈ R), so f ′(z0) exists, which means that for all
ǫ > 0 there exists δ > 0 such that if 0 6= |z − z0| < δ then

∣

∣

∣

∣

f(z) − f(z0)

z − z0

− f ′(z0)

∣

∣

∣

∣

< ǫ.

However, {z ∈ C : |z − z0| < δ} = B(z0, δ) contains a square σk with index k large enough,
so that the diagonal of σk is less than δ. Thus, z0 serves as the point zj in the lemma for
the square (or partial square) σk.

We thus conclude that there is no infinite sequence σ0 ⊃ · · · ⊃ σk ⊃ σk+1 ⊃ · · · with the
property that none of the σk contain a point zj satisfying the inequality of the lemma.

Proof of the Cauchy-Goursat Theorem. Fix ǫ and consider a cover of R satisfying the
property of Lemma 3. On the jth (partial) square, we define the function

δj(z) =

{

f(z)−f(zj)

z−zj
− f ′(zj), z 6= zj,

0, z = zj,

where zj is as in Lemma 3. In particular, we have |δj(z)| < ǫ. Clearly, δj(z) is continuous
and limz→zj

δj(z) = 0.
Denote by Cj, j = 1, 2, . . . , n, the boundary of the square (or partial square) being the

jth element in the cover of R. For all z ∈ Cj we have

f(z) = f(zj) + (z − zj)δj(z) + (z − zj)f
′(zj),

so
∫

Cj

f(z)dz = [f(zj) − zjf
′(zj)]

∫

Cj

dz + f ′(zj)

∫

Cj

zdz +

∫

Cj

(z − zj)δj(z)dz.

The anti-derivatives of 1 and z are z and z2/2, respectively (on all of C), 1 and z are
continuous, and Cj is a closed contour, so we have

∫

Cj

dz = 0 =

∫

Cj

zdz.
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Consequently,
∫

Cj

f(z)dz =

∫

Cj

(z − zj)δj(z)dz.

The sum of all the integrals
∫

Cj
f(z)dz, j = 1, . . . , n, is just equal to

∫

C f(z)dz, because the

integration over all sides of squares and partial squares inside C cancel each other out (see
also Figure 13). Note that this is the reason for covering R with (non-overlapping) squares
and partial squares (triangles would be possible too, for instance).

C

Figure 13: Cancellation of integrals on sides of squares inside C

Therefore, we have
∫

C
f(z)dz =

n
∑

j=1

∫

Cj

f(z)dz =
n

∑

j=1

∫

Cj

(z − zj)δj(z)dz.

Denote by sj the length of a side of the square (or partial square) indexed by j. Every z in
that square satisfies |z − zj| ≤

√
2sj and so we get

∣

∣

∣

∣

∫

C
f(z)dz

∣

∣

∣

∣

≤
n

∑

j=1

∣

∣

∣

∣

∣

∫

Cj

(z − zj)δj(z)dz

∣

∣

∣

∣

∣

≤
n

∑

j=1

√
2sjǫL(Cj),

where we used Lemma 2, and where L(Cj) is the length of the contour Cj. If Cj is a square,
then L(Cj) = 4sj. If Cj is a partial square, then L(Cj) ≤ 4sj + Lj, where Lj is the length of
the part of C which is part of Cj. In any event, we have L(Cj) ≤ 4sj + Lj and it follows that

∣

∣

∣

∣

∫

C
f(z)dz

∣

∣

∣

∣

<
√

2ǫ
n

∑

j=1

(4s2
j + sjLj).

Let S be a large enough number so that the entire curve C lies inside an (open) square of side
length S, and such that all squares of the initial covering lie also inside this square. Com-
paring areas, we obtain the inequality

∑n
j=1 s2

j ≤ S2. Moreover,
∑n

j=1 sjLj ≤ S
∑n

j=1 Lj =
SL(C), where L(C) is the length of C. So we finally arrive at the estimate

∣

∣

∣

∣

∫

C
f(z)dz

∣

∣

∣

∣

≤
√

2
(

4S2 + SL(C)
)

ǫ.
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Since ǫ is arbitrary, the left hand side must vanish. This completes the proof of the Cauchy-
Goursat theorem. ¤

A domain D is called simply connected if every simple closed contour within it only
encloses points of D. The unit disk {z ∈ C : |z| < 1} is simply connected, while the
punctured disk {z ∈ C : 0 6= |z| < 1} is not.

An easy consequence of the Cauchy-Goursat theorem is the following useful result.

Corollary 2. Let D be a simply connected domain, z1, z2 ∈ D, and let C be a contour
linking z1 and z2, lying entirely in D. If f is analytic on D, then

∫

C f(z)dz =
∫ z2

z1
f(z)dz is

independent of C. In particular, f has an anti-derivative on D.

The condition that D be simply connected is crucial for this result to hold (see example
15 below).

Proof of Corollary 2. Let C1 and C2 be non-intersecting contours linking z1 and z2, and such
that C1, C2 ⊂ D.

C1

C2z1

z2

D

Then C = C2 ∪ (−C1) is a simple closed contour lying in D, and f is analytic inside and
on C. By the Cauchy-Goursat theorem, we have

∫

C f(z)dz = 0, so
∫

C1
f(z)dz =

∫

C2
f(z)dz.

Finally, since f is analytic on D it is continuous on D, so the existence of an anti-derivative
follows from Theorem 3. (In fact the anti-derivative can be expressed as F (z) =

∫ z

z0
f(ζ)dζ,

where the integral is over any contour linking a fixed base point z0 to z, lying in D.) ¤

Example 15. Let D = {1
2

< |z| < 2} and f(z) = 1/z. Then f is analytic in D. We
introduce the unit circle C and the arcs C1 and C2, both linking −i to i (see Figure 14).
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i

C = C1 ∪ (−C2)

C2

C1D
−i

Figure 14: The annulus D is not simply connected

By direct calculation we find
∫

|z|=1
dz
z

= 2πi and therefore
∫

C1

dz
z
−

∫

C2

dz
z

= 2πi. Therefore,

the integrals over C1 and C2 do not have the same values.

Example 16. (Application of the Cauchy-Goursat theorem.) Consider the contour
C consisting of two half-circles and two intervals, as represented in Figure 15, and let f(z) =
eiz/z.

Γ

γC

0
ǫ

R

Figure 15: Contour C

We know from the Cauchy-Goursat theorem that
∫

C f(z)dz = 0. Parameterize the big
half-circle Γ as Reiθ, 0 ≤ θ ≤ π. Then

∣

∣

∣

∣

∫

Γ

f(z)dz

∣

∣

∣

∣

≤
∫ π

0

∣

∣

∣
eiReiθ

∣

∣

∣
dθ =

∫ π

0

e−R sin(θ)dθ
R→∞−→ 0.

We parametrize γ similarly and obtain
∫

γ

f(z)dz = −
∫ π

0

ieiǫeiθdθ
ǫ→0−→ −iπ.
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Since the integral over the whole contour vanishes, we have

0 =

∫ −ǫ

−R

eix

x
dx +

∫ R

ǫ

eix

x
dx − iπ + T (R, ǫ),

where |T (R, ǫ)| → 0 as R → ∞ and ǫ → 0. We take the imaginary part of the last equation
to arrive at

∫ −ǫ

−R

sin(x)

x
dx +

∫ R

ǫ

sin(x)

x
dx = π − ImT (R, ǫ).

Finally we take R → ∞ and ǫ → 0, and obtain
∫ ∞

0

sin(x)

x
dx =

π

2
.

The last integral is understood as the limit of
∫ R

ǫ
sin(x)/x dx as R → ∞ and ǫ → 0 (inde-

pendently).

Another simple but important consequence of the Cauchy-Goursat theorem is the follow-
ing “deformation lemma.”

Lemma 4. (Deformation Lemma.) Let C1 and C2 be (positively oriented) simple closed
contours, such that C2 is in the interior of C1. If f is analytic in the closed region consisting
of those contours and all points between them, then

∫

C1

f(z)dz =

∫

C2

f(z)dz.

This result says in particular that any simple closed contour enclosing just one singular
point of the integrand can be replaced by a circle.

Proof. We introduce two additional contours and obtain two simple closed contours C′
1 and

C′
2 such that f is analytic inside and on each of C′

1, C′
2, see Figure 16.

C1

C2

C′
1

C′
2

Figure 16: Contours Cj, C′
j

We have
∫

C′
1∪C′

2

f(z)dz =

∫

C1∪(−C2)

f(z)dz =

∫

C1

f(z)dz −
∫

C2

f(z)dz.

However, by the Cauchy-Goursat theorem, the left hand side is zero.
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2 Cauchy’s Integral Formula

This important formula expresses the value of an analytic function at a point z in terms of
the integral on a contour around z.

Theorem 6. Let C be a simple closed contour (positively oriented) and suppose that f is
analytic inside and on C. If z0 is any point interior to C, then

f(z0) =
1

2πi

∫

C

f(z)

z − z0

dz.

Proof. The function f is continuous at z0 (in fact, it is differentiable there). Given any ǫ > 0
there exists a δ′ > 0 such that if |z − z0| < δ′ then |f(z) − f(z0)| < ǫ. Choose δ ≤ δ′ such
that B(z0, δ) is contained in the interior of C.

C

Γ

z0

B(z0, δ)

η

By Lemma 4, we have
∫

C

f(z)

z − z0

dz =

∫

Γ

f(z)

z − z0

dz,

where Γ = {z ∈ C : |z| = η}, for any η < δ. Since
∫

Γ
(z − z0)

−1dz = 2πi we have

∫

C

f(z)

z − z0

dz − 2πif(z0) =

∫

C

f(z)

z − z0

dz − f(z0)

∫

Γ

dz

z − z0

=

∫

Γ

f(z) − f(z0)

z − z0

dz.

For all z ∈ Γ we have
∣

∣

∣

∣

f(z) − f(z0)

z − z0

∣

∣

∣

∣

<
ǫ

|z − z0|
=

ǫ

η
.

It follows that
∣

∣

∣

∣

∫

C

f(z)

z − z0

dz − 2πif(z0)

∣

∣

∣

∣

<
ǫ

η
L(Γ) = 2πǫ.

Since ǫ > 0 is arbitrary the result follows.

Example 17. Consider the unit circle C, parameterized as z(θ) = eiθ, −π < θ ≤ π. By
the Cauchy integral formula we have

∫

C
eaz

z
dz = 2πi, for all a ∈ C. On the other hand,

∫

C
eaz

z
dz = i

∫ π

−π
ea(cos(θ)+i sin(θ))dθ, so by taking the imaginary part we obtain, for all a ∈ R,

∫ π

0

ea cos(θ) cos(a sin(θ))dθ = π.
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By formally differentiating the equality

f(z) =
1

2πi

∫

C

f(ζ)

ζ − z
dζ

we get

f ′(z) =
1

2πi

∫

C

f(ζ)

(ζ − z)2
dζ,

and continuing this procedure,

f (n)(z) =
n!

2πi

∫

C

f(ζ)

(ζ − z)n+1
dζ.

The next result shows that this formal procedure leads to a correct result.

Theorem 7 (Cauchy Integral Formula for Derivatives). Let C be a simple closed contour
(positively oriented) and suppose that f is analytic inside and on C. If z is any point inside
C, then f (n)(z) exists and is given by

f (n)(z) =
n!

2πi

∫

C

f(ζ)

(ζ − z)n+1
dζ,

for all n ∈ N.

An immediate corollary is the following very important result.

Corollary 3. If a function f is analytic at a point, then its derivatives of all orders at this
point exist and are also analytic at this point.

Proof of Corollary 3. Suppose f is analytic at z0. This means that there is an ǫ > 0 s.t.
f is differentiable at all points inside B(z0, ǫ). Let C = {z ∈ C : |z − z0| = ǫ/2}. Then
f is analytic inside and on C, hence by the Cauchy Integral Formula, f (n)(z) exists for all
z ∈ B(z0, ǫ/2) and all n ∈ N. ¤

The following is a (partial) converse to the Cauchy-Goursat theorem.

Theorem 8 (Morera’s Theorem). Let f be continuous on a domain D. If
∫

C f(z)dz = 0 for
every closed contour C lying in D, then f is analytic on D.

Proof of Theorem 8. Since f is continuous and the integral over every closed contour lying
in D vanishes, f has an anti-derivative F on D. This means there exists an F analytic on D
such that F ′(z) = f(z), for all z ∈ D. By the previous corollary f is analytic at each point
of D. ¤

Proof of Theorem 7. We consider first the case n = 1. Take h ∈ C such that both z and
z + h lie inside C. Then

f(z + h) − f(z)

h
=

1

2πi

∫

C

f(ζ)

h

[

1

ζ − z − h
− 1

ζ − z

]

dζ

=
1

2πi

∫

C

f(ζ)

(ζ − z − h)(ζ − z)
dζ ≡ 1

2πi
I1.
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Our goal is to show that

lim
h→0

I1 = I2 ≡
∫

C

f(ζ)

(ζ − z)2
dζ.

We have

|I1 − I2| =

∣

∣

∣

∣

∫

C

f(ζ)

ζ − z

[

1

ζ − z − h
− 1

ζ − z

]

dζ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

C

f(ζ)

ζ − z

h

(ζ − z − h)(ζ − z)
dζ

∣

∣

∣

∣

≤ |h|L(C) sup
ζ∈C

(∣

∣

∣

∣

f(ζ)

(ζ − z)2

∣

∣

∣

∣

1

|ζ − z − h|

)

.

Let d = dist(z, C) = min{|z − ζ| : ζ ∈ C} be the distance of z to the contour C. Since z is
in the interior of C, we have d > 0. Now for ζ ∈ C, |ζ − z − h| ≥ |ζ − z| − |h| > d

2
, provided

|h| < d
2
. Therefore,

|I1 − I2| ≤ 2|h|L(C)d−3 sup
ζ∈C

|f(ζ)|,

provided |h| < d
2
. It follows that limh→0 |I1 − I2| = 0.

We use an induction argument to show that the formula is correct for all n. Assume that
it is correct for n = 1, 2, . . . , k. Thus we have

f (k)(z + h) − f (k)(z)

h
=

k!

2πi

∫

C

f(ζ)

h

[

1

(ζ − z − h)k+1
− 1

(ζ − z)k+1

]

dζ

=
k!

2πi

∫

C

f(ζ)

h

(ζ − z)k+1 − (ζ − z − h)k+1

(ζ − z − h)k+1(ζ − z)k+1
dζ

≡ k!

2πi
I1.

Our goal is to show that the Cauchy integral formula holds for k + 1, which is equivalent to
showing limh→0 |I1 − I2| = 0, where

I2 ≡ (k + 1)

∫

C

f(ζ)

(ζ − z)k+2
dz.

In order to expand the difference in the second fraction of the integrand defining I1, we note
that for all x, ǫ,

(x + ǫ)N − xN = x
[

(1 + ǫ/x)(x + ǫ)N−1 − xN−1
]

= ǫ(x + ǫ)N−1 + x
[

(x + ǫ)N−1 − xN−1
]

,

from which it follows by iteration that

(x + ǫ)N − xN = ǫ
N

∑

s=1

xs−1(x + ǫ)N−s.

Hence we have

1

h

[

(ζ − z)k+1 − (ζ − z − h)k+1
]

=
1

−h

[

(ζ − z + (−h))k+1 − (ζ − z)k+1
]

=
k+1
∑

s=1

(ζ − z)s−1(ζ − z − h)k+1−s.
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We estimate the difference of I1 and I2 as follows.

|I1 − I2| =

∣

∣

∣

∣

∣

∫

C
f(ζ)

[

k + 1

(ζ − z)k+2
−

∑k+1
s=1(ζ − z)s−1(ζ − z − h)k+1−s

(ζ − z − h)k+1(ζ − z)k+1

]

dζ

∣

∣

∣

∣

∣

≤ L(C) max
ζ∈C

|f(ζ)|max
ζ∈C

1

|ζ − z|k+1

∣

∣

∣

∣

∣

k + 1

ζ − z
−

k+1
∑

s=1

(ζ − z)s−1(ζ − z − h)−s

∣

∣

∣

∣

∣

≤ L(C) maxζ∈C |f(ζ)|
dk+2

max
ζ∈C

∣

∣

∣

∣

∣

k + 1 −
k+1
∑

s=1

[

ζ − z

ζ − z − h

]s
∣

∣

∣

∣

∣

.

Note that for each ζ ∈ C fixed, the last sum converges to k + 1 as h → 0. However, we need
to show that this convergence is uniform in ζ ∈ C.

k + 1 −
k+1
∑

s=1

[

ζ − z

ζ − z − h

]s

=
k+1
∑

s=1

{

1 −
[

ζ − z

ζ − z − h

]s}

=
k+1
∑

s=1

{

1 −
[

1 +
h

ζ − z − h

]s}

= −
k+1
∑

s=1

h

ζ − z − h

s
∑

s′=1

[

1 +
h

ζ − z − h

]s−s′

.

In the last step, we have again used the above formula for (x + ǫ)N − xN . We arrive thus at
the upper bound

∣

∣

∣

∣

∣

k + 1 −
k+1
∑

s=1

[

ζ − z

ζ − z − h

]s
∣

∣

∣

∣

∣

≤ 2|h|
d

k+1
∑

s=1

s
∑

s′=1

∣

∣

∣

∣

1 +
h

ζ − z − h

∣

∣

∣

∣

s−s′

≤ 2k+2|h|(k + 1)2

d
,

provided |h| ≤ d/2, because then
∣

∣

∣
1 + h

ζ−z−h

∣

∣

∣
≤ 1 + 2|h|

d
≤ 2.

This shows that limh→0 |I1 − I2| = 0, and the proof of Theorem 7 is complete. ¤

Example 18. Let C be a simple closed contour enclosing the origin. Then
∫

C

sinh(z)

z3
dz =

2πi

2!
sinh′′(0) = 0.

Theorem 9 (Liouville Theorem). If f is entire and |f(z)| ≤ M for some M < ∞ and all
z ∈ C, then f is constant.

Proof. From Cauchy’s formula, we have

f ′(z) =
1

2πi

∫

C

f(ζ)

(ζ − z)2
dζ,

where C is the circle of radius r, centered at z. Thus |f ′(z)| ≤ 1
2π

M
r2 2πr = M

r
. We can choose

r as large as we wish, so f ′(z) = 0, for all z ∈ C. This implies that f is constant, as can be
seen e.g. by the fundamental theorem of calculus:

∫ z

z0

f ′(ζ)dζ = f(z) − f(z0) = 0,

for all z, z0 ∈ C.
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The next result says that if f is analytic (and not constant) in a domain D, then the
maximum of the function |f | can only be attained on the boundary of D.

Theorem 10 (Maximum modulus principle). Suppose that f is analytic and non-constant
in a domain D. Then |f(z)| has no maximum value in D, that is, there is no point z0 ∈ D
such that |f(z)| ≤ |f(z0)|, for all z ∈ D.

We can rephrase this result as a positive statement. Suppose that f is analytic on a
domain D whose closure K is compact, and suppose that |f | is continuous on K. Then |f |
has a maximum on K. Thus we have the following result.

Corollary 4. Suppose that f is analytic in a domain D whose closure K is compact, and
suppose that |f | is continuous on K. Then the maximum value of |f(z)|, for z ∈ K, occurs
on the boundary K\D.

A proof of Theorem 10 is quite easy once we have the following result of independent
interest.

Lemma 5. Suppose that f is analytic in B(z0, r) and that |f(z)| ≤ |f(z0)| for all z ∈
B(z0, r). Then f(z) = f(z0) throughout B(z0, r).

Proof of Theorem 10. Suppose that |f(z)| attains its maximum at z0 ∈ D, and let the
maximum of |f | be M , |f(z0)| = M . Let ζ ∈ D be arbitrary. We show that f(z0) = f(ζ).
To do so, we choose a polygonal line L linking z0 to ζ, lying entirely in D. The distance
from L to the boundary of D is strictly positive, d = inf{|z − z′| : z ∈ L, z′ ∈ C\D} > 0.
We can cover the polygonal line L with balls of radius d and centres c1, . . . , cN ∈ L, with
|cj − cj−1| < d, s.t. c1 = z0 and cN = ζ, and such that L ⊂ ∪N

j=1B(cj, d) ⊂ D. Lemma 5
tells us that f(z) = f(z0) throughout B(c1, d). Now take z ∈ B(c2, d). Then, since f(z0)
is the maximum througout D, and since f(z1) = f(z0), we have |f(z)| ≤ |f(z1)|, for all
z ∈ B(c2, d). So by Lemma 5, f(z) = f(z0) for all z ∈ B(c1, d) ∩ B(c2, d). We continue this
argument and see that f is constant on the union of all the balls. In particular, we have
f(z0) = f(ζ). ¤

Proof of Lemma 5. Take z1 ∈ B(z0, r), s.t. ρ = |z0 − z1| > 0. We want to show that
f(z1) = f(z0). By the Cauchy formula, we have

f(z0) =
1

2πi

∫

Cρ

f(z)

z − z0

dz =
1

2π

∫ 2π

0

f(z0 + ρeiφ) dφ,

where Cρ is the circle around z0 with radius ρ. It follows that

|f(z0)| ≤
1

2π

∫ 2π

0

|f(z0 + ρeiφ)| dφ.

On the other hand, since z0 is the point where |f | is maximal, we have

|f(z0)| ≥
1

2π

∫ 2π

0

|f(z0 + ρeiφ)| dφ,
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and consequently, |f(z0)| = 1
2π

∫ 2π

0
|f(z0 + ρeiφ)| dφ, which in turn is equivalent to

∫ 2π

0

[

|f(z0)| − |f(z0 + ρeiφ)|
]

dφ = 0.

Since the integrand is a non-negative continuous function of φ, it follows that it must vanish
at all points φ ∈ [0, 2π]. Consequently we have |f(z0)| = |f(z)|, for all z s.t. |z − z0| = ρ. In
particular, |f(z0)| = |f(z1)|. Since z1 was chosen arbitrary (z1 6= z0) we see that |f | must be
constant througout B(z0, r).

Finally, we need to show that since |f | is constant, f itself is constant. If |f(z)| = 0 then
f(z) = 0, so we may assume that |f(z)| is constant and nonzero. Then |f(z)|2 = c > 0, so
f(z) = c/f(z), and in particular, both f and f are analytic in B(z0, r). Let f = u + iv and
f = U + iV . The Cauchy-Riemann equations are satisfied for both f and f , and they give

∂xu = ∂yv, ∂yu = −∂xv, and ∂xU = ∂yV, ∂yU = −∂xV.

But since U = u and V = −v, we can add up the equations to obtain ∂xu = 0 = ∂yu. This
implies that u is constant, and hence so is v. ¤

3 Power Series

Let fn : A → C, n = 1, 2, . . ., be a function sequence defined on a set A ⊂ C. Suppose
that for each z ∈ A, limn→∞ fn(z) exists, and denote this limit by f(z). The function f
on A is called the pointwise limit of the sequence fn. We say the sequence {fn} converges
uniformly to its pointwise limit f if and only if for all ǫ > 0 there exists an N such that
|fn(z) − f(z)| < ǫ whenever n > N , for all z ∈ A. (We write also “fn → f uniformly”.)
Here, N depends on ǫ (in general), but it does not depend on z. It is clear that fn converges
to f uniformly on A if and only if

lim
n→∞

sup
z∈A

|fn(z) − f(z)| = 0.

The following result is easy to prove, just like in the case for real valued functions.

Theorem 11. Suppose fn converges uniformly to f on a set A ⊂ C. If each fn is continuous
on A, then so is f .

Uniform convergence plays a central role in deciding whether one can interchange limits
and integrals, or limits and infinite sums, or infinite sums and integrals, etc.

Theorem 12. Let C be a contour. Suppose that fn → f uniformly on C, and that each fn

is continuous on C. Then

lim
n→∞

∫

C
fn(z)dz =

∫

C
f(z)dz.

Proof. We know from the previous theorem that f is continuous on C. Therefore
∫

C f(z)dz
is well defined. Fix ǫ > 0. There exists an N = N(ǫ) such that |fn(z)− f(z)| < ǫ, whenever
n > N , for all z ∈ C. Thus,

∣

∣

∣

∣

∫

C
fn(z)dz −

∫

C
f(z)dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

C

[

fn(z) − f(z)
]

dz

∣

∣

∣

∣

≤ ǫL(C),

whenever n > N .
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The next result shows that analyticity is preserved under uniform limits.

Theorem 13. Let D be a simply connected domain, and suppose that fn is a function
sequence s.t. fn is analytic in D for each n, and s.t. fn → f uniformly on each compact
subset of D. Then f is analytic on D, and f ′

n → f ′ uniformly on each compact subset of D.

Proof. We first show that f is analytic in D. Let C be any closed contour in D. From
Theorem 12 we have

∫

C
f(z)dz = lim

n→∞

∫

C
fn(z)dz.

But each fn is analytic in the simply connected domain D and thus, by Corollary 2 the
integral of fn along the closed contour C vanishes for each n. Consequently

∫

C f(z)dz = 0 for
any closed contour C in D. Since f is continuous on D (it being a uniform limit of continuous
functions), Morera’s theorem yields that f is analytic on D.

Next, we show that f ′
n → f ′ uniformly on compact sets in D. We first show this on disks

and then for compact sets. Let z0 ∈ D and let r > 0 be such that B(z0, 2r) ⊂ D. Let C be a
circle of radius ρ < r, centered at z0. By Cauchy’s integral formula for derivatives, we have
for all z ∈ B(z0, ρ/2),

|f ′(z) − f ′
n(z)| =

1

2π

∣

∣

∣

∣

∫

C

f(ζ) − fn(ζ)

(ζ − z)2
dζ

∣

∣

∣

∣

≤ 4

ρ
sup
ζ∈C

|f(ζ) − fn(ζ)|.

Let now K ⊂ D be compact. Choose for each z ∈ K a ρz > 0 such that B(z, ρz) ⊂ D,
and cover the set K as K ⊂ ⋃

z∈K B(z, ρz/2) ⊂ D. By compactness, this cover has a

finite refinement: K ⊂ ⋃J
j=1 B(zj, ρzj

/2) ⊂ D. We have shown above that for every ǫ > 0
fixed, and for each j = 1, 2, . . . , J , there exists an Nj(ǫ) such that if n > Nj(ǫ), then
|f ′(z) − f ′

n(z)| < ǫ for all z ∈ B(zj, ρzj
/2). Let N = max1≤j≤J Nj(ǫ). For n ≥ N we have

|f ′(z)− f ′
n(z)| < ǫ for all z ∈ ⋃J

j=1 B(zj, ρzj
/2). But the latter union contains K, so f ′

n → f ′

uniformly on K.

Let zn be a sequence in C and set Sk =
∑k

n=1 zn. Just as for real series, we call Sk the
k-th partial sum of the infinite series z1 + z2 + · · · . We say that the infinite series converges
if the complex sequence Sk has a limit S, as k → ∞. In this case we write S =

∑∞
n=1 zn. We

say the series diverges if Sk diverges. The following theorem collects some basic facts which
are very easy to prove.

Theorem 14. Suppose that
∑∞

n=1 zn and
∑∞

n=1 ζn converge. Then

1. The series
∑∞

n=1(λzn) converges and has the value λ
∑∞

n=1 zn, for all λ ∈ C.

2. The series
∑∞

n=1(zn + ζn) converges and has the value
∑∞

n=1 zn +
∑∞

n=1 ζn.

3. zn → 0 as n → ∞.

Note that an easy proof of 3. is obtained by observing that zn = Sn − Sn−1. It is also
very easy to see that

∑∞
n=1 zn converges to S if and only if

∑∞
n=1 Re(zn) converges to Re(S)

and
∑∞

n=1 Im(zn) converges to Im(S). We say that the series
∑∞

n=1 zn converges absolutely
if and only if

∑∞
n=1 |zn| converges.
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A series of functions (or function series)
∑∞

n=1 fn(z) is said to converge pointwise to the

function F (z) on a set A ⊂ C if the sequence of partial sums Sk(z) =
∑k

n=1 fn(z) converges
pointwise, that is, if for all z ∈ A fixed, limk→∞ Sk(z) = F (z). The function series

∑∞
k=1 fn(z)

is said to converge uniformly to F (z) on a set A ⊂ C if the sequence of partial sum functions
converges uniformly to F , that is, if limk→∞ supz∈A |Sk(z) − F (z)| = 0.

Examples 19. 1. If
∑∞

n=1 fn(z) converges uniformly to F (z), for z ∈ A ⊂ C, and if each fn

is continuous on A, then F is continuous on A. This follows simply from Theorem 11.
2. If

∑∞
n=1 fn(z) converges to F (z) uniformly on a contour C, and if each fn is continuous

on C, then by Theorem 12,

∫

C
F (z)dz =

∫

C

∞
∑

n=1

fn(z)dz =
∞

∑

n=1

∫

C
fn(z)dz.

3. If
∑∞

n=1 fn(z) converges uniformly to F (z) in any compact subset of a simply connected
domain D, and if each fn is analytic in D, then F is analytic in D, and F ′(z) =

∑∞
n=1 f ′

n(z),
the convergence being uniform on compacta in D. This follows from Theorem 13.

The following result gives a very useful criterion for absolute convergence of a function
series.

Theorem 15 (Weierstrass M-test). Suppose that fn : A → C satisfies |fn(z)| ≤ Mn, for
all n = 1, 2, . . ., and for all z ∈ A, and suppose that

∑∞
n=1 Mn converges. Then

∑∞
n=1 fn(z)

converges absolutely and uniformly on A.

Proof. Set Sk =
∑k

n=1 |fn(z)|. Then we have, for k′ > k,

|Sk′ − Sk| =
k′

∑

n=k+1

|fn(z)| ≤
k′

∑

n=k+1

Mn.

It follows that Sk is a Cauchy sequence since the tail of the convergent series on the r.h.s.
tends to zero as k → ∞. Therefore

∑∞
n=1 fn(z) converges absolutely. Call the (pointwise)

limit function F (z). We have

F (z) −
k

∑

n=1

fn(z) =
∞

∑

n=k+1

fn(z),

from which it follows that
∣

∣

∣

∣

∣

F (z) −
k

∑

n=1

fn(z)

∣

∣

∣

∣

∣

≤
∞

∑

n=k+1

|fn(z)| ≤
∞

∑

n=k+1

Mn.

Once again, the r.h.s. converges to zero as k → ∞, and it does so uniformly in z.

Example 20. Evaluate the integral

an =
1

2π

∫ π

−π

ee−iϕ/R

Rneinϕ
dϕ,
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where R > 0 is fixed, and n ∈ Z. To do this, we expand the double exponential as ee−iϕ/R =
∑

k≥0
e−ikϕ

k!Rk . By the Weierstrass M -test, this series converges uniformly in ϕ ∈ R. Therefore
we have

an =
∑

k≥0

1

k!Rn+k

1

2π

∫ π

−π

e−i(k+n)ϕdϕ =
∑

k≥0

δk,−n

k!
,

where δk,−n is the Kronecker symbol. Hence an = 0 for n ≥ 1 and an = 1/(−n)! for n ≤ 0.

A power series is a series of the form
∑∞

n=0 an(z − z0)
n, where an, z0 ∈ C, and where z

belongs to some subset of C. By a shift of the variable, w = z − z0, the power series takes
the form

∑∞
n=0 anw

n.
Recall the definition of the limit superior for a sequence of real numbers,

lim sup
n→∞

xn ≡ limn→∞xn := lim
n→∞

sup
k≥n

xk.

It is well known from basic real analysis that lim supn→∞ xn can be characterized equivalently
as follows. Let S be the set of all accumulation points of the set {x1, x2, . . .}, i.e., S is the set
of all limit points of all convergent subsequences of {xn}. Then lim supn→∞ xn = sup S (the
least upper bound on S). From this relation it also immediately follows that if limn→∞ xn = x
exists, then lim supn→∞ xn = x.

The following elementary properties are often useful. Suppose that limn→∞xn = L for
some −∞ < L < ∞. Then we have:

1. For all ǫ > 0 there exists N such that xk ≤ L + ǫ, for all k > N .

2. For all N , for all ǫ > 0, there exists k > N such that xk ≥ L − ǫ.

3. limn→∞cxn = cL, for all c ≥ 0.

Theorem 16. Let an be a sequence of complex numbers, and set limn→∞ |an|1/n = L. Then

1. If L = 0, then
∑∞

n=0 anz
n converges absolutely for all z.

2. If L = ∞, then
∞
∑

n=0

anz
n converges for z = 0 only.

3. If 0 < L < ∞ then set R := 1/L. The series
∑∞

n=0 anz
n converges absolutely for |z| < R

and diverges for |z| > R.

The number R is called the radius of convergence of the series
∑∞

n=0 anz
n. Our convention

is to allow the values R = 0,∞ (situations 2. and 1. of the theorem).

Proof. We just write lim instead of limn→∞ in this proof.

1. Since lim |an|1/n = 0 we have lim |an|1/n|z| = 0 for all z. Thus lim |anz
n|1/n = 0, so

there is an N such that |anz
n| 1

n < 1/2 whenever n > N . Hence
∑∞

n=0 anz
n converges

absolutely since
∑∞

n=0 2−n converges.
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2. If z 6= 0, then |an|1/n ≥ 1/|z| for infinitely many values of n. Thus we have |anz
n|1/n ≥ 1

for infinitely many n, so |anz
n| cannot converge to zero. It follows that the series cannot

converge.

3. Assume first that |z| < R. Then |z| = R(1 − ǫ) for some ǫ > 0. It follows that
lim |an|1/n|z| = 1

R
R(1 − ǫ) = 1 − ǫ, so we have |an|1/n|z| = |anz

n|1/n < 1 − ǫ/2, for n
sufficiently large. Thus |anz

n| < (1− ǫ/2)n for n sufficiently large, and thus
∑∞

n=0 anz
n

converges absolutely (compare to the geometric series).

Now assume that |z| > R. Then lim |an|1/n|z| > 1, so that for infinitely many values of
n, we have |anz

n|1/n > 1. Hence the series does not converge.

The last assertion of Theorem 16 shows that a power series converges for all z such that
|z| < R and diverges for all z such that |z| > R, hence the name “radius of convergence” for
R. For points z such that |z| = R, the series may or may not converge.

Example 21. Suppose that
∑

n≥0 anz
n converges for α < |z| < β, some α > 0. Then the

series converges absolutely for all |z| < β. Indeed, we have |anz
n| → 0 for all α < |z| < β. In

particular, for |z| = β− ǫ we get |an| ≤ (β− ǫ)−n, provided n is large enough. It follows that
|anz

n| < [|z|/(β − ǫ)]n for n large enough. Given |z| < β we can find ǫ s.t. |z|/(β − ǫ) < 1.
It follows that for all |z| < β, the series

∑

n≥0 anz
n converges absolutely.

Examples 22. 1. Consider
∑∞

n=1
zn

n2 . Here, L = lim |an|1/n = lim n−2/n = lim e−2 log(n)/n = 1.
So the radius of convergence is R = 1/L = 1. For |z| = 1, the series converges absolutely as
well. (Compare it to the series with general term n−2.)

2. For
∑∞

n=1
zn

n
we have L = lim n−1/n = 1, so the radius of convergence is again R = 1.

However, for z = 1, the series diverges. Observe that this is the derivative of the previous
series, and the latter did converge for z = 1. One can show that for z = eiϕ, ϕ /∈ 2πZ,
the series converges, by looking at real and imaginary parts separately. To do this, we
first recall Dirichlet’s Test: Let

∑∞
n=1 an be a series with bounded partial sums, and let {bn}

be a monotone decreasing sequence such that bn → 0. Then
∑∞

n=1 anbn converges. The
trigonometric identity

n
∑

k=1

sin(kx) =
cos(x

2
) − cos[(n + 1

2
)x]

2 sin(x
2
)

,

valid for x 6= 0,±2π,±4π, . . . implies that |∑n
k=1 sin(kx)| ≤ | sin(x

2
)|−1. Moreover obviously

sin(kx) = 0 for x = 0,±2π,±4π, . . . Thus the series
∑∞

n=1 sin(nx) has bounded partial sums
for all x and consequently,

∑∞
n=1

1
n

sin(nϕ) converges for all ϕ by Dirichlet’s test. Similarly,
one can use the identity

n
∑

k=1

cos(kx) =
sin[(n + 1

2
)x] − sin(x

2
)

2 sin(x
2
)

,

valid for x 6= 0,±2π,±4π, . . . to see that
∑∞

n=1
1
n

cos(nϕ) converges for all ϕ. Hence we have
shown that

∑∞
n=1

zn

n
converges for all |z| = 1 except for z = 1.
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Example 23. Consider the geometric series
∑

n≥0 zn. The radius of convergence is R = 1,
and for any |z| = 1, the series diverges, because if |z| = 1, then zn cannot converge to zero,
as n → ∞. Also, just as in the case of the real geometric series, one easily finds the partial
sums explicitly, Sk = 1−zk+1

1−z
. Hence we get limk→∞ Sk =

∑

n≥0 zn = (1 − z)−1, for z s.t.
|z| < 1. Do the partial sum functions Sk(z) converge to the limit function (1−z)−1 uniformly
in z? We estimate the difference

∣

∣

∣

∣

Sk(z) − 1

1 − z

∣

∣

∣

∣

=
1

|1 − z| |z|
k+1.

For every k ∈ N we can find a z with modulus sufficiently close to, but strictly less than 1,
such that 1

|1−z| |z|k+1 > 1. This means that Sk does not converge to its limit uniformly in

{z ∈ C : |z| < 1}. However, let 0 < ρ < 1 be fixed, then for z ∈ B(0, ρ), we have

∣

∣

∣

∣

Sk(z) − 1

1 − z

∣

∣

∣

∣

≤ ρk+1

1 − ρ
,

and the r.h.s. converges to zero as k → ∞, uniformly in z ∈ B(0, ρ). Hence the geometric
series converges uniformly on any B(0, ρ), with 0 < ρ < R = 1.

The next result shows that the situation illustrated in the previous example is generic.

Theorem 17. Let R > 0 be the radius of convergence of the power series
∑∞

n=0 anz
n. Then

the series converges absolutely and uniformly on the set |z| ≤ ρ, for any 0 < ρ < R.

Proof. Let fn(z) = anz
n, then |fn(z)| ≤ Mn := |an|ρn for all z with |z| ≤ ρ. We have

lim M
1/n
n = ρ lim|an|1/n = ρ/R < 1, so

∑∞
n=0 Mn converges (by the root test for real nu-

merical series). The Weierstrass M-test implies that
∑∞

n=0 fn(z) =
∑∞

n=0 anz
n converges

absolutely and uniformly on |z| ≤ ρ < R.

It follows now directly from Theorem 12 that summation and integration can be inter-
changed.

Theorem 18. Suppose that
∑∞

n=0 anz
n converges to f(z) for |z| < R. Let C be any contour

lying in the interior of the circle |z| = R. Then

∫

C
f(z)dz =

∫

C

∞
∑

n=0

anz
ndz =

∞
∑

n=0

an

∫

C
zndz.

Example 24. Suppose the series
∑∞

n=0 an(z− z0)
n has radius of convergence R > 0, and let

C be a simple contour, C ⊂ B(z0, R). Then we have
∫

C
∑∞

n=0 an(z−z0)
ndz =

∑∞
n=0 an

∫

C(z−
z0)

ndz = 0. Since the series is continuous in z in the domain |z− z0| < R, Morera’s theorem
implies that the series defines an analytic function in this domain. We now give an alternative
proof of the analyticity of power series.

Theorem 19. Suppose that
∑∞

n=0 anz
n converges to f(z), with radius of convergence R.

Then f is analytic inside |z| < R, and
∑∞

n=1 nanz
n−1 converges to f ′(z), and has the same

radius of convergence R.
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Proof. Fix z0 with |z0| < 1. There is an ǫ > 0 s.t. |z0| = R− ǫ. Let ρ := R− ǫ/2. Since each
FN(z) =

∑N
n=0 anz

n is analytic in |z| ≤ ρ and, by Theorem 17, FN to converges uniformly
in |z| ≤ ρ to f , the latter function is analytic in |z| ≤ ρ (Theorem 13). This shows that f is
analytic at any point z0 ∈ B(0, R).

Next, we know from Theorem 13 that F ′
N(z) converges to F ′(z) uniformly on compact

sets inside |z| < R, and that on each such compact set,

∞
∑

n=1

nanz
n−1 =

d

dz

( ∞
∑

n=0

anz
n

)

.

Finally we show that the radii of convergence of
∑∞

n=0 anz
n and

∑∞
n=1 nanzn−1 =

∑∞
n=0(n +

1)an+1z
n are the same. We have

lim |(n + 1)an+1|1/n = lim |an+1|1/n

= lim |an|
1
n
· n
n−1

= lim |an|1/n.

In the first step, we use that limn→∞(n + 1)1/n = 1, and in the last step we use the following
two facts. Let L = lim |an|1/n, then

1. For all ǫ > 0 there exists N such that |an|1/n < L + ǫ for all n > N . If follows that

lim |an|
1
n
· n
n−1 ≤ lim (L+ǫ)

n
n−1 = L+ǫ. Since ǫ > 0 is arbitrary, we get lim |an|

1
n
· n
n−1 ≤ L.

2. For all ǫ > 0 and all N , there exists n > N such that |an|1/n > L − ǫ. Consequently, in
view of the characterization of the limit superior in terms of subsequential limit points,

lim |an|
1
n
· n
n−1 ≥ lim (L − ǫ)

n
n−1 = L − ǫ. It follows that lim |an|

1
n
· n
n−1 ≥ L.

This completes the proof of the Theorem.

Corollary 5. Suppose f(z) =
∑∞

n=0 anz
n has a radius of convergence R > 0. Then we have

an = f (n)(0)/n!.

Proof. The function f is analytic on |z| < R, hence all derivatives of f exist on |z| < R.
Moreover,

f (k)(z) =
∞

∑

n=k

n(n − 1) · · · (n − k + 1)anz
n−k,

from which we see that f (k)(0) = k!ak.

How can we state the corollary for a power series centered at a general z0, f(z) =
∑∞

n=0 an(z − z0)
n? Let R be the radius of convergence of the last series. For |z| < R,

define g(z) = f(z + z0) =
∑

n≥0 anz
n, a series with radius of convergence R. Thus we have

n!an = g(n)(0) = f (n)(z0). It follows that

f(z) =
∞

∑

n=0

f (n)(z0)

n!
(z − z0)

n.

The converse to the corollary is true as well, as shows the following result.
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Theorem 20. Suppose that f : C → C is analytic in B(z0, r), for some r > 0. Then we
have

f(z) =
∞

∑

n=0

f (n)(z0)

n!
(z − z0)

n

for every z ∈ B(z0, r). The series converges absolutely for |z − z0| < r, and it converges
absolutely and uniformly in any B(z0, ρ), with ρ < r.

Proof. We first consider z0 = 0. Take z ∈ B(0, r), then |z| = ρr for some 0 ≤ ρ < 1. Set
C = {z ∈ C : |z| = ρ′r}, for a ρ′ satisfying ρ < ρ′ < 1. The circle C contains the point z and
is contained inside B(0, r), so f is analytic inside and on C. By the Cauchy integral formula

f(z) =
1

2πi

∫

C

f(ζ)

ζ − z
dζ =

1

2πi

∫

C

f(ζ)

ζ

1

1 − z/ζ
dζ =

1

2πi

∫

C

f(ζ)

ζ

∞
∑

n=0

(

z

ζ

)n

dζ,

where we have inserted the geometric series (see also Example 23). Since z is in the interior
of C and ζ is on C we have |z/ζ| = ρ/ρ′ < 1. Hence the geometric series converges uniformly
in ζ ∈ C (for fixed z; use e.g. the Weierstrass M -test). By Theorem 12 we can interchange
the sum and the integral and we obtain

f(z) =
1

2πi

∞
∑

n=0

zn

∫

C

f(ζ)

ζn+1
dζ =

∞
∑

n=0

f (n)(0)

n!
zn,

where we use the Cauchy integral formula for derivatives in the last step.
This shows the result for z0 = 0. A simple translation gives the result as stated: Assume

that f analytic in B(z0, r) and set g(z) = f(z + z0), which is analytic in B(0, r). Thus we
have

f(z + z0) = g(z) =
∞

∑

n=0

g(n)(0)

n!
zn, so f(z) =

∞
∑

n=0

f (n)(z0)

n!
(z − z0)

n.

Example 25. Let f(z) = 1/z, z 6= 0. Then f (n)(z) = (−1)nn!z−n−1, n = 0, 1, 2, . . . and in
particular, f (n)(1) = (−1)nn!. The Taylor series of f(z) around z0 = 1 is therefore given by

1/z =
∞

∑

n=0

(−1)n(z − 1)n =
∞

∑

n=0

(1 − z)n.

The radius of convergence is R = 1 and for |z − 1| ≥ 1 the series diverges. Of course, f(z) is
analytic everywhere except at the origin, so according to Theorem 20, it has a power series
expansion around any point z0 6= 0. It is also clear from that Theorem that the radius of
convergence of the Taylor expansion around z0 is R = |z0|, since 1/z is analytic in B(z0, |z0|),
but not in any ball centered at z0 with radius larger than |z0|.
Example 26. Let f(z) = (z − i)−2 log(2z). What is the radius of convergence of the Taylor
series representing f at the point z0 = 1 + i? The function is analytic except on the set
S = (−∞, 0] ∪ {i}. The largest radius r s.t. f is analytic in B(z0, r) is thus r = 1. This is
the radius of convergence of the Taylor series: indeed, the radius of convergence has to be
at least r by Theorem 20, and on the other hand, it cannot be larger than r, since if it was,
the function f would be analytic at some points in S.
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Example 27. Find a neighbourhood of z0 = 0 such that sinh(z) is approximated by its
lowest order approximation z, to a precision 1/100. The Taylor series of sinh around the
origin is

sinh(z) =
∑

n≥0

z2n+1

(2n + 1)!
,

having infinite radius of convergence (this is so because sinh(z) is analytic in B(0, r) for any
r > 0). Consequently,

| sinh(z) − z| =

∣

∣

∣

∣

∣

∑

n≥1

z2n+1

(2n + 1)!

∣

∣

∣

∣

∣

≤
∑

n≥1

|z|2n+1

(2n + 1)!
≤ |z|3

∑

n≥1

|z|2n−2

(2n + 1)!
.

For |z| ≤ 1 we can bound the r.h.s. from above by |z|3 sinh(1) < e
2
|z|3 < 3

2
|z|3. Therefore for

|z| < 150−1/3 ≈ 0.19 we have | sinh(z) − z| < 1/100.

The following result gives the Taylor series of a product of analytic functions.

Theorem 21. Suppose that f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n have radii of conver-
gence R1 and R2, respectively. Then we have f(z)g(z) =

∑∞
n=0 cnz

n, where cn =
∑n

r=0 arbn−r,
and the latter series has radius of convergence R ≥ min{R1, R2}.

Proof. Since f and g are analytic in B(0, min{R1, R2}), so is the product fg. Therefore we
have f(z)g(z) =

∑∞
n=0 cnz

n with

cn =
1

n!
(fg)(n)(0)

=
1

n!

n
∑

r=0

(

n

r

)

f (r)(0)g(n−r)(0)

=
1

n!

n
∑

r=0

n!

(n − r)!r!
r!ar (n − r)!bn−r

=
n

∑

r=0

arbn−r.

3.1 Laurent Series

In the previous chapter we have shown that a function which is analytic in a disk has a
power series expansion there. We want to try to do the same for a function f(z) which is
analytic in an annulus A(z0; R1, R2) = {z : R1 < |z − z0| < R2}, where 0 < R1 < R2 < ∞
are called the inner and outer radius of the annulus centered at z0.

The main difference is that the functions now considered may have singularities in the
inner circle |z| < R1. For instance, consider f(z) = z−n for some n ≥ 1, which is analytic
in any A(0; r, R), 0 < r < R < ∞. If we were to try to find a power series expansion
of f in A(0; r, R), then in order to take into account the unboundedness of f at zero we
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z

R1

R2

Figure 17: Annulus A(z0; R1, R2)

should not only take positive powers of z in the series, but also negative ones. Then indeed,
the power series of f is trivially given by the single term z−n. It may happen that z0 is a
“stronger” singularity in the sense that a series expansion would involve all negative powers
of z: consider e.g. f(z) = e1/z. From the power series expansion of the exponential we see
that f(z) =

∑

n≥0
1
n!

z−n, for all z 6= 0. On the other hand, if a function is analytic in a disk
B(z0, R) then it is obviously analytic in the annulus A(z0; r, R), for any 0 < r < R. In this
case we know already that f does have a Taylor series expansion for all z ∈ B(z0, R), and
hence for all z ∈ A(z0; r, R), any 0 < r < R, and no negative powers show up in the series.

Let zn, n ∈ Z be a collection of complex numbers. We say that a (two-sided) series
∑∞

n=−∞ zn converges if and only if both the series
∑∞

n=0 zn and
∑∞

n=1 z−n converge. If these
two series converge, then the value of the series

∑∞
n=−∞ zn is the sum

∑∞
n=0 zn +

∑∞
n=1 z−n.

If either of the two (one-sided) series diverges, then we say that the two-sided series diverges.
Absolute convergence and uniform convergence of a two-sided series (of complex numbers or
of functions) are defined in the analogous way.

Theorem 22 (Laurent series expansion). Let f be analytic inside an annulus A = {z ∈ C :
R1 < |z − z0| < R2}, where 0 < R1 < R2 < ∞. Then we have for all z ∈ A

f(z) =
∞

∑

n=−∞
an(z − z0)

n,

and the series converges absolutely and uniformly in any closed annulus {z ∈ C : r1 ≤
|z − z0| ≤ r2}, where R1 < r1 < r2 < R2.

Moreover, if C is any simple closed contour inside the annulus encircling z0, then the
coefficients an, n = 0,±1,±2 . . ., can be expressed as

an =
1

2πi

∫

C

f(ζ)

(ζ − z0)n+1
dζ.

In the Laurent expansion above, we call
∑

n≤−1 an(z − z0)
n the principal part of the Laurent

series. The coefficient a−1 is called the residue of f at z0, denoted by Res(f ; z0).
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Remarks. 1. In general, the coefficients an in the Laurent series expansion are not given
by the derivatives of f at z0. Indeed, f may not be analytic (or even defined!) at z0. The
function f is supposed to be analytic only at points in the annulus.

2. If f is analytic also inside the hole of the annulus, i.e., inside all of B(z0, R2), then so

is f(ζ)
(ζ−z0)n+1 , for n = −1,−2, . . . It follows from the Cauchy-Goursat theorem that an = 0 for

all n ≤ −1, and hence the Laurent series reduces to the Taylor series.
3. The Laurent series is unique. Suppose that f(z) =

∑∞
n=−∞ αn(z − z0)

n converges in
the interior of the annulus {R1 < |z − z0| < R2}. Then it converges uniformly on all closed
sets in the interior of the annulus. Let C be the circle around z0 with radius (R2 − R1)/2.
For all n ∈ Z we have

an =
1

2πi

∫

C

f(ζ)

(ζ − z0)n+1
dζ =

1

2πi

∞
∑

k=−∞
αk

∫

C

(ζ − z0)
k

(ζ − z0)n+1
dζ.

Now 1
2πi

∫

C(ζ − z0)
k−n−1dζ = 1 if k = n and this integral vanishes if k 6= n. Thus it follows

that an = αn, for all n ∈ Z.
Proof of Theorem 22. Take z ∈ A and let C′

1 and C′
2 be concentric cirlces with centre

z0 and radii r1 and r2, chosen so that z lies in the annulus defined by C′
1 and C′

2, i.e.,
R1 < r1 < |z − z0| < r2 < R2.

C′
2

C′
1

z0

z

R1

R2

The Cauchy integral formula gives

f(z) =
1

2πi

∫

C′
2−C′

1

f(ζ)

ζ − z
dζ =

1

2πi

∫

C′
2

f(ζ)

ζ − z
dζ − 1

2πi

∫

C′
1

f(ζ)

ζ − z
dζ.

We are going to rewrite the term (ζ−z)−1 in the integrands in a suitable manner. For ζ ∈ C′
2

we have |z − z0| < |ζ − z0| = r2, and so we get

1

ζ − z
=

1

ζ − z0

1

1 − z−z0

ζ−z0

=
1

ζ − z0

∞
∑

n=0

(

z − z0

ζ − z0

)n

=
∞

∑

n=0

(z − z0)
n

(ζ − z0)n+1
.

The series converges uniformly in ζ, for ζ ∈ C′
2. Therefore, we can integrate termwise to

obtain (Theorem 12)

1

2πi

∫

C′
2

f(ζ)

ζ − z
dζ =

1

2πi

∞
∑

n=0

(z − z0)
n

∫

C′
2

f(ζ)

(ζ − z0)n+1
dζ =

∞
∑

n=0

an(z − z0)
n,

Marco Merkli 40



Notes PM 4310

where

an :=
1

2πi

∫

C′
2

f(ζ)

(ζ − z0)n+1
dζ, n = 0, 1, 2, . . .

Similarly, for ζ ∈ C′
1, we have r1 = |ζ − z0| < |z − z0|, so

1

ζ − z
= − 1

z − z0

1

1 − ζ−z0

z−z0

= −
∞

∑

n=1

(ζ − z0)
n−1

(z − z0)n
.

Again, the convergence is uniform in ζ ∈ C′
1 and thus

− 1

2πi

∫

C′
1

f(ζ)

ζ − z
dζ =

∞
∑

n=1

a−n(z − z0)
−n,

where

a−n :=
1

2πi

∫

C′
1

f(ζ)

(ζ − z0)−n+1
dζ, n = 1, 2, . . .

Let us consider the expressions for an, n ∈ Z. For each n ∈ Z, the function ζ 7→ f(ζ)
(ζ−z0)n+1 is

analytic in the annulus defined by C′
1 and C′

2, and on these curves. So by the deformation
lemma,

∫

C′
1,2

f(ζ)

(ζ − z0)n+1
dζ =

∫

C

f(ζ)

(ζ − z0)n+1
dζ,

where C is any simple closed curve around z0 inside the annulus A. This gives the formula
for an, as stated in the theorem.

The series
∑∞

n=0 an(z−z0)
n and

∑−1
n=−∞ an(z−z0)

n converge for all z ∈ {R1 < |z| < R2},
so they converge uniformly in any closed annulus {r1 ≤ |z| ≤ r2}, with R1 < r1 < r2 < R2

(see also Example 21). ¤

Example 28. Find the Laurent series of e1/z. This function is analytic in any annulus
0 < |z| < R2 < ∞. The coefficients are given by

an =
1

2πi

∫ π

−π

ee−iϕ/R

Rn+1ei(n+1)ϕ
iReiϕdϕ.

Since the Taylor series of ew is
∑∞

n=0
wn

n!
and has radius of convergence R = ∞, we have

e1/z =
∞

∑

n=0

1

znn!
,

for all 0 < |z| < ∞. We conclude that

an =

{

0 , n ≥ 1
1/(−n)! , n = 0,−1,−2, . . .

.

This gives an explicit formula for the above integral expressing an. Compare this with
Example 20.
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Example 29. The function f(z) = (1 + z2)−1 is analytic everywhere except at z = ±i.
What is the Laurent series expansion of f around z0 = i? We know that R1 = 0 and R2 = 2,
since f is analytic in the annulus {z ∈ C : 0 < |z − i| < 2}.

i

−i

R2 = 2

Figure 18: Radii for Laurent series of f .

Setting w = z − i we get

f(z) =
1

w(w + 2i)
=

1

2iw

1

1 + w
2i

=
1

2iw

∞
∑

n=0

(

−w

2i

)n

,

provided that |w| < 2, i.e., |z − i| < 2. So

f(z) =
1

2i(z − i)

∞
∑

n=0

(

i

2

)n

(z − i)n

is the Laurent series expansion of f around z0 = i. Note that all an with n ≤ −2 vanish.

Example 30. f(z) = 1
z(z+1)(z+2)

is not analytic at z = 0,−1,−2. So there are Laurent

series expansions of f in the annuli A1 = {0 < |z| < 1}, A2 = {1 < |z| < 2}, and
A3 = {2 < |z| < ∞}. We decompose f into partial fractions, f(z) = 1

2z
+ 1

2(z+2)
− 1

z+1
and

note that
1

2(z + 2)
=

1

4

1

1 + z/2
=

1

4

∞
∑

n=0

(

−z

2

)n

, |z| < 2

and

− 1

z + 1
= −

∞
∑

n=0

(−z)n, |z| < 1.

Hence for z ∈ A1 we obtain

f(z) =
1

2z
−

∞
∑

n=0

(−z)n +
1

4

∞
∑

n=0

(

−z

2

)n

=
1

2z
+

∞
∑

n=0

[

(−1)n+1 + (−2)−n−2
]

zn.
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For |z| > 1 we have

− 1

1 + z
= −1

z

1

1 + 1/z
= −1

z

∞
∑

n=0

(

−1

z

)n

.

Therefore the Laurent series of f in the annulus A2 is

f(z) =
1

2z
− 1

z

∞
∑

n=0

(

−1

z

)n

+
1

4

∞
∑

n=0

(

−z

2

)n

=
∞

∑

n=0

(−2)−n−2zn − 1

2z
+

∑

n≥2

(−1)nz−n.

Finally, for z ∈ A3, we have

1

2(z + 2)
=

1

2z

1

1 + 2/z
=

1

2z

∞
∑

n=0

(

−2

z

)n

.

Therefore, the Laurent expansion of f in A3 is

f(z) =
1

2z
+

1

2z

∞
∑

n=0

(−2)nz−n − 1

z

∞
∑

n=0

(

−1

z

)n

= −
∑

n≥1

(−1)n(2n−2 − 1)z−n.

3.2 Isolated singularities

Recall that we say that z0 ∈ C is a singular point, or a singularity, of a function f if f is not
analytic at z0, but every neighbourhood of z0 contains a point at which f is analytic. We call
z0 an isolated singularity of f if f is analytic in a punctured neighbourhood 0 < |z− z0| < R
of z0, for some R > 0, but f is not analytic at z0. In particular, if z0 is an isolated singularity
of f , then f has a Laurent series expansion centered at z0.

Example 31. The origin is an isolated singularity of f(z) = 1/z. No other point is a
singularity of f . Since sin(1/z) = 0 for z = 1

nπ
, n ∈ Z, the origin is a singular point of

g(z) = 1
sin(1/z)

, but it is not an isolated singularity.

Let z0 be an isolated singularity of f . We say that z0 is a removable singularity of f
if and only if limz→z0 f(z) exists. The point z0 is a pole of order n ∈ N if and only if
limz→z0(z − z0)

nf(z) exists and is nonzero. A pole of order one is called a simple pole. A
singular point of a function which is not a removable singularity, nor a pole, nor associated
with a branch point or cut of a multi-valued function, is called an essential singularity.
A function f which is analytic in a domain, except possible for having poles, is called a
meromorphic function in that domain.

The nature of an isolated singularity can be read off the Laurent series expansion, as
shows the following result.

Theorem 23 (Classification of isolated singularities). Let z0 be an isolated singularity of f ,
and let f(z) =

∑

n∈Z
an(z − z0)

n, 0 < |z − z0| < R, be the Laurent series expansion of f
around z0. Then

1. z0 is a removable singularity if and only if an = 0, for n ≤ −1.
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2. z0 is a pole of order m if and only if a−m 6= 0 and a−k = 0 for all k > m.

3. z0 is an essential singularity if and only if infinitely many an, with n ≤ −1, are nonzero.

Proof. 1. If f(z) =
∑∞

n=0 an(z − z0)
n for 0 < |z − z0| < R, then limz→z0 f(z) = a0, so z0 is

a removable singularity. Conversely, if z0 is a removable singularity, then f is analytic
in the annuli r < |z − z0| < R, for all 0 < r < R, and limz→z0 f(z) = α exists. We
notice that f is bounded on {|z| < R}. Indeed for all ǫ > 0, there exists an r such that
if |z − z0| < r, then |f(z) − α| < ǫ, so |f(z)| < |α| + ǫ whenever |z − z0| < r. Next, by
analyticity, f is continuous in the closed annulus r/2 ≤ |z− z0| ≤ R/2, so it is bounded
there. Thus there exists C0 such that |f(z)| < C0 whenever |z − z0| ≤ R/2. Now let
f(z) =

∑

n∈Z
an(z − z0)

n, 0 < |z − z0| < R, be the Laurent expansion of f around z0.
Then we have

an =
1

2πi

∫ π

−π

f(z0 + ρeiϕ)

ρn+1ei(n+1)ϕ
ρieiϕdϕ,

where ρ > 0 is arbitrary (ρ < R). Thus we have |an| ≤ C0ρ
−n, for all ρ such that

0 < ρ < R/2. Consequently, we obtain an = 0 for all n ≤ −1, by taking ρ → 0.

2. If a−m 6= 0 and a−k = 0 for all k > m, then

lim
z→z0

(z − z0)
mf(z) = lim

z→0
(z − z0)

m

∞
∑

n=−m

an(z − z0)
n = a−m.

Thus, z0 is a pole of order m. Conversely, suppose that z0 is a pole of order m. The
function g(z) = (z − z0)

mf(z) has the Laurent series expansion

g(z) =
∑

n∈Z

an(z − z0)
n+m =

∑

n∈Z

an−m(z − z0)
n.

Furthermore, g has a removable singularity at z0. Thus by 1., an−m = 0 for all n < 0,
that is, an = 0 for all n ≤ −m − 1. Therefore,

f(z) =
∞

∑

n=−m

an(z − z0)
n.

Moreover limz→z0(z − z0)
mf(z) = a−m 6= 0.

3. Suppose f(z) =
∑

n∈Z
an(z − z0)

n, 0 < |z − z0| < R with only finitely many nonzero
a−n, n ≥ 1. Then, by 1. and 2., z0 is neither a pole nor a removable singularity, so it is
an essential singularity. Conversely, if z is an essential singularity of f , then infinitely
many a−n, n ≥ 0, have to be nonzero (for otherwise we are in situation 1. or 2.).

Example 32. f(z) = ez−1
z

is analytic everywhere, except at z0 = 0. We have

ez − 1 =
∞

∑

n=0

zn

n!
− 1 =

∞
∑

n=1

zn

n!
,
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and this series has radius of convergence R = ∞. It follows that

f(z) =
∞

∑

n=0

zn

(n + 1)!
,

thus z0 = 0 is a removable singularity.

Example 33. f(z) = 2
z(z−3)2

has isolated singular points at z0 = 0 and z0 = 3. Since

limz→0 zf(z) = 2
9
6= 0 we know that z0 = 0 is a simple pole. Since limz→3(z−3)2f(z) = 2

3
6= 0

we know that z0 = 3 is a pole of order 2. The Laurent series of f around 0 is obtained as
follows:

2

z(z − 3)2
=

2

z

(

1

z − 3

)2

=
2

z

(−1

3

)2 (

1

1 − z/3

)2

=
2

9z

[ ∞
∑

n=0

(z

3

)n
]2

valid for |z| < 3.

The right hand side can be expanded as

2

z(z − 3)2
=

2

9z

[

1 +
z

3
+

z2

9
+ · · ·

]2

=
2

9

[

1

z
+

2

3
+

z

3
+ · · ·

]

.

In particular, Res(f ; 0) = 2
9
.

To calculate the Laurent series of f around z0 = 3 we expand

2

z

1

(z − 3)2
=

2

3 + (z − 3)

1

(z − 3)2
=

2

3

1

1 + (z/3 − 1)

1

(z − 3)2
=

2

3

1

(z − 3)2

∞
∑

n=0

(

1 − z

3

)n

,

for all z with |z − 3| < 3. Consequently, for z ∈ B(3, 3), we have

f(z) =
2

3

1

(z − 3)2

∞
∑

n=0

3−n(3 − z)n =
2

3

[

1

(z − 3)2
− 1

3

1

z − 3
+

1

9
− 1

27
(z − 3) + · · ·

]

.

In particular, Res(f ; 3) = −2
9
.

There is another characterization of an isolated singularity z0 of f in terms of the limit
limz→z0 f(z). By definition, z0 is a removable singularity if and only if limz→z0 f(z) = α ∈ C

exists. Next suppose that z0 is a pole of order m ≥ 1 of f . Then we have (Theorem 23)

f(z) =
∞

∑

n=−m

an(z − z0)
n = (z − z0)

−m

[

a−m +
∑

n≥1

a−m+n(z − z0)
n

]

,

for |z − z0| sufficiently small, and where a−m 6= 0. The series on the right side defines
an analytic function which vanishes at z = z0, so there exists a δ s.t. if |z − z0| < δ, then
|∑n≥1 a−m+n(z−z0)

n| < |a−m|/2. Therefore, an application of the inverse triangle inequality
yields |f(z)| ≥ |z − z0|−m|a−m|/2 for z sufficiently close to z0. This implies that if z0 is a
pole of f , then limz→z0 |f(z)| = ∞. That the converse of this statement is correct follows
from the following result.
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Theorem 24 (Casorati-Weierstrass). Suppose z0 is an essential singularity of f , and let R
be radius of the deleted neighbourhood A(z0; 0, R) of z0 in which f has a Laurent expansion.
Fix any 0 < r < R, ǫ > 0 and w ∈ C. Then there exists a z ∈ A(z0; 0, r) s.t. |f(z)−w| < ǫ.

This result implies that in any deleted neighbourhood of an essential singularity one can
find a sequence of points converging to any pre-established limit w.

Proof. The argument is by contradiction. Suppose there were r > 0, ǫ > 0 and w ∈ C s.t.
|f(z) − w| ≥ ǫ for all z ∈ A(z0; 0, r). Then the function

g(z) =
1

f(z) − w

is analytic in z ∈ A(z0; 0, r), and satisfies the bound |g(z)| ≤ 1/ǫ for these z. Let an be the
coefficients of the Laurent series of g in A(z0; 0, r). We have |an| ≤ ρ−n/ǫ for all 0 < ρ < r
(see also the proof of Theorem 23). Thus, taking ρ → 0, one obtains an = 0 for all n < 0.
Hence g has a removable singularity at z0, g(z) =

∑

n≥0 an(z − z0)
n for 0 < |z − z0| < r. Let

n0 be the smallest integer satisfying an 6= 0. Expressing f in terms of g, we have

f(z) − w =
1

g(z)
= (z − z0)

−n0
1

an0 +
∑

n≥1 an+n0(z − z0)n
.

The last fraction is analytic in z for z sufficiently close to z0, since the denominator is analytic
and does not vanish for such z. It follows that f(z) − w has a pole of order n0 at z0. This
is in contradiction to the assumption that z0 is an essential singularity of f .

If f(z0) = 0 then we say z0 is a zero of f. z0 ∈ C is called an isolated zero of f if and only if
there is a deleted neighbourhood of z0 in which f does not vanish. If f is analytic at z0 and if
z0 is a zero of f , and if there is a neighbourhood of z0 in which we have f(z) = (z− z0)

ng(z)
for some n ≥ 1 and some function g such that limz→z0 g(z) exists and is nonzero, then we
call z0 a zero of f of order n.

Suppose that f is analytic at z0. Then it has a Taylor expansion f(z) =
∑∞

m=0 am(z −
z0)

m, for |z − z0| < R. If f has a zero of order n at z0, then by the above definition,
there is a function g defined in a neighbourhood of z0, such that g(z) = (z − z0)

−nf(z),
for z 6= z0, and such that limz→z0 g(z) exists and takes a nonzero value ζ. It follows that
a0 = a1 = · · · = an−1 = 0, and that an = ζ 6= 0. Thus g(z) =

∑

m≥0 am+n(z − z0)
m is

analytic at z0 as well, and an = ζ 6= 0. We thus see that:

Suppose that f is analytic at z0. Then z0 is a zero of order n of f if and only if f (k)(z0) = 0
for k = 0, 1, 2, . . . , n − 1, and f (n)(z0) 6= 0.

Theorem 25. Let f be analytic at z0, and let z0 be a zero of order n of f . Then z0 is an
isolated zero of f .

Proof. We have f(z) = (z − z0)
ng(z), where g is analytic at z0, and g(z0) 6= 0. Since g is

continuous at z0, there is a δ > 0 such that if |z − z0| < δ, then |g(z)| > |g(z0)|/2 > 0.
Therefore, for |z − z0| < δ and z 6= z0, we have |f(z)| = |z − z0|n|g(z)| > 0.
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Theorem 26. Suppose that f is analytic at z0, and that there is a sequence {zn}n≥1 with
infinitely many different zn such that zn → z0, and such that f(zn) = 0, for all n. Then f is
identically zero in a neighbourhood of z0.

Proof. Let f(z) =
∑∞

n=0 an(z − z0)
n, |z − z0| < R, be the Taylor expansion of f around z0.

Suppose that f is not identically zero in {|z−z0| < R}, then there is a smallest, finite n0 ≥ 0
such that an0 6= 0. Hence

f(z) = (z − z0)
n0 [an0 +

∞
∑

n=1

an0+n(z − z0)
n0+n].

But f(zk) = 0 and (zk − z0)
n0 6= 0, so

an0 +
∞

∑

n=1

an0+n(zk − z0)
n0+n = 0,

for all k. By taking k → ∞, we get an0 = 0, a contradiction.

Theorem 27 (Identity Theorem). Suppose that f and g are analytic in a domain D. Suppose
that there is a sequence {zn}, with infinitely many different zn ∈ D, such that zn → z, for
some z ∈ D. If f(zn) = g(zn) for all n, then f = g on D.

Note that for the result to hold it is important that the limit point z is in D. Indeed,
the function sin(1/z) has zeroes zn = (πn)−1, n ∈ Z, so sin(1/z) is analytic and nonzero in
D = B(1, 1), but has a sequence of zeroes accumulating at the boundary of D.

Proof. Consider h := f − g, which is analytic on D. From the above theorem, we know that
h = 0 in a neighbourhood of z. Take now any ζ ∈ D, and link it to z by a polygonal path
P lying inside D.

D

ζ

P

z

z∗

Suppose that h does not vanish on all points of P . Then, starting from z and moving
towards ζ on P , there will be a last point z∗ ∈ P where h(z) = 0. This is so since the zeros
of h form a closed set. By construction, there is a sequence zn → z∗, zn ∈ P, such that
h(zn) = 0. By the previous theorem, h has to vanish in a neighbourhood of z∗. In particular,
there are points after z∗ on P where h vanishes, a contradiction. Thus z∗ does not exist.
This means that h = 0 on all of P . Therefore we have h(ζ) = 0, and thus f(ζ) = g(ζ). Since
ζ ∈ D was arbitrary, the result is shown.
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3.3 The Residue Theorem

Let f be a function analytic inside and on a simple closed contour C, except possibly at
finitely many points z1, . . . , zn inside C.

z1

zn

Let Ck be a small circle around zk, lying inside C, and such that all other points zl, l 6= k,
lie outside Ck. By the deformation lemma we have

∫

C
f(z)dz =

n
∑

k=1

∫

Ck

f(z)dz.

Let Rk be the outer radius of convergence of the Laurent series of f around zk. We may
without loss of generality choose the radius of Ck smaller than Rk. So we have

f(z) =
∞

∑

m=−∞
a(k)

m (z − zk)
m,

for 0 < |z − zk| < Rk, and Ck ⊂ B(zk, Rk). Therefore we have

∫

Ck

f(z)dz =
∞

∑

m=−∞
a(k)

m

∫

Ck

(z − zk)
mdz.

The last integral vanishes if m 6= −1 and equals 2πi if m = −1. Consequently,
∫

Ck

f(z)dz = 2πia
(k)
−1 = 2πiRes(f ; zk)

and we have shown the following result.

Theorem 28 (Residue Theorem). Let C be a simple closed contour within and on which f
is analytic, except at a finite number of singular points z1, . . . , zn inside C. Then we have

∫

C
f(z)dz = 2πi

n
∑

k=1

Res(f ; zk).
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The residue theorem is useful in the calculation of contour integrals.

Example 34. We want to calculate
∫

C z2e1/zdz, where C is a simple closed contour enclosing
the origin. Since

z2e1/z = z2

∞
∑

n=0

1

n!zn
=

∞
∑

n=0

z−n+2

n!
,

for 0 < |z| < ∞, the origin is an essential singularity of z2e1/z. Since Res(z2e1/z; 0) = 1/3!,
we get

∫

C z2e1/zdz = iπ/3.

If z0 is a pole of order m ≥ 1 of f , then, in a deleted neighbourhood of z0,

f(z) =
∞

∑

n=−m

an(z − z0)
n = (z − z0)

−m

∞
∑

n=0

an−m(z − z0)
n

and so the function

(z − z0)
mf(z) =

∞
∑

n=0

an−m(z − z0)
n

is analytic in a neighbourhood of z0 (has a removable singularity at z0). It follows from
Taylor’s theorem that

n!an−m =
dn

dzn

∣

∣

∣

∣

z=z0

(z − z0)
mf(z).

In particular, we have

Res(f ; z0) = a−1 =
1

(m − 1)!

dm−1

dzm−1

∣

∣

∣

∣

z=z0

(z − z0)
mf(z).

This shows the following little result.

Lemma 6 (Residue at a pole). Let z0 be a pole of order m ≥ 1 of f . Then

Res(f ; z) =
1

(m − 1)!

dm−1

dzm−1

∣

∣

∣

∣

z=z0

(z − z0)
mf(z).

Example 35. Let f(z) = (z − 1)−1(z + i)−1(z − i)−1. The singularities of f are the three
simple poles z = 1, ±i. It follows from Lemma 6 that

Res(f ; 1) = (z−1)f(z)
∣

∣

z=1
= 1/2 and Res(f ;±i) = (z∓ i)f(z)

∣

∣

z=±i
= (±i−1)−1(±i∓ i)−1.

Example 36. Calculate
∫

C
Log(z)
(z2+1)2

dz, where C is the contour given in Figure 19 below.
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i

2π
3

Im

Re0

Figure 19: Contour of integration

The only singularity of f(z) = Log(z)
(z2+1)2

inside C is a pole of order two at z = i. (The order

is easily seen to be two since (z2 + 1)2 = (z + i)2(z − i)2.) In order to calculate the integral
with the help of the residue theorem, we need to find the residue of f at z = i. By Lemma
6, we find

Res (f ; i) =
d

dz

∣

∣

∣

z=i
(z − i)2 Log(z)

(z + i)2(z − i)2
=

π

8
+

i

4
.

We conclude that
∫

C

Log(z)

(z2 + 1)2
dz = −π

2
+ i

π2

4
.

The next result is useful in many applications. It is based on the following very simple
observation. If f has a zero of order n at z0 then the residue of f ′(z)/f(z) at z0 is simply n.
Similarly, if z0 is a pole of order n of f , then the residue of f ′(z)/f(z) is −n.

Theorem 29. Let C be a simple closed contour and suppose that f is nonzero on C and
analytic inside and on C, except possibly for having finitely many poles inside D. Then we
have

1

2πi

∫

C

f ′(z)

f(z)
dz = N − P,

where N and P are the numbers of zeroes and of poles of f inside D, counted according to
their multiplicity.

Proof. Denote by D the interior of C and suppose that f has a zero of order n at z0 ∈ D.
Then for z in a neighbourhood of z0, we have

f(z) = (z − z0)
ng(z),

for some function g analytic at z0 satisfying g(z0) 6= 0, and hence not vanishing in a neigh-
bourhood of z0. It follows that in a neighbourhood of z0,

f ′(z)

f(z)
=

n

z − z0

+
g′(z)

g(z)
.
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The residue of this quotient at z0 is therefore n. Next suppose that f has a pole of order n
at z0 ∈ D, so that in a deleted neighbourhood of z0, we have

f(z) = (z − z0)
−ng(z),

for some function g analytic at z0 satisfying g(z0) 6= 0, and hence not vanishing in a neigh-
bourhood of z0. It follows that in a deleted neighbourhood of z0,

f ′(z)

f(z)
=

−n

z − z0

+
g′(z)

g(z)
,

which has residue −n at z0. Finally, if z0 ∈ D is neither a pole nor a zero of f , then f ′(z)
f(z)

is
analytic at z0. Therefore, by the residue theorem, we have

∫

C

f ′(z)

f(z)
dz = 2πi

J
∑

j=1

nj − 2πi
K

∑

k=1

pk,

where nj is the multiplicity of the j-th zero of f inside D, and pk is the order of the k-th
pole of f inside D.

Example 37. The number of eigenvalues of the matrix





i 0 3i + 1
0 5i i

10i 2 0





having modulus smaller than a fixed r > 0 (for r not being the modulus of any root) is

N(r) =
1

2πi

∫ 2π

0

χ′(reiϕ)

χ(reiϕ)
ireiϕdϕ,

where
χ(z) = −z3 + 6iz2 − 2(5 − 6i)z + 50(3i + 1)

is the characteristic polynomial. Note that explicitly evaluating this integral seems to be a
task of the same order of difficulty as directly calculating the eigenvalues of the matrix. Of
course we see that N(r) → 0 as r → 0 and N(r) → 3 as r → ∞. These two facts tell us
(rather trivially) that zero is not an eigenvalue of the matrix, and that the total number of
eigenvalues of the matrix is 3.

A useful application of the residue theorem is the following. Let P (x) and Q(x) be two
polynomials in the real variable x ∈ R. (We allow the coefficients of P , Q to be complex.)
Assume that the degree of Q is by at least two bigger than that of P . Then there is a
constant C < ∞ s.t. we have

∣

∣

∣

∣

P (z)

Q(z)

∣

∣

∣

∣

≤ C|z|−2,
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for all |z| sufficiently large. (Here, P (z) is the polynomial of the complex variable z, obtained
by simply replacing x by z in the expression of P (x).) Let us in addition assume that Q has

no roots on the real line. Then the integral
∫ ∞
−∞

P (x)
Q(x)

dx converges. Consider

IR =

∫ R

−R

P (x)

Q(x)
dx +

∫

CR

P (z)

Q(z)
dz,

where CR is the semi-circle z(ϕ) = Reiϕ, ϕ ∈ [0, π]. Since the modulus of the integrand
of the last integral is bounded above by CR−2 but the length of CR is only πR, we have
limR→∞

∫

CR

P (z)
Q(z)

dz = 0, and so

lim
R→∞

IR =

∫ ∞

−∞

P (x)

Q(x)
dx.

On the other hand, if R is larger than the modulus of the largest root of P (z) in the upper
half plane (Imz > 0), then the residue theorem implies that 1

2πi
IR equals the sum over all

residues of P (z)/Q(z) in the upper half plane. We conclude that

∫ ∞

−∞

P (x)

Q(x)
dx = 2πi

∑

j:Imzj>0

Res

(

P (z)

Q(z)
; zj

)

,

where the sum is over all residues of P (z)/Q(z) in the upper half plane.

Example 38. Evaluate
∫ ∞
−∞

x2

x4+αx2+1
dx, where −2 < α < 2. Here P (z) = z2, and the roots

of Q(z) = z4 + αz2 + 1 satisfy z2 = 1
2
(−α ± i

√
4 − α2), and none of them are real since

|α| < 2. Note that since the coefficients of Q are real, z is a root if and only if z is a root.
Let z = x+iy. We are only interested in the roots with y > 0. We have x2−y2 = −α/2 and
2xy = ±1

2

√
4 − α2. By squaring the latter relation and using the former one, one obtains

the two roots in the upper half plane, z± = 1
2
[±

√
2 − α + i

√
2 + α]. Therefore the other two

roots are z± and so
Q(z) = (z − z+)(z − z+)(z − z−)(z − z−).

It follows that

Res

(

P

Q
; z+

)

=
P (z)

(z − z+)(z − z−)(z − z−)

∣

∣

z=z+
=

1

4

(

1√
2 − α

− i
1√

2 + α

)

.

and similarly,

Res

(

P

Q
; z−

)

=
P (z)

(z − z+)(z − z+)(z − z−)

∣

∣

z=z−
=

1

4

(

− 1√
2 − α

− i
1√

2 + α

)

.

We conclude that
∫ ∞

−∞

x2

x4 + αx2 + 1
dx =

π√
2 + α

.
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An interesting consequence of Theorem 29 is Rouché’s theorem given below. This theorem
states that if an analytic function has n roots inside a contour C, and if we “perturb” f by
adding another analytic function g (which is smaller than f on C), then the number of
zeroes of f + g inside C stays the same, n. Of course, the zeroes of f will “move” under the
perturbation g, but their total number is conserved.

Theorem 30 (Rouché). Let C be a simple closed contour within and on which f and g are
analytic. If

|g(z)| < |f(z)| for all z ∈ C,

then the functions f and f + g have the same number of zeroes in the interior of C (counting
multiplicity).

Proof. For 0 ≤ a ≤ 1 the function fa(z) = f(z) + ag(z) does not vanish on C and is analytic
inside and on C. Note that fa interpolates between f0 = f and f1 = f + g. The number of
zeroes of fa inside C is given by

Na =
1

2πi

∫

C

f ′
a(z)

fa(z)
dz =

1

2πi

∫

C

f ′(z) + ag′(z)

f(z) + ag(z)
dz.

We show below that a 7→ Na is continuous in 0 ≤ a ≤ 1. But then, since Na takes integer
values, Na must be constant in 0 ≤ a ≤ 1. Now N0 is the number of zeroes of f inside C
while N1 is the number of zeroes of f + g inside C.

It remains to show the continuity of Na. Let z ∈ C be fixed and take a ∈ [0, 1] and h ∈ R

s.t. a + h ∈ [0, 1]. Then

f ′
a+h(z)

fa+h(z)
− f ′

a(z)

fa(z)
= h

f(z)g′(z) − f ′(z)g(z)

[f(z) + ag(z)]2 + hg(z)[f(z) + ag(z)]
.

Choose h so small that

|h|max
z∈C

|g(z)| <
1

2
min
z∈C

|f(z) + ag(z)|,

where we point out again that the r.h.s. is strictly positive. We obtain then
∣

∣

∣

∣

f ′
a+h(z)

fa+h(z)
− f ′

a(z)

fa(z)

∣

∣

∣

∣

≤ 2|h| |f(z)g′(z) − f ′(z)g(z)|
|f(z) + ag(z)|2 .

By integrating over z ∈ C, it follows from this bound that Na is continuous (in fact, differ-
entiable) in a ∈ [0, 1].

Example 39. To estimate the location of the roots of the equation p(z) = z6 + 7z + 1 = 0
we write the polynomial on the left side as f(z) + g(z), where f(z) = z6, g(z) = 7z + 1.
The condition |g(z)| < |f(z)| is implied by 7|z| + 1 < |z|6. The latter inequality is satisfied
if |z| = 2. Consequently, since f has six roots inside the circle of radius 2 centered at the
origin, all six roots of p have modulus less than 2. On the other hand, for |z| = 1, we have
the reverse inequality |g(z)| > |f(z)|. Since g has one root inside the cirlce of radius 1 around
the origin, p has one root with modulus smaller than 1 (and hence by the previous argument
p has five roots with moduli in the annulus 1 ≤ |z| < 2).
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Example 40. Let n ∈ N. The equation e2iz = 12zn has n solutions inside the circle |z| = 1.
To see this we let f(z) = 12zn and g(z) = e2iz. Then |g(z)| = e−2|z| sin(arg(z)) ≤ e2|z|, while
|f(z)| = 12|z|n. For |z| = 1 we have thus |g(z)| ≤ e2 < 12 = |f(z)|, from which the result
follows by Rouché’s theorem.

Let C be a simple closed contour and suppose that fn, f are analytic inside and on C, that
f(z) 6= 0 for all z ∈ C and that fn converges to f uniformly on C. Let m = minz∈C |f(z)|.
Then for n large enough, we have

|fn(z) − f(z)| < m ≤ |f(z)| for all z ∈ C.

Rouché’s theorem implies that the number of roots of f and of f + fn − f = fn inside C is
the same. This shows the following result.

Theorem 31 (Hurwitz). Let C be a simple closed contour. Let fn, f be functions analytic
inside and on C, such that f(z) 6= 0 for all z ∈ C and s.t. fn → f uniformly on C. Then
there is an n0 s.t. for all n ≥ n0 the functions fn and f have the same number of zeroes in
the interior of C (counted including multiplicity).

Example 41. INTERSTING EXAMPLE: f(z) = ez, PN(z) =
∑N

n=0 zn/n!. PN has N
zeroes in C, while f has none. On |z| = R, R fixed, PN → f uniformly, so all zeroes of
PN escape to infinity as N → ∞. Task: given R, find N s.t. all roots of Pn(z) satisfy
|z| ≥ R. Answer: N > eR − 1 (if R > 1). Method: |ez| ≥ e−R on |z| = R, so need to find

N s.t. |ez − PN(z)| < e−R unif. on |z| = R. L.h.s. ≤ RN+1

(N+1)!
eR, then take ln and convert

ln(N + 1)! =
∑N

k=1 ln(k + 1) ≥
∫ N+1

1
ln(x)dx and estimate.

3.4 Using contour integrals to evaluate and estimate sums

A method for evaluating sums of the form
∑∞

n=−∞ f(n), where f is analytic at n ∈ Z, is
based on finding a function g whose residues are {f(n)}n∈Z. Let us first see how to construct
such a function. Suppose we can find a function ϕ(z) which has simple poles with residue
one at every n ∈ Z. Then the function g(z) = f(z)ϕ(z) has residue f(n) at each n ∈ Z.
Indeed,

Res(g; n) = lim
z→n

(z − n)f(z)ϕ(z) = f(n)Res(ϕ; n) = f(n)

The function

ϕ(z) = π
cos(πz)

sin(πz)
= π cot(πz)

does the job. Indeed, the singularities of ϕ are at z satisfying sin(πz) = 1
2πi

[eiπz − e−iπz] = 0,
i.e. z = n with n ∈ Z. The function sin(πz) has thus zeroes of order one at z ∈ Z, and hence
[sin(πz)]−1 has simple poles at z ∈ Z. Moreover, Res(ϕ; n) = 1.

Let us assume that f has finitely many poles {zk}K
k=1. Take a simple closed contour CN

enclosing the integers n = 0,±1,±2, . . . ,±N , as well as all the poles of f , as illustrated in
Figure 20 below.
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CN

N−N

z1

zk

0−1 1

Figure 20: CN encloses the integers −N, ..., N and all singularities of f

The residue theorem gives

π

∫

CN

f(z) cot(πz)dz = 2πi
∑

n=−N,...,N,
n/∈{zk}

f(n) + 2πi
K

∑

k=1

Res(πf(z) cot(πz); zk).

The first sum is due to the residues of f(z) cot(πz) at the integers −N, . . . , N and the second
sum comes from the singularities of f at zk. In particular, if f is analytic then the second
sum is not present. The next little result shows that the l.h.s. of the above equality actually
vanishes in the limit N → ∞ and we conclude that

∑

n∈N, n/∈{zk}
f(n) = −

K
∑

k=1

Res(πf(z) cot(πz); zk).

Lemma 7. Suppose that |f(z)| ≤ A|z|−α for some constants A > 0 and α > 1. Let CN be
the square with vertices ±(N + 1/2) ± i(N + 1/2). Then

lim
N→∞

∫

CN

f(z) cot(πz)dz = 0.
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0

↑

→ Re

Im
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.→

←
↓ ↑

N + 1
2

−N − 1
2

i(N + 1
2
)

Proof. Writing z = x + iy we have

cot(πz) = i
eiπz + e−iπz

eiπz − e−iπz
= i

eiπxe−πy + e−iπxeπy

eiπxe−πy − e−iπxeπy
= i

e2πixe−2πy + 1

e2πixe−2πy − 1
.
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On the right vertical side of CN , we have x = N + 1/2 and y ∈ [−N − 1/2, N + 1/2] and so

cot(πz) = −i
1 − e−2πy

1 + e−2πy
and | cot(πz)| =

1 − e−2πy

1 + e−2πy
< 1.

Similarly, on the lower horizontal part of CN we have x ∈ [−N − 1/2, N + 1/2] and y =
−N − 1/2 and thus

cot(πz) = i
e2πixe2π(N+1/2) + 1

e2πixe2π(N+1/2) − 1
and | cot(πz)| ≤ e2π(N+1/2) + 1

e2π(N+1/2) − 1
< 2,

where the last inequality holds for N large enough. (Note that we have used the triangle
inequality and the inverse triangle inequality in the numerator and the denominator to arrive
at the first upper bound on | cot(πz)|.) It is easy to obtain similar bounds on the other sides
of CN , and we thus have supz∈CN

| cot(πz)| ≤ 2. Consequently
∣

∣

∣

∣

∫

CN

f(z) cot(πz)dz

∣

∣

∣

∣

≤ 4(2N + 1) sup
z∈CN

|f(z) cot(πz)| ≤ 8(2N + 1) sup
z∈CN

|f(z)|.

However, for z ∈ CN we have |z| ≥ N , and by the decay condition on f , |f(z)| ≤ AN−α, for
some A > 0 and α > 1. Therefore,

∣

∣

∣

∣

∫

CN

f(z) cot(πz)dz

∣

∣

∣

∣

≤ 8A
2N + 1

Nα
−→ 0,

as N → ∞. This completes the proof.

Example 42. We want to calculate
∞

∑

n=1

1

n2
.

According to the above formula, we have

2
∞

∑

n=1

1

n2
=

∑

06=n∈Z

1

n2
= −Res

(

π
1

z2
cot(πz); 0

)

.

To find the residue, we find the Laurent expansion of π 1
z2 cot(πz) around the origin. First,

using the Taylor expansions of sin(z) and cos(z) around the origin, we get

cot(z) =
cos(z)

sin(z)
=

1 − z2

2
+ z4

4!
− · · ·

z − z3

3!
+ z5

5!
− · · ·

=
1

z

1

1 − z2

3!
+ z4

5!
− · · ·

[

1 − z2

2!
+

z4

4!
− · · ·

]

.

In order to expand the fraction 1
1−a

, a = z2

3!
− z4

5!
+ · · · we use the geometric series 1

1−a
=

∑

n≥0 an. Thus

cot(z) =
1

z

[

1 +
z2

3!
− z4

5!
+

z4

(3!)2
+ · · ·

] [

1 − z2

2!
+

z4

4!
+ · · ·

]

=
1

z

[

1 − 1

3
z2 + z4

(

1

4!
− 1

2!3!
− 1

5!
+

1

(3!)2

)

+ · · ·
]

=
1

z
− z

3
− 1

45
z3 + · · ·

Marco Merkli 56



Notes PM 4310

We can now read off the residue, Res
(

π cot(πz)
z2 ; 0

)

= −π2

3
. So we have

∞
∑

n=1

1

n2
=

π2

6
.

Next, consider the function ϕ(z) = π csc(πz) = π
sin(πz)

. ϕ has simple poles at n ∈ Z (as

before), and

Res(ϕ; n) = (z − n)ϕ(n)|z=n = lim
z→n

π
z − n

sin(πz)
= [cos(nπ)]−1 = (−1)n.

Moreover, csc2(z) = sin−2(z) = sin2(z)+cos2(z)

sin2(z)
= 1 + cot2(z), so csc2(z) is bounded for z ∈ CN ,

the square of the previous lemma, and we obtain the following result. If f has finitely many
singularities {zk}K

k=1, then

∑

n∈N, n/∈{zk}
(−1)nf(z) = −

K
∑

k=1

Res(πf(z) csc(z); zk).

Example 43. We have

2
∞

∑

n=1

(−1)n

n2
=

∑

n∈N, n6=0

(−1)n

n2
= −1

2
Res

(

π
csc(πz)

z2
; 0

)

.

csc(πz) =
1

sin(πz)

=
1

0 + πz − 1
3!
(πz)3 + · · ·

=
1

πz

[

1 +
1

3!
(πz)2 + · · ·

]

=
1

πz
+

π2

6π
z + · · · .

It follows that Res
(

π csc(πz)
z2 ; 0

)

= π3

6π
= π2

6
, and hence

∞
∑

n=1

(−1)n

n2
= −π2

12
.

We can evaluate sums involving binomial coefficients in the following way. Since C(n, k) =
(

n
k

)

is just the coefficient of zk in (1 + z)n, we have

C(n, k) = ak =
1

2πi

∫

C

(1 + z)n

zk+1
dz,
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where C is a simple closed curve enclosing the origin. This relation may be used in estimates.
For example, taking C = {|z| = 1},

C(2n, n) =
1

2πi

∫ π

−π

(1 + eiϕ)2n

ei(n+1)ϕ
eiϕidϕ

so
C(2n, n) ≤ 22n = 4n.

Example 44. To evaluate
∞
∑

n=0

C(2n,n)
5n , which converges since C(2n, n) ≤ 4n, we write

∞
∑

n=0

C(2n, n)

5n
=

1

2πi

∞
∑

n=0

∫

C

(1 + z)2n

(5z)n

dz

z
,

where C = {|z| = 1}. Since for |z| = 1 we have
∣

∣

∣

(1+z)2n

(5z)n
1
z

∣

∣

∣
≤

(

4
5

)n
, the series converges

uniformly on C by the Weierstrass M-test. Therefore,

∞
∑

n=0

C(2n, n)

5n
=

1

2πi

∫

C

∞
∑

n=0

[

(1 + z)2

5z

]n
dz

z

=
1

2πi

∫

C

1

1 − (1+z)2

5z

dz

z

= − 5

2πi

∫

C

dz
(

z − 3+
√

5
2

) (

z − 3−
√

5
2

)

=
√

5

We have used the Cauchy formula to evaluate the last integral: the contour contains the
singularity z0 = (3−

√
5)/2 and has thus the form 1

2πi

∫

C
f(z)
z−z0

dz, with f(z) = −5(z− 3+
√

5
2

)−1.

Example 45. To evaluate
∑n

k=0 C(n, k)2, we note that C(n, k) is the coefficient of zk in
(1 + z)n and also the coefficient of z−k in (1 + 1

z
)n. So it follows that

∑n
k=0 C(n, k)2 must be

the constant term in (1 + z)n(1 + 1
z
)n. Consequently, we have

n
∑

k=0

C(n, k)2 = a0 =
1

2πi

∫

C
(1 + z)n

(

1 +
1

z

)n
1

z
dz =

1

2πi

∫

C

(1 + z)2n

zn+1
dz,

where C is a simple closed contour around the origin. The latter integral is also the coefficient
of the power zn in the Taylor expansion of (1+z)2n around the origin, hence it equals C(2n, n).
So we have shown that

n
∑

k=0

C(n, k)2 = C(2n, n).

Marco Merkli 58



Notes PM 4310

4 Analytic Continuation

The identity theorem for analytic functions shows that an analytic function f on a domain
D is entirely determined by its values on any subdomain. How can we calculate the values
in the larger domain, starting from the knowledge of f on the smaller domain?

Example 46. The series
∞

∑

n=0

zn =
1

1 − z

converges for |z| < 1. It defines an analytic function f(z) in the open unit disk. For |z| ≥ 1,
the series does not converge. Nevertheless, g(z) := 1

1−z
is analytic everywhere except at

z = 1 (simple pole). We call g an analytic continuation of f .

Theorem 32. Let D1, D2 be two domains such that D1∩D2 6= ∅. Suppose that f1 is analytic
in D1, f2 is analytic in D2, and that f1(z) = f2(z) for all z ∈ D1 ∩ D2. Then there exists a
unique function F (z) that is analytic in D1 ∪ D2, and that coincides with f1(z) on D1.

Proof. Set F (z) = f1(z) for z ∈ D1, and F (z) = f2(z) for z ∈ D2. Since f1(z) = f2(z) for
z ∈ D1∩D2, F is well defined. Moreover, F is analytic or D1∪D2. By the identity theorem,
F is the only analytic function in D1 ∪ D2 with F (z) = f1(z) for z ∈ D1.

The function F is called an analytic continuation of f1 (into the domain D2). How can we
obtain construct the values of an analytic extension? Since the function to be extended is
determined by its Taylor series, and since the analytic extension is unique, this extension
must be determined by the Taylor coefficient of the function to be extended. Let

f1(z) =
∞

∑

n=0

an(z − z0)
n

be the Taylor expansion of f , convergent for |z − z0| < R. Let z1 be such that |z1 − z0| < R.
Then f is analytic at z1, and can thus be expanded as

f1(z) =
∞

∑

n=0

bn(z − z1)
n,

at least for z such that |z − z1| < R − |z1 − z0|.
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z0

z1

z2

The coefficients in the latter Taylor series are given by

bn =
1

n!
f

(n)
1 (z1)

=
1

n!

∞
∑

m=n

amm(m − 1) · · · (m − n + 1)(z1 − z0)
m−n

=
∞

∑

m=n

C(m,n)am(z1 − z0)
m−n

We know that the above series with coefficients bn converges for |z − z1| < R− |z1 − z0|, but
it may well be that it converges in a bigger disk B(z1, R1), with R1 > R − |z1 − z0|. If this
happens, then we have an extension f2 of f1 into the region B(z0, R) ∪ B(z1, R1). Now we
can continue this procedure, pick a point z2 in B(z1, R1) and expand around z2, etc. In this
way we may obtain a chain of circles, each center lying inside the previous circle in the chain.

One may extend a function along a given curve. Let C be a curve linking α ∈ C to β ∈ C.

z1

z2

z3

zn

α

β

D0
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The function f is given by its Taylor series, in a disk B0 centered at α. Going along the
curve C, starting at α, we may be able to find a point z1 ∈ C so that the piece (α,z1) on C
lies entirely in B0, and so that the Taylor series of f at z1 converges in a disk B1 that goes
beyond B0. Then we have an analytic continuation of f into B1. We continue the process:
we may be able to find a z2 ∈ B1 ∩C, such that the piece (z1,z2) on C lies entirely inside B1,
and such that the Taylor expansion of f at z2 converges in some disk B2 going beyond B1;
then f is extended to B2. If we can continue the procedure until we reach a point zn ∈ C
such that the Taylor series of f at zn converges in a disk containing the point β, then we
have extended f from α to β, along the curve C. This extension is independent of the choice
of intermediate points z1, . . . , zn. Indeed, let F and G be two such extensions, defined and
analytic on domains D and D′ (consisting of unions of circles), respectively. Then, since F
and G coincide in a neighbourhood of α, they coincide on all points D ∩ D′. In particular,
F (z) = G(z) for all z ∈ C. Thus F (β) = G(β).

Theorem 33. Let D1, D2 be domains with D1 ∩D2 6= ∅. Suppose that f1 is analytic in D1,
and that f2 is an analytic continuation of f1 into D2. Let α ∈ D1 and β ∈ D2, and let C be
a contour from α to β, so that C ⊂ D1 ∪ D2. Then f2(β) can be calculated via an extension
by a circle chain along C.

C

β

α

D1

D2

Proof. We need to find intermediate points z1, . . . , zn and disks B1, . . . , Bn, having the prop-
erties of the corresponding quantities in the circle chain extension. First assume that C is
a curve given by z(t), 0 ≤ t ≤ 1, which is an arc equivalent, continuous and simple with
z(0) = α, z(1) = β. Since C is a compact set in the open set D1 ∪ D2, we can find a radius
r > 0 such that all balls with centers on C and radius r still belong to D1 ∪ D2 (e.g., take
r = 1

2
min{|z − ζ| : z ∈ C, ζ ∈ C\(D1 ∪ D2)}). Since z(t) is continuous on the compact

interval [0, 1], it is uniformly continuous. This means that there is a δ > 0 such that if
|t − t′| < δ, then |z(t) − z(t′)| < r.
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Let us now divide the interval 0 ≤ t ≤ 1 into n equal parts of length 1
n
, with n so large

that 1
n

< δ, and call the corresponding points in the partition 0 = t0 < t1 < · · · < tn−1 <
tn = 1. Let zk = z(tk) be the corresponding points on C, z0 = α, zn = β. Now we have
|zk+1 − zk| = |z(tk+1) − z(tk)| < r, since |tk+1 − tk| < δ. Therefore, zk ∈ B(zk−1, r) and the
B(zk, r), k = 0, . . . , n, form a circle chain lying inside D1 ∪ D2 and covering C. Moreover,
the piece (zk−1,zk) on C lies inside B(zk−1, r) and so we have found a circle chain linking α
to β, along C.

Finally, if C is an arbitrary contour, then it is a finite composition of arcs, and one
proceeds on each arc as above.

The last result shows that if f1 has an analytic continuation from a domain D1 into a domain
D2, then the continuation can be obtained using the circle chain procedure along an arbitrary
curve C inside D1∪D2. Is the converse true as well? Suppose that f1 is analytic in a domain
D1, and that there is a domain D2, s.t. D1 ∩ D2 6= ∅, with the property that we can extend
f1 along any arbitrary curve C ⊂ D1∪D2 into D1∪D2. Do we thus get an analytic extension
of f1 into D1 ∪ D2? The answer is no, in general, since the value of an extension along one
curve may not coincide with that one along another curve.
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.

.

.

.

.

.

0

−1

↑

→Re

Im

−1 + i
2

q

Example 47. The principal value square root, f1(z) = P.V. z
1
2 = e

1
2
Log(z), is analytic on

D1 = C\(−∞, 0]. Let z+ = −1 + i
2
. The function f1 has the Taylor series expansion

f1(z) =
∑∞

n=0 an(z − z+)n around z+, with an =
f
(n)
1 (z+)

n!
. For n ≥ 2, we have

f
(n)
1 (z) = z

1
2
−n 1

2

(

−1

2

) (

−3

2

)

· · ·
(

1

2
− n + 1

)

= (−1)n+1 1 · 3 · 5 · · · (2n − 3)

2n
z

1
2
−n,

where the root is the principal one. Let ϕ+ be the principal argument of z+. Then

z
1
2
−n

+ =

(√
5

2

)
1
2
−n

ei( 1
2
−n)ϕ+ .

We thus have

f1(z) =

(√
5

2

)
1
2

ei
ϕ+
2

[

1 +
z − z+√

5
e−iϕ+ −

∞
∑

n=2

(−1)n 1 · 3 · · · (2n − 3)

n!

(

z − z+√
5

)n

e−inϕ+

]

.
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We now calculate the radius of convergence of the last series. Since

1 · 3 · 5 · · · (2(n + 1) − 3)

(n + 1)!

n!

1 · 3 · 5 · · · (2n − 3)
=

2(n + 1) − 3

n + 1

n→∞−→ 2,

we see from the ratio test that the series converges for |z − z+| <
√

5/2. It is clear that the
radius of convergence cannot exceed

√
5/2, since this is the distance from the centre z+ of the

series to the origin, which is a singularity of f1. However, note that points of non-analyticity
of P.V.z

1
2 on the negative axis (−∞, 0) lie inside the disk of convergence of the power series

for f1.

z+

0−1

We have therefore constructed f+, an analytic continuation of f1 into D1 ∪ B(z+,
√

5/2).
The extension f+ is given by f+ = f1 on D1, and it is defined by the power series above for
z ∈ B(z+,

√
5/2). In particular, the point z = −1 is in the domain of analyticity of f+. By

the identity theorem, the continuation of f1 along any contour C ⊂ D1 ∪ B(z+,
√

5
2

) from z+

to −1 will coincide with f+.

Next we consider z− = −1− i
2
, and we expand f1 around z−. It is by now easy to see that

f1 is given by a Taylor series centered at z−, and that this series has radius of convergence√
5/2. In particular, this gives an analytic extension f− of f1 into D1 ∪ B(z−,

√
5/2). The

point z = −1 is in the domain of analyticity of f−.

We have thus two analytic continuations of f1, denoted f+ and f−, both defined and

analytic at the point z = −1. Since f± are analytic in the disks B(z±,
√

5
2

), they are in
particular continuous, so

f+(−1) = lim
α↑π

f(eiα) = lim
α↑π

e
1
2
Log(eiα) = lim

α↑π
e

i
2
Arg(α) = e

iπ
2 = i,

and
f−(−1) = lim

α↓−π
f(eiα) = e

−iπ
2 = −i.

Therefore, the two extensions do not coincide !
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C+

C−

−1 10

The above example shows that we can start with f1 defined on B(0, 1) and extend f1 in
two ways, along C+ and C−, into domains containing −1. However, the two continuations
do not coincide at the endpoint −1. Under what conditions can one guarantee uniqueness
(single-valuedness) of analytic extensions? Note that in the above example, C = C+ ∪ (−C−)

encloses a singularity of the function f1(z) = z
1
2 . As we shall see, this is the origin of non-

uniqueness of analytic continuations.

Let α, β ∈ C be fixed and consider two contours C0, C1 linking α to β. We say that C0

can be deformed continuously into C1 if there is a continuous map z : [0, 1] × [0, 1] → C,
(s, t) 7→ z(s, t) such that z(0, t) is a parametrization of C0, z(1, t) is a parametrization of C1

(in particular, z(0, 0) = z(1, 0) = α, z(0, 1) = z(1, 1) = β), and such that t 7→ z(s, t) defines
a contour Cs linking α to β, for each 0 ≤ s ≤ 1. The curves C0 and C1 are then also called
homotopically equivalent.

C1

C0

Cs

α

β

Theorem 34 (Monodromy Theorem). Let C0 and C1 be two contours linking α to β. Suppose
f is analytic at α and suppose we can deform C0 continuously into C1 in such a way that f
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can be continued along any intermediate contour Cs. Then the continuation along C0 and C1

coincide at β.

In the example above, the hypothesis of the theorem is not satisfied, since one has to
sweep the curve C+ continuously onto C−. So for some value of s, the intermediate curve Cs

has to pass through the origin, which is a singularity of f1. For this value of s, one cannot,
of course, perform an analytic continuation from α = +1 to α = −1 along Cs.

Proof. Consider 0 ≤ s0 ≤ 1. We can extend f from α to β along Cs0 , via a chain of circles.
The union of those circles defines an open set Us0 containing Cs0 , and we have an analytic
function Fs0(z) on Us0 .

Cs0

Us0

α

β

There exists a δ > 0 such that if |s − s0| < δ, then Cs ⊂ Us0 . This follows from the
continuity of the map z : [0, 1] × [0, 1] → C. Indeed, by the uniform continuity of this
map, we have that for every ǫ > 0 there exists δ > 0 such that ‖(s0, t0) − (s, t)‖ < δ ⇒
|z(s0, t0) − z(s, t)| < ǫ. (Here, ‖(x, y)‖ =

√

x2 + y2 denotes the Euclidean norm of R
2.) In

particular, if ‖(s0, t) − (s, t)‖ = |s0 − s| < δ, then |z(s0, t) − z(s, t)| < ǫ (for all t). Thus
|s0 − s| < δ implies that maxt∈[0,1] |z(s0, t)− z(s, t)| < ǫ. Thus Cs lies in an ǫ-neighbourhood
of Cs0 , if |s0 − s| < δ. It suffices to take ǫ = 1

2
dist(Cs0 , C\Us0), then Cs ⊂ Us0 for all s such

that |s0 − s| < δ.
Now for each s such that |s0 − s| < δ, we get an analytic function z 7→ Fs(z) in some

neighbourhood Us of Cs, again by the circle chain procedure. The identity theorem gives
Fs = Fs0 . Hence, for any s0 ∈ [0, 1], we find a δs0 > 0 such that the extension along all
curves Cs, |s − s0| < δs0 , yield the same analytic function at β. Since [0, 1] is compact,
we can find finitely many such s1, . . . , sn and δ1, . . . , δn such that ∪n

j=1B(sj, δj) covers [0, 1].
Therefore, the extensions along C0 and C1 yield the same value at β.

Actually, this proof shows that if a point ζ ∈ C belongs to the domain of any two analytic
functions F1, F2, obtained in this procedure, then F1(ζ) = F2(ζ), so the extension yields a
single-valued analytic function between C0 and C1.

4.1 Extension of real functions to analytic ones

Suppose f : I = [a, b] → R is a real function. When can we find a complex domain D
containing I, an a function F : D → C, analytic on D, such that F (x) = f(x), for all x ∈ I?
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If such an extension exists, it must be unique: Suppose F1, F2 and D1, D2 do the job. Then
D1∩D2 contains I, and F1 and F2 must coincide on I. By the identity theorem, F1 coincides
with F2 on all of D1 ∩ D2.

D

ba

I

Of course, if f is not infinitely many times differentiable, then one cannot find a complex
analytic extension (since if it existed, the function F , restricted to I, would have to be
infinitely many times differentiable). However, f ∈ C∞ (I) does not guarantee the existence
of a complex analytic extension.

Theorem 35. Let I ⊂ R be an interval, f : I → R. Then there exists a complex domain D
and an extension F of f , analytic on D, if any only if f(x) can be expanded in a real power
series around any point x ∈ I.

Proof. (⇐) Suppose we have, for any x0 ∈ I fixed, an expansion

f(x) =
∞

∑

n=0

an(x − x0)
n,

for some an ∈ R, with radius of convergence r0 > 0. Then define

F (z) :=
∞

∑

n=0

an(z − x0)
n.

This series converges for |z − x0| < r0. Indeed, the radius convergence is R0 = 1/L0, where

L0 = lim sup |an|
1
n = 1/r0. Now set D = ∪x0∈IB(x0, r0) ⊂ C. D is a domain. By the

identity theorem, F is well defined and analytic on D, and by construction, F (x) = f(x) for
all x ∈ I.

(⇒) Suppose we have a complex domain D containing I, and a function F analytic on
D, such that F (x) = f(x) for all x ∈ I. Let x0 ∈ I be fixed. Since F is analytic at x0, if has
a Taylor expansion

F (x) =
∞

∑

n=0

an(x − x0)
n,

convergent for |x − x0| < r0. Thus f has a power series expansion around any x0 ∈ I. To
complete the proof we just have to show that the coefficients an are real. We know that
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an = 1
n!

F (n)(x0). Now

F (n)(x0) =
dnF

dzn
(x0) =

∂nF

∂xn
(x0) =

∂nf

∂xn
(x0) = f (n)(x0),

since F and f coincide on I. Thus an = 1
n!

f (n)(x0) ∈ R.

Example 48. The trigonometric functions

sin(x) =
∞

∑

n=0

(−1)n x2n+1

(2n + 1)!
and cos(x) =

∞
∑

n=0

(−1)n x2n

(2n)!

have unique complex (entire) extensions. (Just replace x by z in the Taylor series.)
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